Intematiommputational Geometry & Applications
Vol. 4, No. 4 (1994) 475—-481
(©) World Scientific Publishing Company

TRIANGULATING DISJOINT JORDAN CHAINS*

REUVEN BAR-YEHUDA

Computer Science Department, Technion IIT, Haifa 32000, Israel

and

BERNARD CHAZELLE

Department of Computer Science, Princeton University, Princeton, |NJ 08544

e-mail: chazelle@Princeton.edu

Received 22 August 1992
Revised 21 July 1994
Communicated by D. G. Kirkpatrick

ABSTRACT

Recent advances on polygon triangulation have yielded efficient algorithms for a large
number of problems dealing with a single simple pulygon. If the input consists of several

disjoint polygons, however, it is often desirable to merge them in preprp
to produce a single polygon that retains the geometric characteristics of|i

cessing so as
ts individual

components. We give an efficient method for doing so, which combines a generalized form
of Jordan sorting with the efficient use of point location and interval trees. As a corollary,
we are able to triangulate a collection of p disjoint Jordan polygonal chains in time

o (n+p(logp)1+‘) , for any fixed € > 0, where n is the total number of vertik

es. A variant

of the algorithm gives a running time of O ((n + plogp)loglog p) . The performance of

these solutions approaches the lower bound of Q(n + plogp).

Keywords: Simple polygon, triangulation, trapezoidal decomposition, visibility map,

Jordan curves

1. Introduction

Simple polygons are among the most ubiquitous objects in compptational geom-
etry. As the elementary constituents of the discretized modeling of two-dimensional

scenes, they occur naturally in computer graphics, vision, robotics

VLSI, numer-

ical analysis, etc. Little can be done efficiently, however, unless the polygons are

triangulated,” so a considerable amount of attention has been given
angulation over the years, e.g., see Refs. 1,2,3,4,5,6,8,11,14. In part

has shown that a simple polygon can be triangulated in linear time|

Often we have to deal with not just one but a whole collection of]
polygons, or more generally, Jordan chains (i.e., non self-intersec
curves). For example, a polygon might have holes, or in the case of m|
a robot might be moving in a room with several polygonal obstacls

475

to polygon tri-
cular, Chazelle
1

disjoint simple
ting polygonal
otion planning,
s, or we might

476 R. Bar-Yehuda & B. Chazelle

be faced with a set of disjoint polygons as appea
To triangulate a collection of disjoint Jordan chalj
merge them into a single connected planar graph),

ring in one layer of a VLSI mask.
ins, we add line segments so as to
which we can then triangulate in

linear time. For this we use the observation! that a connected planar graph with
straightline edges and no self-intersections can be regarded as a simple polygon by

embedding it on a sphere and making a “thickeni
polygon.

ng” of its edges the outside of the

In keeping with standard practice we do not work on triangulations directly but,

instead, on visibility maps. A triangulation of a

set P of disjoint Jordan chains is

obtained by a maximal addition of non-intersecting line segments joining vertices of

the chains. The visibility map of P, on the other
by extending two horizontal segments from each
each of them hits one of the chains, if at all. As

hand, is the planar map obtained
ertex, one in each direction, until
is well-known?'% a triangulation

can be derived from the visibility map in linear time.

Let P be a collection of p disjoint Jordan cha
vertices. We define a visibility tree for P as follow
line to the right of all the chains. Then, for each
Ci (not necessarily a vertex) and draw a ray to the
or the vertical line, and add the point hit as a nes

ins C1,...,Cp, with a total of n
vs: first, draw an infinite vertical
chain Cj; in turn, pick a point in
right until it hits either some C
w vertex. If we choose the origin

of the rays carefully we can ensure that the resulting planar graph is connected and
acyclic: in that case it is called a visibility tree fot P (Figure 1).

Fig.1

We give an algorithm for computing a visibility tree for P in time O(n +
p(logp)'*<), for any fixed € > 0. A variant of thé method runs in time o((n +
plogp)loglog p) - The complexity of these algorithms comes close to the lower bound
of Q2(n + plog p) known for that problem. Note that with a visibility tree in hand,

SRR 5021 i1 5

Ariangulating 1/18J01NT JOTAATY CURUITLS &l

we can compute the complete visibility map of P, and from there, a triangulation
of P in linear time.! Seidell® has given a probabilistic algorithm for triangulating
disjoint Jordan chains with an expected running time of O(nlog” n + plogp). His
algorithm outperforms ours only if p is very close to n. Furthermore, pur solution
is deterministic. The approach we follow combines a generalized form of Jordan
‘sorting® (which is interesting in its own right) with the efficient use of fast point

4,10 12

_location and interval trees.

2. Generalized Jordan Sorting

Let z3,...,&, be the intersections of an oriented Jordan curve C|with a hor-
izontal line £, given in the order they occur along the curve (Figure 3 .A). Jordan
sorting is the problem of sorting the coordinates z;: for this, a linear-time algorithm
was proposed by Hoffmann et al.? We extend their result in the following manner.
Given a collection of p disjoint Jordan curves with a total of n intersec tions with £,
sort the intersections along £ in time O(n + plogp). It is easy to see that this result
is optimal by reduction from sorting.

Fig.2A

We briefly review the linear algorithm of Hoffrnan et al.? and modijfy it to deal
with several curves at once. We assume the reader’s familiarity with Ref. 9. The line
£ breaks up the curve C into disjoint arcs entirely below or above the line. The arcs
above (resp. below) the line form a parenthesis system which can be represented
by a tree T, (resp. T3), as indicated in Figure 2.B.

Each node represents an arc and its children correspond to the prcs directly
nested within it. The left-to-right order of the child arcs are encoded in a finger
tree (see also Ref. 14). The basic idea of the algorithm is to trace the curve and
build T, and 73 incrementally along the way. As the curve crosses £ and is about to
enter, say, the top halfplane, we already know what arc a above £ “covers” the new
arc A to be inserted. Let «a1,...,a; be the child arcs of a: we must identify the
interval of arcs [. ..a;] that B covers (az and as in the case of Figure 3), which
we do by searching through the finger tree for the child arcs of a. On¢e the search

478 R. Bar-Yehuda & B. Chazelle

Fig.2B

1s completed, we must update the tree 7, and the
children of o and 3. By keeping pointers between
we can gain access to a finger in constant time an
two trees. An amortized analysis shows that the

time.

finger trees associated with the

matching features in 7, and T},
d thus readily jump between the

whole algorithm runs in linear

Fig.3

Let us now consider the case of a collection of
we sort the curves by their leftmost intersections
that point, which produces at most 2p Jordan cur

p disjoint Jordan curves. First,
with € and break each curve at
ves.

We process the curves one

by one as indicated above, retaining the current 7, and 7}, as we switch from one

curve to the next. We process the curves in reverd
curve whose leftmost intersection point is rightmos
our analysis we can “pretend” that we are sorting a
bound of O(n) readily follows. Since we have to sg
running time is O(n + plogp), which is optimal.

Note that we can connect the p curves together
along £:
successor (if it has one) in the sorted list of intersec

specifically, we connect the rightmost in

e order, i.e., we begin with the

st (breaking ties arbitrarily). In

single curve, and the same time
rt p numbers initially, the total

by adding well chosen segments
tersection of each curve to its

tions (Figure 4). This obviously

480 R. Bar-Yehuda € B. Chazelle

of T; towards any 7; (j > i) in O(logn) time. If a hit ¢ occurs within ab, then
we call ¢ a “candidate.” Among all the Jordan trees 7; (j > i), we identify the
leftmost candidate ¢, and if it exists, we replace ab by ac. Otherwise, we leave the
connecting edge ab as is. We follow the same procefure for all the connecting edges
of the Jordan trees Ti,...,Tx_1, which takes a total of O(n + p(log p) log n) time.

We claim that the resulting graph is a valid visibility tree for . Because of the
ray-shooting strategy no proper intersections are cneated, so it suffices to show that
the graph is connected and acyclic. We establish this by induction on the number
of nodes in 7. The case of a single node is obvious} the graph is the Jordan tree of
a collection of Jordan chains intersecting the same horizontal line, with in addition
an edge connecting it to the infinite vertical line.

Assume now that 7 has more than one node. |Pick a leaf v and denote by ¢,
the horizontal line associated with it. Let C,,..., C,, be the Jordan chains at v
sorted in left-to-right order of their rightmost intersections r;,...,r,, with £,. To
complete the induction, it suffices to show that n¢ cycle can pass through any of
the C; (acyclicity) and that the C;’s are in the samne connected component as the
other chains (connectivity). This is easily established by induction on m. The key
observation is that the only rays shot towards C; lemanate from the points r; for
J < ¢. This shows, in particular, that no ray can hit C;. Exactly one ray is shot
from Cj, namely, the one shot from its rightmost| point ;. These last two facts
prove that no cycle can be part of C, and that this |chain is connected to the rest of
the graph. We remove C) along with the connecting edge emanating from r,, which
leaves us with m — 1 chains. This reasoning takes|care of both the basis (m=1)
and the inductive step. This proves our claim.

We can save time by reducing the number of point location queries. Concep-
tually the previous algorithm can be modeled as follows. For each i (0 < i < k)
we are given p; points which we must locate in the visibility maps of Tj4q, ..., T}.
Each point location requires O(logn) time and > p; < p. We have the possibility
of merging several 7T;’s together and computing a point location structure for the
resulting visibility map. Consider a balanced tree of degree d whose leaves are asso-
ciated with 71, ..., 7} from left to right. Each internal node contains the visibility
map (preprocessed for point location) of the merge of the 7}’s stored at the leaves
below. Let n,, and p,, be the total number of vertites and chains, respectively, as-
sociated with the leaves below node w. If all the information stored at the children
of w is already available, it takes O(ny, + pwdlogn) time to compute and preprocess
the visibility map at w.

Therefore, computing the visibility map at the root (which is our ultimate goal)
takes time O((n + pdlogn)log, k). Since k = O(log|p), setting d = k¢, for any fixed
€ > 0, gives O(n + p(logn)'*), which is also O(n + p(logp)!*<). Setting d = 2
gives O((n + plogp)loglogp). It is a trivial exercise to show that Q(n + plogp) is
a lower bound on the time required to compute the|visibility map of P, and hence,
by virtue of Ref. 1, on the time for computing any visibility tree for P.

Theorem
vertices and compute their visibility map in time O((n+ plog p) log Id
pQlog p)1*¢), for any fixed £ > 0.

A cknowledgment: The first author wishes to thank R. Grinwald an
helpful discussions.

References

1.

10.

11.

12.

13.

14.

It is possible to merge p simple Jordan chains with

Tmre s rvwurve

a total of n
gp) or O(n+

d A. Efrat for

Chazelle, B. Triangulating a simple polygon in linear time, Disc. Comput. Geom. 6

(1991), 485-524.

Chazelle B., Incerpi, J. Triangulation and shape-complexity, ACM Trans. on Graph-

ics 3 (1984), 135-152.

Clarkson, K., Tarjan, R.E., Van Wyk, C.J. A fast Las Vegas algorith

lating a simple polygon, Disc. Comput. Geom. 4 (1989), 432-432.

Edelsbrunner, H., Guibas, L.J., Stolfi, J. Optimal point location i
subdivision, SIAM J. Comput. 15 (1986), 317-340.

m for triangu-

1B a monotone

Fournier, A., Montune, D.Y. Triangulating simple polygons and equsvalent problems,

ACM Trans. on Graphics 3 (1984), 153-174.

Garey, M.R., Johnson, D.S., Preparata, F.P., Tarjan, R.E. Triangulpting a simple

polygon, Inform. Process. Lett. 7 (1978), 175-180.

Guibas, L.J., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.E. Lin

rithms for visibility and shortest path problems inside triangulated si
Algorithmica 2 (1987), 209-233.
Hertel, S., Mehlhorn, K. Fast triangulation of a simple polygon, Proc.
Comput. Theory, New York, Lecture Notes on Computer Science 15
218.

ear time algo-
mple polygons,

Conf. Found.
8 (1983), 207—

Hoffman, K., Mehlhorn, K., Rosenstiehl, P., Tarjan, R. Sorting Jordan sequences in

linear time using level-linked search trees, Inform. and Control 68 (1986), 170-184.
Kirkpatrick, D.G. Optimal search in planar subdivisions, SIAM J.|Comput. 12
(1983), 28-35.

Kirkpatrick, D.G., Klawe, M.M., Tarjan, R.E. Polygon trigngulation in
O(nloglog n) time with simple data structures, Disc. Comput. Geom. 7 (1992),
329-346.

Mehlhorn, K. Data Structures and Algorithms 8: Multidimensional

Searching and

Computational Geometry, Springer-Verlag, Heidelberg, Germany, 1984.

Seidel, R. A4 simple and fast incremental randomized algorithm for co

zoidal decompositions and for triangulating polygons, Comput. Geom.

Appl. 1 (1991), 51-64.

Tarjan, R.E., Van Wyk, C.J. An O(nlog log n)-time algorithm for tr

simple polygon, SIAM J. Comput. 17 (1988), 143-178.

mputing trape-
Theory and

iangulating a

