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Abstract. We establish a nonlinear lower bound for halfplane range searching over a group.
Specifically, we show that summing up the weights of n (weighted) points within n halfplanes requires
Ω(n logn) additions and subtractions. This is the first nontrivial lower bound for range searching
over a group. By contrast, range searching over a semigroup (which forbids subtractions) is almost
completely understood.

Our proof has two parts. First, we develop a general, entropy-based method for relating the linear
circuit complexity of a linear map A to the spectrum of A>A. In the second part of the proof, we
design a “high-spectrum” geometric set system for halfplane range searching and, using techniques
from discrepancy theory, we estimate the median eigenvalue of its associated map. Interestingly, the
method also shows that using up to a linear number of help gates cannot help; these are gates that
can compute any bivariate function.
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1. Introduction. Given n weighted points in the plane and n halfplanes, we
consider the classical halfplane range searching problem, which is to compute the sum
of the weights of the points within each of the given regions. If subtractions are
not allowed (the semigroup model) the problem is almost completely solved [7, 11,
15]; see also [9, 16, 17, 19] for surveys of the vast literature on the subject. In the
(commutative) group model, where subtractions are allowed, there is little evidence
that any power should be gained beyond polylog speedups, but proving it has been
elusive. In fact, in that model no superlinear lower bound has ever been established
for any range searching problem of any kind. The problem is equivalent to asking
for the nonmonotone circuit complexity of some fairly unwieldy linear transformation
over the reals, so the lack of progress should not come as a big surprise.

This paper takes a first, modest step toward resolving this question. We establish
a lower bound of Ω(n logn) on the complexity of range searching with respect to n
points and n halfplanes (given in advance). The model of computation is a straight-
line program: each step performs a group operation of the form

z ← x± y,

where x and y are previously computed variables or input weights. The underlying
group is assumed to be commutative. Note that it is easy to prove an Ω(n logn) lower
bound by reduction from sorting, but this says nothing about the number of times
weights have to be added or subtracted. In the group model, memory accesses are not
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charged; only group operations are. Note that this makes lower bounds even stronger.
The program must work for all groups and all weight assignments.

This formulation of the group model is probably the most natural. But one
might ask what happens if we extend the model by allowing extra computations free
of charge. For example, can adding the same variable a large number of times, e.g.,
z ←Mx (M integral), possibly help? How about encoding special functions in lookup
tables? In general, we call a free computation any assignment of the form

z ← f(x, y),

where f is an arbitrary function. We show that allowing close to n/4 free computations
cannot help. To put this result in perspective, one should note that over the reals 2n
free computations suffice to make the problem trivial.

THEOREM 1.1. Range searching with respect to n points and n halfplanes requires
Ω(n logn) group operations. This remains true even with the help of up to n/4 − εn
free computations, for any fixed ε > 0. On the other hand, over the reals, the problem
can be solved in linear time with only 2n− 1 free computations.

It is likely that the lower bound is far from optimal. The best known upper bound
is slightly above O(n4/3) [15], and in the semigroup model the best lower bound (for
the on-line version) is also Ω(n4/3) [7]. On the brighter side, Theorem 1.1 provides
the only lower bound known for the group model, so at least it is a step in the right
direction.

Proof. The proof consists of two distinct parts. First, we establish a general
spectral lemma, which asserts a lower bound of Ω((k−2m) log λk) on the linear circuit
complexity of any linear transformation A (with integer coefficients) from Rn to Rn,
where λk is the kth largest eigenvalue of A>A, and m is the number of help gates.
These are the circuit equivalent of free computations. (This shows that allowing up
to roughly k/2 help gates does no good.) The lower bound holds for any value of k
between 2m and n. This freedom is useful because often only a small range of the
whole spectrum can be accurately estimated without too much effort.

In the second part of the proof, we design a hard instance of range searching by
nonconstructive means. Then we use spectral methods from discrepancy theory to es-
timate the median eigenvalue of the quadratic form associated with the corresponding
set system.

Remark 1. Our technique trivially implies an Ω(n logn) lower bound for range
searching over a finite projective plane. In general, the technique will yield a lower
bound on any instance of range searching whose corresponding spectrum can be
mapped out reasonably well. Powerful techniques in discrepancy theory [4], such
as those used in section 3 of this paper, raise hope that more lower bounds can be
derived by this approach.

Remark 2. A simple application of the spectral lemma is that computing Hx,
where H is the n × n Sylvester Boolean matrix, takes Ω(n logn) time even in the
presence of about n/2 help gates. (All the eigenvalues λk of H>H are equal to n.)
Note that the choice of ground field is crucial, since Hx can be computed in linear
time over GF(2) [2]. If we forbid help gates, the same bound can be obtained more
simply by using Morgenstern’s volume argument [18]. The spectral lemma works in
a model that is ideally suited for range searching. If, instead of a group, the linear
transformation operates over a ring or a field (like the discrete Fourier transform),
then for the lemma to hold, the (nonhelp) gates must evaluate linear forms with
bounded coefficients. This is the same limitation found in Morgenstern’s result. Help
gates can be thought of as a way of partly overcoming this limitation.
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Remark 3. The proof of the spectral lemma is based on entropy considerations.
By avoiding standard volume arguments, we are able to accommodate help gates.
Indeed, a weakness of the volume argument of [18] is that it collapses even in the
presence of a single help gate. Intuitively, the idea of that argument is to relate the
work of the circuit to the volume of the ellipsoid into which the circuit “transforms”
the unit sphere. Any such argument is vulnerable to even a single help gate, because
any one of them has the ability to blow up the entire sphere. On the contrary, our
entropy-based approach ensures that the “contribution” of a single help gate to the
work of the circuit is always bounded, regardless of the gate’s power.

There has been a substantial amount of work in arithmetic circuit complexity—
see surveys in [13, 20]—but, to our knowledge, nothing that allows us to tackle a
geometric problem such as range searching. Most of the recent research in circuit
complexity [5], including work involving help bits or oracle queries (variants of our
help gates) [3, 6], has been mostly concerned with problems over finite fields and
seems of little relevance to our problem.

2. Eigenvalues, entropy, and linear circuits. Let A be an n × n matrix
with integer elements. A linear circuit for computing y = Ax, where x ∈ Rn, is
a directed acyclic graph with n input nodes x = (x1, . . . , xn) and n output nodes
y = (y1, . . . , yn). The size of the circuit is its number of edges. A node is a gate that
computes a real-valued function

f(z1, z2) = α1z1 + α2z2,

where zi ∈ R and αi ∈ {−1, 0, 1}. In addition, we allow the presence of m help gates:
these gates can evaluate any function f(z1, z2) from R2 to R. Recall that the matrix
M

def= A>A is diagonalizable and its eigenvalues are real:

λ1 ≥ · · · ≥ λn ≥ 0.

All logarithms are to the base 2.
SPECTRAL LEMMA. Given any 1 ≤ k ≤ n, any circuit for computing Ax has size

at least c(k − 2m) log λk, for some constant c > 0, where m ≤ k/2 is the number of
help gates and λk is the kth largest eigenvalue of A>A.

Proof. Let K be the invariant subspace spanned by the eigenvectors for M asso-
ciated with λ1, . . . , λk. We ensure that K is of dimension exactly k by dropping some
of the eigenvectors for λk, in case of multiplicity. Let Bn(p, r) denote the Euclidean
n-ball of radius r centered at p and let Vn(r) be its volume. Consider the cubes of
the form Zn + [0, 1]n that intersect K ∩Bn(O,R), for some (large enough) parameter
R. Let L be the set of centers of these cubes. Finally, let H(x) denote the entropy of
a random variable x with values distributed uniformly in L. We estimate the entropy
of x (Lemma 2.1) and then we prove the key lemma, which says that if the spectrum
of M is not too low we can suitably hash the image of x under A without losing much
entropy (Lemma 2.2).

LEMMA 2.1.

H(x) ≥ log Vk(R)− log Vk(
√
n ).

Proof. Let M−R (n, k) denote the minimum number, over all k-flats F containing
the origin, of the n-cubes of the form Zn+[0, 1]n that intersect F ∩Bn(O,R). Observe
that the cubes to be counted cover the ball Bk(O,R) embedded in F . Furthermore,
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the intersection of F with each of these cubes fits into a k-ball of radius
√
n/2, so

M−R (n, k) ≥ Vk(R)/Vk(
√
n ).

The lemma follows from the fact that |L| ≥M−R (n, k) and H(x) = log |L|.
Another useful quantity, denoted by M+

r (n,m), is the maximum number over
all m-flats F of the n-cubes of the form Zn + [0, 1]n that intersect F ∩ Bn(O, r). In
the case n −m = 0, the cubes counted by M+

r (n,m) all lie within Bn(O, r +
√
n );

therefore

M+
r (n, n) ≤ Vn(r +

√
n ).(1)

Assume now that n−m > 0. In the appendix we show that, for n and r large enough,

M+
r (n,m) ≤ 3nVm(r).(2)

LEMMA 2.2. If A is a matrix with real elements, such that 1 ≤ λk ≤ 2, then1

H(bAxc) ≥ H(x)− log Vn(5
√
n ).

Proof. Let x, x′ ∈ L be such that bAxc = bAx′c. It follows that ‖A(x − x′)‖2 ≤√
n. Write x as the direct sum x0 + u, where x0 ∈ K, u ∈ K⊥, and do the same with

x′. Observe that

‖u− u′‖2 ≤ ‖u‖2 + ‖u′‖2 ≤
√
n.

By the variational characterization of eigenvalues, ‖A(x0 − x′0)‖2 ≥
√
λk ‖x0 − x′0‖2

and, because K⊥ contains u − u′ and is spanned by eigenvectors corresponding to
λj ≤ λk, we have ‖A(u− u′)‖2 ≤

√
λk ‖u− u′‖2. It follows that (for 1 ≤ λk ≤ 2)

‖x− x′‖2 ≤ ‖x0 − x′0‖2 + ‖u− u′‖2
≤ ‖A(x0 − x′0)‖2 + ‖u− u′‖2
≤ ‖A(x− x′)‖2 + ‖A(u− u′)‖2 + ‖u− u′‖2
≤
√
n+ 3‖u− u′‖2 ≤ 4

√
n.

Thus, the preimage of a fixed z ∈ Rn under x ∈ L 7→ bAxc lies entirely in a ball
Bn(x, 4

√
n ), where x ∈ L, and therefore, the uniform distribution within that preim-

age has entropy at most logM+
4
√
n
(n, n). By (1) this does not exceed log Vn(5

√
n ).

Standard identities on the entropy of joint distributions, namely,

H(x) = H(x, bAxc) = H(bAxc) +H(x | bAxc ),

complete the proof.
Let z = (z1, . . . , zs) be the vector of Rn whose coordinates are the intermediate

variables computed by the gates. For convenience, we append the input variables
at the beginning of the list (zj = xj , for 1 ≤ j ≤ n) and the output variables at
the end (zs−n+j = yj , for 1 ≤ j ≤ n). We also assume that the list corresponds to a
topological ordering of the DAG (directed acyclic graph), meaning that for any j > n,

zj = αjzf(j) + βjzg(j),

1Given z = (z1, . . . , zn) ∈ Rn, we use the shorthand bzc for (bz1c, . . . , bznc).
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where f(j) ≤ g(j) < j and |αj |, |βj | ≤ 1. In the case of a help gate, zj is an arbitrary
real function of zf(j) and zg(j). Let

µk = b
√
λk c.

The input x to the circuit is chosen so that x̃ = µkx is a random variable uniformly
distributed in L. We shall now assume that λk is large enough, which the spectral
lemma obviously allows us to do. We now argue that bzc has high entropy. Lemmas
2.4–2.6 will then show that only a large circuit can produce a “hashed” vector bzc
with that much entropy.

LEMMA 2.3.

H(bzc) ≥ log Vk(R)− log Vk(
√
n )− log Vn(5

√
n ).

Proof. Because A is a linear map, the circuit outputs Bx̃, where B
def= A/µk,

obviously satisfies the conditions of Lemma 2.2. Thus,

H(bzc) ≥ H(bBx̃c) ≥ H(x̃)− log Vn(5
√
n ).

The proof now follows from Lemma 2.1.
To be able to isolate the action of help gates, we devise the following arti-

fice. Regard the outputs of the help gates, zh(1), . . . , zh(m), as new (help) vari-
ables, and express each zj (1 ≤ j ≤ s) as a linear form over the set of variables
Z = {x1, . . . , xn, zh(1), . . . , zh(m) }. How this is done is best seen by induction. The
input gates are linear forms over single variables. For any other gate zj , if it is of the
helping type, then the form is zj itself. Otherwise, zj = αjzf(j) + βjzg(j) and, by in-
duction, zj is a linear combination of two linear forms over Z and hence a linear form
itself. (Note that even though the outputs of the help gates might be algebraically
related, the zh(j) are added by adjunction and so are considered independent.) In the
expression for zj , let zxj (resp., zyj ) denote the linear form obtained by taking only the
nonhelp (resp., help) variables. A key step now is to look at zxj and zyj no longer as
linear forms but as real functions zxj (x1, . . . , xn) and zyj (x1, . . . , xn). While the circuit
computes zj = zxj + zyj , we wish to monitor the information contents of the complex
number,2

zcj
def= bzxj c+ izyj .

We denote by zc the vector (zc1, . . . , z
c
s). Our strategy is this: first, we establish that

a small circuit can produce only a small entropy H(zc). We do this in three steps:
Lemma 2.4 looks at the effect of the hashing on the entropy of the input variables.
Lemmas 2.5 and 2.6 bound how much entropy the nonhelp and help gates, respectively,
can inject into the vector of hashed variables. Finally, we show that H(zc) cannot be
much smaller than H(bzc), which by Lemma 2.3 is already known to be big.

LEMMA 2.4.

H( zc1, . . . , z
c
n ) ≤ 2n+ log Vk(R/µk).

Proof. Let C be the set of cubes of the form (µkZ)n + [0, µk]n. Any cube of C
that contains a point of L contains the entire unit cube centered at that point, and so

2We use complex numbers simply as a device for representing ordered pairs.
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it intersects K ∩ Bn(O,R). Thus, the number of such cubes is at most M+
R/µk

(n, k),
which, by (2), does not exceed 3nVk(R/µk) so that (recall that zci = bxic, for i =
1, . . . , n)

H( zc1, . . . , z
c
n ) = H( bx̃1/µkc, . . . , bx̃n/µkc )
≤ 2n+ log Vk(R/µk).

LEMMA 2.5. For any nonhelp variable zj, n < j ≤ s, we have

H( zcj | zcf(j), z
c
g(j) ) ≤ 3.

Proof. Recall that zcj = bzxj c + izyj . Obviously, since the imaginary part is
completely determined by those of zcf(j) and zcg(j), we have

H( zyj | z
y
f(j), z

y
g(j) ) = 0.

To deal with the real part, we use the inequality H(A |B ) ≤ H(A |C ) + H(C |B )
to derive

H( bzxj c | bzxf(j)c, bzxg(j)c )
≤ H( bzxj c | bαjzxf(j)c, bβjzxg(j)c )
+H( bαjzxf(j)c | bzxf(j)c )
+H( bβjzxg(j)c | bzxg(j)c ).

Given two random variables ξ, ξ′ arbitrarily distributed in R,

H( bξ + ξ′c | bξc, bξ′c ) ≤ 1.

Intuitively, the only information missing is a one-bit carry. Similarly, given a fixed
α ∈ Z, |α| ≤ 1, and a real random variable ξ, we have H( bαξc | bξc ) ≤ 1. The lemma
follows from the fact that zj = αjzf(j) + βjzg(j).

LEMMA 2.6. For any help variable zj, n < j ≤ s, we have H( zcj | zcf(j), z
c
g(j) ) ≤

2(logµk + 1).
Proof. We have zcj = izyj , where zyj is an arbitrary function of zf(j) and zg(j).

Regarding zf(j) = zxf(j) +zyf(j), the only information we have at our disposal is zcf(j) =
bzxf(j)c+iz

y
f(j). There is no loss of information in the imaginary part. The same is not

true of the real part, however. The key observation is that zxf(j) is a linear form over
x1, . . . , xn with integer coefficients. Thus, since 2µkxi is itself integral, so is 2µkzxf(j).
It follows that the fractional part of zxf(j) can be one of only 2µk possible values, and
hence, H( zxf(j) | bzxf(j)c) ≤ logµk + 1, from which the lemma follows.

We can use the last three lemmas to upper bound H(bzc):

H(zc) = H( zc1, . . . , z
c
n ) +

∑
n+1≤j≤s

H( zcj | zc1, . . . , zcj−1 )

≤ H( zc1, . . . , z
c
n ) +

∑
n+1≤j≤s

H( zcj | zcf(j), z
c
g(j) ).

By Lemmas 2.4, 2.5, and 2.6,

H(zc) ≤ 2n+ log Vk(R/µk) + 3(s− n−m) + 2m(logµk + 1)
≤ 3s− n+ log Vk(R/µk) + 2m logµk,
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and therefore,

H(bzc) ≤ H(zc, bzc) = H(zc) +H( bzc | zc )

≤ H(zc) +
s∑

j=n+1

H( bzxj + zyj c | bzxj c+ izyj )

≤ 4s+ 2m logµk + log Vk(R/µk).

Bringing the lower bound of Lemma 2.3 to bear, we derive

4s ≥ −2m logµk − log Vk(R/µk) + log Vk(R)
− log Vk(

√
n )− log Vn(5

√
n ).

Using the approximation [12],

Vd(r) =
πd/2rd

Γ(d/2 + 1)
≈ 1√

πd

(2eπ
d

)d/2
rd,

and the fact that log Vd(rs) = log Vd(r) + d log s, we find that

4s ≥ −2m logµk + k logµk − log Vk(
√
n )− log Vn(5

√
n ).

The last two terms add up to O(n); therefore,

s ≥ 1
8

(k − 2m) log λk −O(n),

which establishes the spectral lemma.

3. Range searching over a group. Let P be the point set consisting of the
vertices of a (

√
n − 1) × (

√
n − 1) square grid. Each point xi of P is weighted by

some real number, which by abuse of notation we also call xi. Our goal is to exhibit
n halfplanes h1, . . . , hn, and prove that computing the sum of the weights within each
hk, i.e.,

∑
xi∈hk xi, requires Ω(n logn) time.

The model of computation is a straight-line program: each step performs a group
operation of the form z ← α1x+ α2y, where x and y are input weights or previously
computed variables and αi ∈ {−1, 0, 1}. As a bonus, we also allow the use of close to
n/4 instructions of the form z ← f(x, y), where f is an arbitrary real function. The
only requirement is that the same program should work for any assignment of real
weights to the points. The analogy with the previous section is obvious. Let A be the
n × n matrix whose kth row is the characteristic vector of P ∩ hk. By the spectral
lemma, the lower bound of Theorem 1.1 follows directly from this lemma.

LEMMA 3.1. There is a choice of n halfplanes, for which the matrix A of the
corresponding set system is such that the kth largest eigenvalue of A>A is nΩ(1), for
some k ≥ n/2− εn, for any fixed ε > 0.

Proof. We use a nonconstructive configuration of halfplanes. Scale down the
square grid so that it fits within [1/

√
n, 1 − 1/

√
n ]2. Let ω be the motion-invariant

measure for lines: we normalize ω to provide a probability measure for the lines
crossing [0, 1]2. Given a halfplane h+ bounded below by a nonvertical line h, consider
the discrepancy function f(h) def=

∑
xi∈h+ xi. A beautiful result of Alexander [1] (see

[8, 10] for a simpler proof and various extensions) says that if x1 + · · ·+xn = 0, then3∫
f2(h) dω(h)� 1√

n
‖x‖22.

3We use the notation � and � to denote inequality up to a constant factor.
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Subdivide the space of lines crossing [0, 1]2 into N + O(n2) regions within which
the form f(h) remains invariant. By choosing N large enough, say, N = 2n, we
can also ensure that the ω-area of N of these regions is exactly the same; call it σ,
which is about 1/N . The other O(n2) regions may have smaller areas. (Consider
the arrangement in dual space to obtain this result.) Thus, the difference between
integrating f2 over the whole probability space and over the equal-area regions only
is at most O(n2/N) sup f2. Because |f | cannot exceed

|x1|+ · · ·+ |xn| ≤
√
n ‖x‖2,

the error is bounded by O(n3‖x‖22/N). This provides us with a good discrete ap-
proximation of the L2-norm of f . Indeed, let B be the N × n matrix whose rows are
indexed by the N equal-area regions σ̂ and are the characteristic vectors of the set of
xi’s appearing in (the unique form) f(h), for h ∈ σ̂. We have∣∣∣ ‖Bx‖22 − 1

σ

∫
f2(h) dω(h)

∣∣∣ = O(n3)
‖x‖22
Nσ

.

But σ = 1/N ±O(n2/N2), so∣∣∣ ‖Bx‖22 −N ∫ f2(h) dω(h)
∣∣∣ = O(n3‖x‖22).

LEMMA 3.2.

detB>B = Ω
(
N
/√

n
)n−1

.

Proof. Let µ1 ≥ · · · ≥ µn ≥ 0 be the eigenvalues of B>B and let {vi} be an
orthonormal eigenbasis, where vi is associated with µi. We express x = (ξ1, . . . , ξn) in
the basis {vi}. The solution space of the system of equations, x1 + · · ·+ xn = 0 and
ξj = 0 (j < n− 1), is of dimension at least 1. Since it lives in the (ξn−1, ξn) plane, it
intersects the cylinder ξ2

n−1 + ξ2
n = 1. For any point x of the intersection,

‖Bx‖22 =
n∑
i=1

µiξ
2
i = µn−1ξ

2
n−1 + µnξ

2
n ≤ µn−1.

This implies that for this unit vector x,

µn−1 ≥ N
∫
f2(h) dω(h)−O(n3‖x‖22)� N√

n
−O(n3),

and hence,

µn−1 �
N√
n
.(3)

We need a lower bound on the smallest eigenvalue, but almost any one will do. With
N being large enough, we can always assume that for each point xi there exist two
lines, each represented by a distinct row of B, that pass right above and below xi.
The contribution of these two rows to ‖Bx‖22 is of the form Φ2 + (Φ + xi)2, which
is always at least x2

i /2. It follows that ‖Bx‖22 ≥ 1
2‖x‖22, and hence, µn ≥ 1/2.

The lemma follows from (3) and the fact that detB>B is the product of the eigen-
values.
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Of course, the set system B is much too big. Indeed, the map x 7→ Bx is actually
trivial to compute. We use a nonconstructive argument to prove the existence of a
hard n× n set system A. By the Binet-Cauchy formula,4

detB>B =
∑

1≤ j1<···<jn≤N

∣∣∣∣ detB
(
j1 j2 . . . jn
1 2 . . . n

) ∣∣∣∣2 .
Therefore, there exists an n× n submatrix A of B such that

detA>A =
∣∣∣∣ detB

(
j1 j2 . . . jn
1 2 . . . n

) ∣∣∣∣2
≥
(
N

n

)−1

detB>B = Ω(1)n
( n

eN

)n( N√
n

)n−1

≥ nn/2−o(n),

from which we find that

log detA>A ≥
(n

2
− o(n)

)
logn.(4)

By Morgenstern’s result [18], it follows easily that in the absence of any help gates,
halfplane range searching requires Ω(n logn) operations. To be able to deal with help
gates we must collect more information about the spectrum of A>A. Let λ1 ≥ · · · ≥
λn ≥ 0 be the eigenvalues of A>A.

LEMMA 3.3. For some constant c > 0,

λk ≤
cn2 log(k + 1)

k
.

Proof. Let L be a set of representative lines whose corresponding upper halfplanes
define the sets encoded in the rows of A. Subdivide the unit square into a regular
r × r grid of lines (r to be chosen later), and throw in a random sample of r lines
chosen among L. Form the arrangement of these 3r lines and triangulate it. With
high probability, no triangle is cut by more than cn(log r)/r lines of L, and none
contains more than cn/r2 points, for some constant c (assumed large enough for
future purposes). For each triangle write the linear constraint expressing that the
sum of the xi’s within the triangle is null. This gives us a set of k0 ≤ cr2 linear
constraints, called canonical. Assume that all are satisfied. Then, A can be rewritten
in simpler form by means of a sparse matrix C. Specifically, by the zone theorem for
line arrangements, we know that no line can cut more than cr triangles. Therefore,
within the restriction to the constraint space, each row of A corresponds to a linear
form with at most c2n/r nonzero coefficients. Let C be the new matrix formed by
those relevant entries. Note that no column (resp., row) of C contains more than
cn(log r)/r (resp., c2n/r) ones.

It is a standard result [14] that the spectral norm of a matrix Q satisfies

‖Q‖2s ≤
(

max
i

∑
j

|qij |
)(

max
j

∑
i

|qij |
)
,

4The notation refers to the matrix obtained by picking the rows indexed j1, . . . , jn in B.
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and therefore the Rayleigh quotient x>C>Cx/x>x (x 6= 0) is at most c3n2(log r)/r2.
As a result, for any x satisfying the canonical constraints and ‖x‖2 = 1, we have

‖Ax‖22 ≤
c3n2 log r

r2 .(5)

Let {ui} be an orthonormal eigenbasis for A>A, where ui is associated with λi. We
express x = (ξ1, . . . , ξn) in the basis {ui}. The solution space of the system of equa-
tions consisting of ξj = 0 (j ≥ k0 +2) and the canonical constraints is of dimension at
least 1. It is embedded in the (k0 + 1)-flat spanned by (ξ1, . . . , ξk0+1), so it intersects
the cylinder ξ2

1 + · · ·+ ξ2
k0+1 = 1. For any point x in the intersection, ‖x‖2 = 1 and

‖Ax‖22 =
n∑
i=1

λiξ
2
i =

k0+1∑
i=1

λiξ
2
i ≥ λk0+1,

so by (5), λk0+1 ≤ c3n2(log r)/r2. In the worst case, k0 is proportional to r2, so the
lemma is true for any k large enough. For small k, we can use the straightforward
bound λk ≤ n2.

From the lemma we find that

log detA>A =
n∑
i=1

log λi

≤ (n− k) log λk +
k∑
j=1

log
cn2 log(j + 1)

j

≤ (n− k) log λk + k(2 logn
− log k + log log k + c′).

In view of (4) we find that we can set k = n/2 − εn, for any fixed ε > 0, and still
derive the lower bound log λk = Ω(logn), which proves Lemma 3.1.

We conclude that halfplane range searching requires Ω(n logn) time, even in the
presence of close to n/4 free computations. Notice that over the reals the problem
can be solved in linear time with only 2n−1 free computations: the circuit is a tree of
help gates whose leaves are the xi’s and whose root “collects” the vector (x1, . . . , xn)
and encodes it as a real. Then, with another n help gates, we can distribute the
correct n outputs: the total number of help gates is 2n− 1. This completes the proof
of Theorem 1.1.

Appendix. We prove (2): M+
r (n,m) ≤ 3nVm(r), for n > m. Let C be the

set of cubes counted by M+
r (n,m). Any cube c ∈ C has at least one (n − m)-face

intersecting F ∩ Bn(O, r) in exactly one point (call it qc). This face is supported by
an (n −m)-flat which is specified by fixing exactly m integer coordinates. In other
words, it is specified by an integral point pc in the m-flat spanned by a set of m axes.
Since by convexity such a point pc corresponds to at most 2n−m(n−m)-faces and at
most 2m cubes can share the same (n − m)-face, counting the number of points pc
gives an upper bound on M+

r (n,m), up to a factor of 2n. Of course, we can restrict
the counting to the number of integral points that lie within any of the projections
of F ∩ Bn(O, r) onto m-flats spanned by xi1 , . . . , xim . Furthermore, we can discount
projections that map F to a flat of dimension less than m (because qc is uniquely
defined). Let Ei1,...,im be the ellipsoid obtained by projecting F ∩ Bn(O, r) onto
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the flat (xi1 , . . . , xim). We say that a point pc is peripheral if it is the upper corner
(upper with regard to all m dimensions) of a cube not fully contained in the projected
ellipsoid, and we let N denote the total number of peripheral points. We have

M+
r (n,m) ≤ 2nN + 2n

∑
1≤i1<···<im≤n

volEi1,...,im .(6)

Let v1, . . . , vm be an orthonormal basis for F and let U be the n ×m matrix whose
columns are the vi’s. (Note that U>U is the identity matrix.) The determinant of the
m ×m submatrix of U specified by the rows (i1, . . . , im) is equal, in absolute value,
to the volume of Ei1,...,im divided by Vm(r). (We need only sketch the proof of this
simple fact: lift to F the principal vectors of the ellipsoid and scale them to unit
length; this provides an orthonormal basis for F that satisfies the claim. Because the
basis {vi} can be derived from it by a unitary transformation within F , the claim
follows.) By the Binet-Cauchy formula, the determinant of U>U can be expressed as

∑
1≤ i1<···<im≤n

∣∣∣∣ detU
(
i1 i2 . . . im
1 2 . . . m

) ∣∣∣∣2 ,
and by Cauchy-Schwarz,

∑
i1,...,im

volEi1,...,im ≤ Vm(r)
(
n

m

)1/2√
detU>U = Vm(r)

(
n

m

)1/2

.

On the other hand, in the flat (xi1 , . . . , xim), every cube of the unit lattice that
has a vertex in Ei1,...,im and that intersects ∂Ei1,...,im does so along at least one edge:
at most four such edges can be collinear, and no more than 2m−1 cubes can charge the
same edge. Projecting Ei1,...,im by dropping one coordinate gives an (m− 1)-ellipsoid
whose integral points are contained in an (m − 1)-ball of radius r. Within a factor
of 2m+1, the total number of such points is an upper bound on N . Each such point
is the upper corner of a distinct unit cube in a ball of radius r +

√
m− 1; therefore,

N ≤ m2m+1
(
n
m

)
Vm−1(r +

√
m− 1), and by (6),

M+
r (n,m) ≤ m 4n

(
n

m

)
Vm−1(r +

√
m− 1) + 2n

(
n

m

)1/2

Vm(r).

As r goes to infinity the second term becomes dominant, and for n large enough, (2)
follows.
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