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This paper describes a new method for triangulating a simple n-sided polygon. The algorithm runs 
in time O(n log s), with s _< n. The quantity s measures the sinuosity of the polygon, that is, the 
number of times the boundary alternates between complete spirals of opposite orientation. The value 
of s is in practice a very small constant, even for extremely winding polygons. Our algorithm is the 
first method whose performance is linear in the number of vertices, up to within a factor that depends 
only on the shape-complexity of the polygon. Informally, this notion of shape-complexity measures 
how entangled a polygon is, and is thus highly independent of the number of vertices. A practical 
advantage of the algorithm is that it does not require sorting or the use of any balanced tree structure. 
Aside from the notion of sinuosity, we are also able to characterize a large class of polygons for which 
the algorithm can be proven to run in O(n log log n) time. The algorithm has been implemented, 
tested, and empirical evidence has confirmed its theoretical claim to efficiency. 
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1. INTRODUCTION 

T r i a n g u l a t i o n  p r o b l e m s  a re  m a n y  a n d  v a r i e d  [8]. One  c o m m o n  t h r e a d  b e t w e e n  
t h e m  is t h e  a t t e m p t  to  re f ine  t h e  n o t i o n  o f  neighborhood a m o n g  t h e  ob jec t s  u n d e r  
c o n s i d e r a t i o n .  T h i s  is qu i t e  a p p a r e n t  in  t h e  case  o f  p o l y g o n a l  t r i a n g u l a t i o n s ,  
whe re  one  is a s k e d  to  a u g m e n t  t h e  se t  o f  b o u n d a r y  a d j a c e n c i e s  o f  a s imp le  
p o l y g o n  b y  e x p r e s s i n g  i t  as  a se t  o f  p a i r w i s e  d i s j o i n t  t r i ang l e s .  T h e  p r o b l e m  is 
s i m p l y  s t a t e d  as  fol lows:  

Decompose a simple polygon into a set of nonoverlapping triangles without 
adding new vertices. 
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The relevance of this question is twofold. On one hand, it is the basis of many 
other geometrical problems (e.g., visibility, shortest-path, region-fil]ing prob- 
lems); on the other hand, it raises one of the most puzzling questions of 
computational geometry: Does the knowledge of a simple path between n points 
allow us to break the ~2(nlogn) lower bound on the time for computing any 
triangulation of these points [6]? The answer to this question is not yet known, 
but a number of O(nlogn) time algorithms have already been proposed to 
triangulate a simple n-sided polygon [1, 2, 4]. In this paper we propose to extend 
our current knowledge of the problem by describing a new algorithm which, in 
many aspects, outperforms all known methods. 

Before presenting ihe main features of the algorithm, let us sumn.~arize the 
most important previously obtained results. Linear-time triangulations of special 
classes of polygons were found by Toussaint and Avis [9], and Schoone and van 
Leeuwen [7]. In the first case, the class contained the so-called edge visible and 
monotone separable polygons, and in the latter, the star-shaped polygons. Garey 
et al. [2] also gave a linear algorithm for monotone polygons, as well as the first 
general O(nlogn) time method for triangulating an arbitrary simple n-sided 
polygon. The same time bound was achieved by Chazelle [1], using eL radically 
different method. Since both of these algorithms involve sorting n numbers, their 
O{nlogn) upper bound reflects the actual running time of the algorithm in a 
fairly accurate fashion. Recently, Hertel and Mehlhorn [4] have described a 
sweep-line based algorithm that performs all the better as the polygon has few 
reflex angles. The running time of the method is O(n + r logr) ,  where r denotes 
the number of reflex angles. 

Theoretically, Hertel and Mehlhorn's algorithm is interesting because it adapts 
itself to the shape of the polygon. Since beating O(nlogn) in the worst case, 
seems very difficult, the natural trend of research has been to look for algorithms 
that behave linearly on a large class of polygons and require on the order of n 
log n operations only for fairly contrived polygonal shapes. Hertel and l~.[ehlhorn's 
result takes a big step in the first direction but is unfortunately barely relevant 
to the second concern. Indeed, the number of reflex angles does not reflect how 
geometrically contrived a polygon is; to see this, just add n artificial vertices to 
any n-sided polygon, giving their adjacent edges an infinitesimal twi~.t so as to 
create n reflex angles (of 180 + e degrees). This transformation will make r, the 
number of reflex angles, proportional to the input size, without altering: at all the 
basic shape of the polygon. 

In this paper we take a further step to achieve a time complexity that indeed 
reflects the shape-complexity of the polygon. We describe a triangulation algo- 
rithm that runs in time O(nlogs), with s _ n. The quantity s measures the 
sinuosity of the polygon, that is, the number of times the boundary .alternates 
between complete spirals of opposite orientation. The value of s is, in practice, a 
very small constant, even for extremely winding polygons. Our algorithm is the 
first method whose performance is linear in the number of vertices, up to within 
a factor that depends only on the shape-complexity of the polygon. Informally, 
this notion of shape-complexity measures how entangled a polygon is, and is thus 
highly independent of the number of vertices. A practical advantage of the 
algorithm is that it does not require sorting or the use of any balanced tree 
structure. Aside from the notion of sinuosity, we are also able to chazacterize a 
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large class of polygons for which the algorithm can be proved to run in 
O(n log log n) time. The algorithm has been implemented and tested, and empir- 
ical evidence has confirmed its theoretical claim to efficiency. 

The paper is organized as follows: In Section 2 we introduce our notation and 
give a precise description of the algorithm. We analyze its complexity in Section 
3, and in Section 4 we identify a class of polygons for which the algorithm runs 
in 0 (n log log n) time. In Section 5 we slightly modify the algorithm and introduce 
the notion of sinuosity, by means of which we express its performance. In Section 
6 we report on the actual coding of the algorithm and outline the essential 
components of the program. Finally, we draw various conclusions in Section 7 
and indicate directions for further research. 

2. DECOMPOSING A POLYGON INTO TRAPEZOIDS 

2.1 The Basic Ingredients 

The first and main goal of the algorithm is to compute the vertical decomposition 
of the polygon P, denoted VD(P). This is the unique partition of P obtained by 
drawing a vertical line through each vertex of P, extending each line as long as 
it does not properly cross the boundary of the polygon (Figure 1). We show later 
that it is straightforward to derive a triangulation of P once its vertical decom- 
position is available. Note that  for VD(P) to be well-defined, P must be a simple, 
yet not necessarily closed, curve. We can extend the notion of vertical decom- 
position to any simple, oriented polygonal line L. Before proceeding, we introduce 
some terminology: Let t be a vertical segment with an endpoint p on L, and let 
D be a disk centered at p. If the radius is chosen small enough, we can always 
ensure that L subdivides D into exactly two parts, provided that p is not an 
endpoint of L. Let C be the part with respect to which the orientation of L runs 
clockwise. If the intersection of t with D lies completely in C, or if p happens to 
be an endpoint of L, we say that p is in right-contact with L. 

Next, we introduce the concept of L-extension. For any vertex p of L, extend a 
vertical segment from p upward until it hits L in right-contact. Stop this process 
if it generates an intersection with L which is not in right-contact. Repeat the 
same process, substituting downward for upward. The segment generated is called 
the L-extension ofp. In the simplest case, the L-extension ofp  has one (Figure 2 
[A]) or two (Figure 2 [D]) endpoints in right-contact. It may have one (Figure 2 
[C]) or two endpoints at infinity. Or, it may have one or two endpoints not in 
right-contact (Figure 2 [B]). In this case, the segment is stretched to infinity 
past the endpoint, by convention. Finally, it may be reduced to a single point 
(e.g., leftmost point in Figure 2), if extending a segment should generate an 
endpoint not in right-contact. A point of L that  lies on an L-extension is called 
a support-vertex if it is a vertex of L, and a pseudovertex otherwise. Note that an 
L-extension may not have a pseudovertex, but it always has a support-vertex. 

The set of all L-extensions can be conveniently represented as a set of vertical 
trapezoids, with each vertical side coinciding with the L-extension of some vertex 
of L. This set defines the vertical decomposition of L, denoted VD(L). If L is not 
closed, some of the trapezoids may be unbounded and there is no partitioning of 
space proper, since trapezoids may actually overlap. The set of trapezoids, 
however, induces a partition of the line L into line segments, called VD-edges. A 
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Fig. 1. The vertical decomposition of a 
simple polygon. 

IDI IEI IBI Fig. 2. The notion of L-e~tensions. 

VD-edge is a subsegment of an edge of L that  sustains exactly one trapezoid. 
Note that  a bounded (respectively, unbounded) trapezoid is, in general, sustained 
by two (respectively, one) VD-edges. Figure 2 illustrates most of the. relevant 
configurations of VD(L). Note that although two adjacent trapezoids often share 
an entire side (Figure 2 [A]), one side may be properly contained in the other 
(Figure 2 [D]), one of which may actually be infinite (Figure 2 [E]). 

The data structure for VD(L) provides two accessing schemes. On the one 
hand, each trapezoid is represented by its boundary, kept as a doubly l:mked list, 
with adjacent trapezoids pointing to each other. On the other hand, the line L is 
represented as a doubly linked list of VD-edges, each of them pointing to its 
sustained trapezoid. It may sometimes happen that  the vertical side of a trapezoid 
contains several support vertices. We resolve these singularities by introducing 
extra trapezoids of null width. This will allow us to assume that  each trapezoid 
side contains exactly one support vertex. 

2.2: Merging two  VD-structures 

The key step of the divide-and-conquer algorithm involves merging two ~tructures 
VD(L1) and VD(L2), with L1 = {Urn, . . . ,  Vl}, L2 = {Wl, . . . ,  win}, and vl = Wl. 
These lists indicate the orientation of the polygonal lines. For consistency, we 
use a descending sequence for L1 so that  the merge can proceed toward higher 
indices for both L1 and L2. In the following, we say that  a point a E! L~ is L1- 
further than a point b E L1, if it is encountered after b in the course of traversing 
L1 from Vl to vm. The same applies about L2. Let L = {Vm . . . . .  Vl, W2, .. •, Win}. 
The goal is to compute VD(L) by proceeding concurrently from v~ to Vm and w~ 
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~ 
,. ~ L1 . . o °  V l l W l  

Fig. 3. Taking shortcuts. 

to w~, reconfiguring the trapezoids on-line. The main feature of this stitching 
operation is to take shortcuts whenever possible, that is, avoid traversing vertices 
whose adjacent trapezoids remain unchanged. This concept of shortcuts, exten- 
sively developed later on, is essential to the algorithm. Without it, any hope of 
beating 0 (n log n) time would vanish. The computation will be completely guided 
by two pointers, pl and p2, running concurrently through the VD-edges of L1 and 
L2, respectively. The computation will ensure the following invariant: 

INVARIANT. At  any time during the merge of L1 and L~, the current state of 
VD(L) consists of the L-extension of all the points of L1 (respectively, L2) between 
vl and Pl (respectively, p2) as well as the L1- (respectively, L2-) extension of all the 
other points in L1 (respectively, L2). 

Figure 3 gives an example of a typical tour of p~. For simplicity, we have 
represented L2 as a curved line to give a rough indication of its interaction with 
L1. The trajectory ofp~ appears as a dotted line. Figure 3 shows that pl will point 
to VD-edges of trapezoids in VD(L~), moving only between adjacent trapezoids. 
Occasionally, pl will switch from one VD-edge of a trapezoid to another of the 
same trapezoid (recall that a trapezoid has one or two VD-edges). As we shall see 
shortly, VD-structures contain all the information necessary to implement the 
merging without too much effort. The only difficulty resides in identifying all 
possible situations and treating them in a unifying manner. 

At the generic step, all the VD-edges of L1 (respectively, L2) between Vl and pl 
(respectively, p2) have been processed and will never be visited again during the 
merging of L1 and L2. If at time 0 the last trapezoid t, examined in VD(L2), has 
been entirely processed, we must consider the "next one" in VD(L2). This new 
trapezoid is referred to as the fresh trapezoid at time 8. More need be said about 
this trapezoid to make it defined unambiguously; all we can now say is that since 
it is adjacent to t, it can be retrieved in constant time from VD(L2). In general, 
if the fresh trapezoid is provided by L2, the last trapezoid, t ' ,  examined in VD(L~), 
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will have been only partly updated at time 0, and further processing will be in 
order; t '  is called the carry trapezoid at time 0. Typically, t '  is the remaining 
part of a clipped trapezoid of VD(L1). 

We are now ready to merge the fresh and carry trapezoids, and thus add to the 
construction of VD(L). We proceed by a case-analysis, which although a bit 
lengthy, is fairly straightforward. Before describing the algorithm, let us mention 
some of the difficulties we shall encounter. This preview, intended only as an 
illustration, will prepare the reader for the forthcoming case-analysis. One 
important feature, which we have to respect carefully, is the presence of exactly 
one support-vertex on each vertical side of each trapezoid. As we have seen 
earlier, the multiplicity of such vertices can be easily corrected by the introduction 
of null-width trapezoids. Another problem is the handling of newly appeared 
vertical sides with no support-vertex at all. We solve this problem by c,3mbining 
the two trapezoids adjacent to the side in question. Note also that since a 
trapezoid often has two sustaining VD-edges, its updating in the course of 
processing one of these edges may have the effect of upsetting the sustaining 
status of the other edge; hence, updating with respect to both VD-edges will be 
in order. This is required in order to satisfy the invariant. Note that one likely 
effect of this updating is to modify the breakdown of L1 or/,2 into VD-edges. We 
shall illustrate this type of modification later. 

By construction, the carry and fresh trapezoids lie on the same side--say, 
without loss of generality (wlog) on the left s ide--of  the last trapezoid con- 
structed. As far as the construction of the next trapezoid is conce:med, the 
difference between a carry and a fresh trapezoid is immaterial. For thi[s reason, 
we can assume wlog that pl stretches further to the left than P2, that is, the x- 
coordinate of pl 's  left endpoint does not exceed the x-coordinate of' p2's left 
endpoint. 

The algorithm rests on a case-analysis that can be best described plictorially. 
Figures 4 illustrates all possible cases. Each of the six pairs of pictures depicts 
the construction of the next trapezoid(s), represented in hashed lines in the right- 
hand column. Each of the 12 pictures contains an arrow to indicate the direction 
from which the next construction will take place. We represent three kinds of 
trapezoids: fresh(F) and carry(C), as well as next(N), one of the trapezoids of 
VD(L2) adjacent to fresh. We shall define next more precisely in each of the 
cases. The trapezoids are represented very schematically. Each of them has a 
VD-(lower or upper) edge currently under consideration; this edge is represented 
by a continuous line, whereas the other (upper or lower) edge is repre~ented by 
a dotted line. The latter edge is either sustaining or at infinity; in either case, its 
position has no particular significance, unless the line is doubled up with a 
continuous line (Figures 4b, e). In this case, the edge is sustaining and its relative 
position is meaningful. The case-analysis is based on the relative position of p2 
(= ab) and bc, the VD-edge adjacent to p2 in the direction of the con~truction. 
Figures 4 (a-c) (respectively, d-f)) assume that c (respectively, b) has the least 
x-coordinate among a, b, c. Here are a few remarks intended to supplement Figure 
4. 

(1) (Figures 4a, b) Let q be the unique support-vertex of F. From the Jordan 
Curve theorem, it follows that either q = b, or q is strictly L2-further than b. 
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(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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e 
2 

ca ~ STOP 

Fig. 4. The case-analysis. 

Figures 4a and b, assume the latter case. In the direction of the construction, 
there are two candidates for the role of next trapezoid from L2. Discriminating 
between Figure 4a and b settles this question. In 4a (respectively, 4b), the support- 
vertex lies below (respectively, above) pl. 

(2) (Figures 4c, d-f) In all these cases, q = b, that is, b is the support-vertex 
of the left side of F. Case 4c is the simplest and, as such, fairly self-explanatory. 
In 4d, the left sides of both C and N extend to infinity downward, and therefore, 
no further interaction between L1 and/_~ is to be expected; the merging is over. 
If this is not the case, let el (respectively, e2) be the lower edge of C {respectively, 
N). Note that one of these edges may be at infinity. Draw a segment from b 
downward, until it first intersects either e~ (4e) or e2 (4f). In the former case, let 
N'  be the trapezoid of VD(L2) sustained by bc. We can process directly all of C 
and N, declare N'  fresh, and keep C as the carry. Two observations are in order: 
first of all, although C is still a carry trapezoid, its sustaining edge that gives its 
value to p~ will be switched from the upper to the lower edge. Also, it may be the 
case that N is not properly defined as indicated in Figure 4e. This will happen 
when the trapezoid of VD(L2) sustained by bc is unbounded below. We then 
blithely proceed toward N',  after applying the treatment depicted in Figure 4e. 
Finally, in case 4f, we proceed as shown in the corresponding figure, observing 
that the treatment is somewhat fairly similar to 4a and c. 
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Fig. 5. Handl ing side-effects. 

We must now deal with the various side effects mentioned earlier. When 
introducing a new trapezoid, we must always check whether it can be combined 
with the previous one so as to form a single trapezoid, in which case, the trapezoids 
in question should be combined. In Figure 5a, for example, VD(L1) provides the 
same carry for several steps, whereas VD(L2) keeps on supplying fresh trapezoids 
with no support-vertex on L2. As a result, the newly created trapezoids will be 
combined, one after the other. To ensure the invariant, we must also update the 
remaining part of VD(L2). In the same vein, Figure 5b illustrates the notion of 
side-effect updating: the creation of new trapezoids in VD(L) resets the lower 
edges of a number of trapezoids in VD(L2) to -0% thus causing the loss of their 
support-vertices. As a result, we must merge all these trapezoids into a single 
one.Naturally, in the course of merging L1 and L2, we must set all the adjacencies 
between newly created trapezoids, as prescribed in the definition of VI:)(L). 

The proof of correctness relies, upon the inspection, that Figure 4 considers 
all significant cases, and that the actions taken respect the invariant. The latter 
can be asserted by observing that (1) the new trapezoids are valid tral.~ezoids of 
VD(L), and (2) each trapezoid of VD(L~) or VD(L2) that is modified by the 
computation leads to an updating of the adjacencies of all its sustaining edges. 
Note that the algorithm is conceptually quite simple, and the difficulty resides 
only in specifying the details correctly. For this reason, our successful i:mplemen- 
tation of the algorithm is, we believe, an indispensable part of this work, as it 
contains all the details left unmentioned here for the sake of clarity. 

2.3. The Divide-and-Conquer Procedure 

We are now ready to compute the vertical decomposition of the polygon P. Let 
{p~, . . . ,  p,} be the vertices of P in clockwise order. Recursively, compu~e VD(L~) 
and VD(L2), for L1 = { p l , . . . ,  pt,/2J} and L2 = {pt,/2j+~ . . . .  , p,}, and fin.ally apply 
the procedure described above to merge VD(L~) and VD(L2). This will produce 
the vertical decomposition of P, which completes the description of the algorithm. 
Here is a simple, preliminary result on the complexity of the algorithm. 

THEOREM 1. The algorithm computes the vertical decomposition of a simple n- 
sided polygon in O (n log n ) time and O (n ) space. 
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PROOF. Since the L-extension of a vertex of L consists of at most three points, 
VD(L) requires O(I L I ) storage. Merging VD(L1) and VD(L2) takes time linear 
in the input size; therefore the divide-and-conquer procedure requires O(n log n) 
time. [] 

We shall see later on that the algorithm has a much better performance than 
indicated by Theorem 1. To seek any improvement, however, it is crucial to 
ensure two requirements regarding the implementation. 

(1) If the algorithm is implemented recursively, we should pass pointers to the 
endpoints of L1 and L2 as arguments to the merge routine VD and not to the 
full-fledged lists themselves. 

(2) We should compute VD(L) in place by modifying existing links, allocating 
new space only when necessary and freeing space after deletions. 

3. THE TRIANGULATION ALGORITHM 

We shall show how to transform the vertical decomposition of P into a triangu- 
lation, using a variant of the algorithm of Garey et al. [2]. This algorithm involves 
computing a regular decomposition of P and applying to it a simple O(n) time 
procedure to produce a triangulation. A regular decomposition of a polygon P is 
a partition of P into monotone polygons that does not introduce new vertices. A 
polygon Q is said to be monotone if there exists a line T such that the boundary 
of Q can be decomposed into two consecutive chains, each of whose orthogonal 
projections on T has the same vertex-list order as its originating chain. 

It is quite simple to go from a vertical to a regular decomposition of P. To do 
so, we choose the x-axis as the reference line T and identify all the vertices of P 
that cause the polygon not to be monotone. These are exactly the support-vertices 
whose P-extension contains two pseudovertices. For each such vertex v, let t be 
the unique trapezoid for wl/ich the P-extension of v coincides with a vertical side, 
and let w be the other support-vertex of t. It is easy to show that connecting each 
pair (v, w) in P by a straight edge will produce a regular decomposition of P 
{Figure 6). We omit the proof of this elementary fact. The description of the 
triangulation algorithm is now complete. Its time complexity is clearly O (n log n), 
since transforming a vertical decomposition into a triangulation requires linear 
time. 

4. INTRODUCING THE NOTION OF NESTING NUMBER 

Since the complexity of the triangulation algorithm is entirely dominated by the 
construction of the vertical decomposition, we shall concentrate exclusively on 
this phase of the algorithm. A quick observation shows that the upper bound of 
O(nlogn) on the time complexity of the algorithm is tight {Figure 7a). The 
shapes of the worst-case polygons are so contrived, however, that we can argue 
that in most practical cases, the algorithm is extremely efficient--actually more 
efficient than any other triangulation algorithm known to date. This feature is 
due to the fact that the algorithm is highly adaptive. Indeed, by constantly 
seeking shortcuts, the algorithm may often merge two large inner decompositions 
in constant or near-constant time. In Figure 7b, for example, all the merges take 
constant time, except for the last one, which requires linear time. The overall 
running time is therefore O(n). In this section we try to characterize classes of 
polygons for which the running time is linear or quasi-linear. 
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To refine the crude analysis of Theorem 1, we introduce the concept of nesting 
number. A vertical line D that intersects P has the effect of dividing the. boundary 
of P into polygonal chains running from one point of D to another, each lying 
entirely on one side of D. Consider now the polygonal lines as fences and imagine 
that a dog placed initially on the line D wishes to run away to infinil;y, staying 
always on one side of D. Let ml (respectively m2) be the minimum :aumber of 
fences it will have to jump in order to escape through the left (respectively, right) 
side, and let m = max(m1, m2). We define v(P), the nesting number of P, as the 
maximum value of m for all starting positions and all lines D. In Fii~re 8, for 
example, v(P) = 3. 

Practical experience (with, say, graphic typesetting or pattern recognition, 
where the need for efficient triangulations arises) shows that the nesting number 
of a polygon is, in general, 1 and usually less than or equal to 2 or 3. Let us 
assume in the following that v(P) < 4; we shall show that all the n-sided polygons 
in this class can be triangulated in O(n log log n) time. 

It is clear from the description of the algorithm that the running time is 
proportional to the number of times L-extensions are updated. Pseudovertices 
are never updated, properly speaking; they are created and possibly destroyed. 
Consequently, the costs that they incur can be charged to the corresponding 
support-vertices. Without loss of generality, we can concentrate on the L- 
extensions that have a pseudovertex lower than their support-vertex: along the 
y-axis. These extensions are called top-extensions, and their lower endpoints 
(which are pseudovertices) are called the low-points of the extensions. Since a 
low-point can never be set to infinity twice in a row, we can restrict our attention 
to the number of times a low-point is set to a new position on the boundary of 
P. These updates are called breaks. Let Pi be the support-vertex of some top- 
extension. Note that, chronologically, breaks occur closer and closer to pi. The 
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Fig. 7. Bad and  good eases. 

vertex p/ is  said to be right-broken (respectively, left-broken) if the break is caused 
by an edge pjpj+~ with j > i (respectively, j < i). Let  C(n) be an upper bound on 
the total  number of times a low-point is updated in the course of computing 
VD(P). For reasons of symmetry,  we immediately derive tha t  the time necessary 
to compute VD(P) is O(n + C(n)). In the following analysis we therefore consider 
only left-breaks of top-extensions without  further justification. We also use the 
term left-break with the implicit understanding tha t  it refers to top-extensions. 

Let us examine how left-breaks can occur in the course of merging the vertical 
decomposition of two polygonal lines L1 and L2. Let  LI = { q l , . . . ,  qm} and L2 = 
{qm+~, • . . ,  q2m}, with {q~, q2 . . . .  } = {Pl, Pl+~, -..} for some I. For any k > 2, let 
D(k) be the number of vertices in L2 tha t  satisfy the three following conditions: 
(1) they are left-broken in the course of merging L~ and L2 (this can happen only 
once per merge), (2) they were previously left-broken exactly k - 1 times, and 
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! 
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Fig. 8. The  not ion of nest ing number: v(P)  = 3. 

(3) they will be left-broken later on at least once more. We prove the following 
result: 

LEMMA 1. For any k <_ 2, we have D(k)  <_ m/2  k-3. 

PROOF. Let qi be the vertex of L2 that  satisfies the three conditions above and 
has the highest index i, and let B be the low point of the new top-extension of qi 
right after the merge. Let {qj . . . .  , qi, . . . ,  qi'} be the polygonal line resulting 
from the merge during which qi was left-broken for the first time. Let A be the 
low-point of the top-extension of qi right after its first left-break, and let q,q~+l 
be the supporting edge in L2 (Figure 9a). We will show that  no vertex between 
qm and qj can contribute any value to D(k) .  To do so, we will prove the stronger 
result that  no vertex between qm and qj can be actually left-broken for at least 
the second time, while merging L1 and L2, with the hope of it being left-broken 
later on. Assume that  this is not the case, and that  qh(m <- h <_ j )  is left-broken 
by the edge q,qu+l of L1. We distinguish between two cases: 

(1) qh lies inside the polygon enclosed by {qi, A, q,+l, q,÷2 . . . . .  qi}. In this case, 
in addition to q,q,+l, each of the following polygonal lines contribute,~ one to the 
nesting number: (1) from A to qi; (2) from qh to the low-point C of the previous 
top-extension of qh; (3) as a direct application of the Jordan Curve theorem, a 
third polygonal line between (1) and (2) must also exist and increase qh's 
contribution to the nesting number. This raises the nesting number to at least 
four, and brings a contradiction (Figure 9a). 

(2) If qh does not lie inside the polygon enclosed by {qi, A,  q,+l, q.,+2, • . . ,  qi} 
(Figure 9b), it will be impossible to left-break qh later on without b:dnging two 
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Counting left-breaks. 

polygonal lines across Aqi, once to the left then to the right, thus bringing up the 
nesting number to a prohibitive value _ 4. 

It follows from this result that, since by definition of qi no vertex between qi+l 
and q2m can satisfy the three conditions stated above, D (k) is dominated by the 
number of vertices between qj and qi. Let L~ ~) be the Ll-argument passed to the 
merge routine at the time q~ was left-broken for the lth time. The divide-and- 
conquer algorithm prescribes that L~ ° contain at least twice as many vertices as 
L~l-1); therefore 

1 m 
i - j <_ ~ I L~h-~) l <_ 2h--- 5, 

which completes the proof. [] 

THEOREM 2. The triangulation algorithm runs in O (n log log n) time for any n- 
sided polygon with nesting number less than 4. 

PROOF. Since converting a vertical decomposition of a polygon into a trian- 
gulation takes linear time, it suffices to show that  VD(P) can be computed in 
O(n log logn)  time. We give a fairly intuitive counting argument. Let T denote 
the computation tree. T is a complete binary tree over n leaves, with the following 
trivial interpretation: a node v at level k represents the merge of two polygonal 
lines of the form L~ = {qi . . . . .  qi+2*-'} and L2 = {qi+2,-1, . . . ,  qi+2,}. Each level of 
T thus represents a stage of the computation. We shall evaluate the maximum 
number of left-breaks by playing a pebbling game. For obvious reasons, we may 
restrict our attention to the subset V consisting of vertices that are left-broken 
at least three times over the entire computation. This will allow us to apply the 
result of Lemma 1. We set up the following charging policy: with each vertex of 
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V is associated a distinct pebble, and, at any stage of the computation, we require 
that if ~ has been left-broken k times so far, its pebble should be placed at level 
k in the tree (by convention, leaves are at level 1). We can thus ewtluate the 
number of left-breaks incurred so far at any given stage by adding up the heights 
of all pebbles. 

At any stage t, we update the tree by moving up the pebble of each vertex that  
is left-broken at t. Let -~k designate level #k in the tree. Lemma 1 shows that, at 
any stage up to within constant factors, any level -~h cannot receive more than 
c = n/2 k-3 pebbles. We observe that  c represents the number of nodes at level 
-~k-2, which is four times the number of nodes at level -~k. Consequently, at the 
end of the computation, no level will have 4(rlog2nl + 1) times more pebbles 
than nodes, since there is a total of h = [log2nl + 1 stages. It is clear that  the 
added height of all pebbles H is maximized when all the upper levels are filled to 
their maximum capacity. This means that  each level -~i should be given 4h × 
size(.~/) nodes, for i = h, h - 1 , . . . ,  h - k. The limit k is determined by the fact 
that  only n pebbles are available; therefore, Y~o-_i-_k 2i(4h), that  is, 2 ~+1 _ 1 + 
n/4h. We thus have 

H = 4 h ×  ~ 2 i ( h - i ) = 4 h ( ( h - k +  1)2 h + l - h - 2 ) ;  
O<_i~_k 

hence H = 0 (n log log n). This implies that  C(n) = O(n log log n), which completes 
the proof. [] 

5. PRECONDITIONING THE INPUT 

As is often the case with adaptive algorithms, preprocessing the input prior to 
calling the main algorithm might often lead to substantial gains. One advantage 
of the algorithm is that  it is based on polygonal lines rather than polygons. This 
feature allows us to break down the polygon into a (preferably small) number of 
polygonal lines, the vertical decompositions of which we compute separately and 
merge together in a final stage. We take advantage of the fact that  the algorithm 
is particularly efficient on spiral-shaped inputs. 

Let L = {q~,. . . ,  qm} be a simple polygonal line. Consider the mot!ion of the 
straight line passing through qiqi+~, as i goes from 1 to m - 1. Every time the 
line reaches the vertical position clockwise (respectively, counterclockwise), we 
increment (respectively, decrement) a winding counter by one (the in![tial value 
of the counter is irrelevant). We will say that  L is spiraling (respectively anti- 
spiraling) if the winding counter is never decremented (respectively, incremented) 
twice in a row. 

It is straightforward to decompose any simple polygon into spiraling and 
antispiraling polygonal lines. This can be done in a single linear pass, and we 
may omit the details. Note that  we should restart a new polygonal line only when 
the previous line ceases to be spiraling or antispiraling (Figure 10). At that  point, 
we start scanning a new polygonal line and continue the traversal as long as the 
line can be classified as either spiraling or antispiraling. In general, the line will 
be of both types at the start and then fall into one type. We define s, the sinuosity 
of P, as the number of polygonal lines thus obtained. Note that, depending on 
the starting vertex, this number may vary by one. In the following, s will refer to 
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A 

Fig. I0. Preconditioning the input. 

the larger of these numbers. Empirical evidence shows that in practice s is a 
small constant. Even a fairly contrived polygon like the one depicted in Figure 
10 has a sinuosity of only 5. We shall show successively that  the vertical 
decomposition of a spiraling or antispiraling line can be computed in linear time, 
and that a simple n-sided polygon P can be triangulated in time O(n log s). 

LEMMA 2. The vertical decomposition of any spiraling or antispiraling polygonal 
line can be computed in linear time. 

PROOF. Without loss of generality, assume that the polygonal line, which we 
denote L, is spiraling. We first examine how left-breaks can occur in the course 
of merging the vertical decomposition of two polygonal lines L1 and L2. Once 
again, we restrict our attention to left-breaks related to top-extensions. Without 
loss of generality, we may assume that L2 contains at least one vertex q that is 
left-broken during the merging of L1 and L2 by an edge e, and that this is neither 
the first time nor the last time that  this vertex is left-broken. Let w be the value 
of the winding counter at q (also referred to as the winding value of q). Since we 
restrict ourselves to top-extensions, we consider only the left-breaks of vertices 
whose winding value has the same parity as w. Note that  any edge causing a left- 
break must have a winding value equal to the winding value of the broken vertex 
minus one. Since q is left-broken by edges outside of L~ both following and 
preceding e, we derive immediately that  w - 1 and w - 2 are the only possible 
winding values in L~, and therefore L~ is totally free of left-breaks. This allows 

ACM Transactions on Graphics, Vol. 3, No. 2, April 1984. 



150 • Bernard Chazelle and Janet Incerpi 

us to charge to L1 the left-breaks incurred while merging L~ and L2. Since L1 and 
L2 are of the same size, dividing the costs evenly between the vertices of L~ will 
amount to charging each vertex a cost of at most one. Note that since L~ is free 
of left-breaks, none of its vertices will have been charged in this manner up to 
this point, and since L is not free of left-breaks, no vertex of L~ will ever be 
charged in this way hereafter. We conclude the existence of at most O(n) left- 
breaks during the computation of VD(P).  Observing that a similar reasoning 
applied to right-breaks would lead to the same findings, the proof is now 
complete. [] 

We are now ready to prove the main result of this section. 

THEOREM 3. It is possible to triangulate a simple n-sided polygon P in 
O(n log s) time and O(n) space. 

PROOF. It suffices to show that VD(P) can be computed in O(n log s) time. 
As mentioned earlier, we will first decompose the boundary of P into k = s (or 
perhaps s - 1) spiraling and/or antispiraling polygonal lines, which will take 
O(n) time, and then compute the vertical decomposition of each of them. Since 
merging two vertical decompositions takes time at most proportional in the total 
number of vertices involved, We now face a problem similar to merging k sorted 
lists together. Let wl . . . . .  Wk be the sizes of the k polygonal lines that partition 
the boundary of P. We merge these lists according to the order given by an 
optimal alphabetic binary tree constructed by the Hu-Tucker  algorithm. Com- 
puting the optimal tree requires O(k log k) time and O(k) space, which leads to 
an added merge time of O(Y~l<_i<_k wi log(n/wi)) [5]. By elementary calculus, this 
quantity is shown to be O(n log k) time, which completes the proof. [] 

6. CODING UP THE ALGORITHM 

We mention a few details concerning the implementation of the algorithm. The 
main emphasis of this section is to demonstrate how the computation is distrib- 
uted hierarchically among the various parts of the algorithm, and, in particular, 
what layers lie on top of the inner loop depicted in Fig. 4. We also briefly describe 
the basic data structures. 

The algorithm has been implemented in the C language. Polygon vertices, 
supplied in clockwise order, are stored in a doubly linked list so as to handle both 
clockwise and counterclockwise traversals. Along with pointers to the next and 
previous vertices on the boundary, we have, associated with each vertex of the 
polygon, a pointer to some trapezoid, for which it is either the top-left or bottom- 
right corner. In general, each edge of the polygon has a few trapezoids hanging 
from it, and the vertex vi has a pointer to the first trapezoid hanging from the 
edge vivi+l when traversed in clockwise order. The vertical trapezoids are stored 
by keeping the minimum and maximum x-values, along with pointers to the 
polygonal edges that support the trapezoid. These pointers lead directly into the 
polygon's doubly linked list. Unbounded trapezoids have null pointers. Thus, a 
trapezoid is defined using two x-values and two pointers to vertices. In order to 
walk around VD(L), pointers to adjacent trapezoids are also needed. As men- 
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tioned earlier, we assume that each side of a trapezoid contains exactly one 
support-vertex; therefore, at most two trapezoids can lie on each side of a given 
trapezoid. Thus, associated with each trapezoid are four pointers, two for each 
side. 

Initially, each edge has an infinite trapezoid associated with it. The main 
procedure controls the divide-and-conquer. It sets pointers to the heads of the 
polygonal lists L1 and L2. These pointers are then passed to a merge routine. 
Merge is responsible for maintaining the pointers pl and P2. In the implementa- 
tion, however, pl and p2 point to actual edges of the polygon and not VD-edges. 
With an edge is associated a direction, clockwise or counterclockwise, depending 
on its supporting polygonal line, as well as a position, above or below, to indicate 
whether the trapezoids supported by the edge hang above or below the edge. Note 
that this information is needed, since it is not readily available from the trapezoids 
themselves. The merge routine operates the merging of VD(L1) and VD(L2). It 
deals with actual edges of L~ and L2. The routine finds the starting positions of 
Pl andp2 (which are not necessarily the first edges of L1 and L2). Merge determines 
shortcuts; its inner loop calls a subroutine, merge VD, which carries out the actual 
merging of trapezoids. When mergeVD returns, the basic invariant is satisfied 
up to that point, and one of the edges, say pl, will never be considered again. 
Merge will then find the next trapezoid and its supporting edge, and update p~. 
While merge essentially controls the case analysis, mergeVD computes VD(L). 
The routine creates new trapezoids whenever necessary, modifies links, and 
operates the garbage collection. It also handles side effects, that is, combining 
trapezoids whose side edges have no support-vertex. For this reason, mergeVD 
does not simply combine the fresh and carry trapezoids but rather combines all 
the trapezoids along one edge. The inner loop implements the case-analysis of 
Figure 4. To handle the case of side-effect updating shown in Figure 5b, the 
bottom of each spurious trapezoid is set to infinity and the trapezoids are merged 
when the upper edge of L2 is passed to merge VD. 

The length of the program is approximately 700 lines for merge and 800 lines 
for mergeVD. The rest of the code includes initialization and I/O operations, and 
amounts to an insignificant percentage of the total length. Debugging the algo- 
rithm was greatly facilitated by using SGP, a graphics system modeled on ACM/ 
SIGGRAPH's CORE79 and ISO's GKS, on both a Lexidata 3400 and a Ramtek 
9400. We still had to devote substantial effort to the design of the data structure 
in order to make the implementation of the case-analysis simply manageable. 
One of the crucial requirements was to provide the structures with enough scope 
to treat special cases uniformly. With the intricate geometric setting defined by 
the algorithm, such an approach was not only desirable, but absolutely manda- 
tory. Following Guibas and Stolfi's methodological approach to complex geomet- 
ric implementations [3], we have attempted to define a small set of powerful 
primitives in order to separate the combinatorial aspects of the problem from its 
purely geometrical ones. This separation is embedded in the data structure by 
distinguishing geometric data types, which lie at the bottom of the hierarchical 
structure of the computation, and combinatorial types, which constitute the 
backbone of the algorithm. 
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7. CONCLUSIONS 

We have presented a new triangulation algorithm for simple polygons that 
contains a number of attractive features, both of theoretical and practical 
nature. On the practical side, our algorithm has been implemented and has shown 
to be remarkably efficient. In graphics, a common application of polygon trian- 
gulation is region filling, whereby a given area is to be painted. With modern 
raster graphics devices, painting a vertical trapezoid can often be accomplished 
just as fast as painting a triangle, so we may use the vertical decomposition 
algorithm directly without resorting to the triangulation, which is bound to save 
substantial CPU time. 

On the theoretical side, we have established that the algorithm runs in O(n log 
s) time, where n is the input size and s is the sinuosity of the polygon. The latter 
quantity is in general extremely small, but even in most of the cases where it is 
large, we believe that our algorithm, being highly adaptive, will behave linearly 
or quasi-linearly. We have also exhibited a large class of polygons for which the 
algorithm runs in time O(n log log n). Identifying exactly the class of polygons 
for which the algorithm runs in linear time is a challenging, yet very worthwhile 
endeavor; indeed, we conjecture that this class is considerably larger than the 
subset exhibited in this paper. The theoretical implications of our results are, in 
particular, evidence that, in general, triangulating is easier than sorting, although, 
in the worst case, no such statement can yet be made. Deciding on this issue 
once and for all is undoubtedly one of the most outstanding open questions of 
computational geometry. 
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