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Abstract

We consider the nearest-neighbor problem over the d-cube: given a
collection of points in {0, 1}¢, find the one nearest to a query point (in
the L! sense). We establish a lower bound of Q(loglog d/ logloglog d)
on the worst-case query time. This result holds in the cell probe model
with (any amount of) polynomial storage and word-size d°(). The
same lower bound holds for the approximate version of the problem,
where the answer may be any point further than the nearest neighbor
by a factor as large as 210°8 )" ] for any fixed & > 0.

1 Introduction

For a variety of practical reasons ranging from molecular biology to web
searching, nearest-neighbor searching has been a focus of attention lately [2]-
[9], [11]-[21], [26]. In the applications considered, the dimension of the am-
bient space is usually high, and predictably, classical lines of attack based
on space partitioning fail. To overcome the well-known “curse of dimension-
ality,” it is typical to relax the search by seeking only approximate answers.
Curiously, no lower bound has been established — to our knowledge — on
the complexity of the approximate problem in its canonical setting, i.e.,
points on the hypercube. (A very recent result due to Borodin et.al. does
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give a good lower bound on the ezact version of the problem.) Our work is
an attempt to remedy this.

Given a database S C {0,1}¢, a 6-approzimate nearest neighbor (5-ANN)
of a query point z € {0,1}% is any y € S such that ||z —yl||; < d||z — z||;, for
any z € S. The parameter § > 1 is called the approzimation factor of the
problem. Given some §, the problem is to preprocess S so as to be able to
find a 6-ANN of any query point efficiently. The data structure consists of a
table T' whose entries hold d°(!) bits each. This means that a point can be
read in constant time. This assumption might be unrealistically generous
when d is large, but note that this only strengthens our lower bound result.

Theorem 1.1 Suppose the table T', constructed from preprocessing a database
S of n points in {0,1}%, is of size polynomial in n and d and holds dOW) _pit
entries. Then, for any algorithm using T for §-ANN searching, there exists
some S such that the query time is Q(loglogd/logloglogd). This holds for
any approzimation factor § < 2L(°8 d)l_EJ, for any fized € > 0.

How good is the lower bound? First, note that the problem can be
trivially solved ezactly in constant time, by using a table of size 2¢. Moreover,
recent results of [20, 16], when adapted to our model of computation, show
that for constant 6 > 1 there is a polynomial sized table with d-bit entries
and a randomized algorithm that enables us to answer 6-ANN queries using
O(loglog d) probes to the table. Although there seems to be only a small gap
between this upper bound and our lower bound, the two bounds are in fact
incomparable because of the randomization. An important open theoretical
question regarding ANN searching is to extend our lower bound to allow
randomization.

In this context it is worth mentioning that a stronger lower bound for
ezact nearest neighbor search is now known. Very recent results of Borodin
et. al. [7] show that even randomized algorithms for this problem require
Q(logd) query time in our model.

2 The Cell Probe Model

Yao’s cell probe model [27] provides a framework for measuring the number
of memory accesses required by a search algorithm. Because of its general-
ity, any lower bound in that model can be trusted to apply to virtually any
conceivable sequential algorithm. In his seminal paper [1], Ajtai established
a nontrivial lower bound for predecessor queries in a discrete universe (for



recent improvements, see [5, 22, 25]). Our proof begins with a similar ad-
versarial scenario. Given a key-set of n points in {0,1}%, a table T is built
in preprocessing: its size is (dn)¢, for fixed (but arbitrary) ¢ > 0 and each
entry holds d°() bits. (For simplicity, we assume that an entry consists
of exactly d bits; the proof is very easily generalized if this is number d
is changed to do(l).) To answer queries, the algorithm has at its disposal
an infinite supply of functions fi, fo, etc. Given a query z, the algorithm
evaluates the index fi(x) and looks up the table entry T[fi(z)]. If T[f1(z)]
is a 0-ANN of z, it can stop after this single round. Otherwise, it evaluates
fa(z, T[f1(z)]) and looks up the entry T[fo(z, T[f1(z)])]- Again it stops if it
this entry is the desired answer (at a cost of two rounds), else it goes on in
this fashion. The query time of the algorithm is defined to be the maximum
number of rounds, over all queries z € {0, 1}d, required to find a J-ANN of
z in the table. Note that we do not charge the algorithm for the time it
takes to compute the functions f,. Note also that we require the last entry
of T fetched by the algorithm to be the answer that it will give (this adds
at most one to the query time).

Following [22, 23], we couch our cell-probe arguments in a communication-
complexity setting as we model the algorithm as a game between Bob and
Alice [10, 19]. The algorithm is modeled by a set of functions fi, fa,.... Al-
ice starts out with a set P; C {0,1}¢ of candidate queries and Bob holds a
collection K7 C 2{0.1} of candidate key-sets; each set in K being of size
n. The goal of Alice and Bob is to force as many communication rounds as
possible.

The possible values of f1(z) (provided by Alice for every ) partition P
into equivalence classes. Bob chooses one such class and the corresponding
value of fi(z), thus restricting the set of possible queries to P, C P;. Given
this fixed value of fi(z), the entry T'[f1(z)] depends only on Bob’s choice of
key-set. All the possible values of that entry partition K7 into equivalence
classes. Bob picks one of them and communicates the corresponding value
of T[f1(z)] to Alice, thus restricting the collection of possible key-sets to
Ky C K;. Alice and Bob can then iterate on this process. This produces
two nested sequences of admissible query sets,

PDOP2---2F,
and admissible key-set collections,

KiD2KyD---DK;.



An element of P, x K, specifies a problem instance. The set P, x K, is called
nontrivial if it contains at least two problem instances with distinct answers,
meaning that no point can serve as a suitable ANN in both instances. If
P, x K, is nontrivial, then obviously round r is needed, and possibly others
as well.

We show that for some appropriate value of n = n(d), there exists an
admissible starting P; x K1, together with a strategy for Alice and Bob, that
leads to a nontrivial P; x K3, for t = ©(log log d/ log loglog d). What makes
the problem combinatorially challenging is that a greedy strategy can be
shown to fail. Certainly Alice and Bob must ensure that P, and K, do not
shrink too fast; but just as important, they must choose a low-discrepancy
strategy that keeps query sets and key-sets “entangled” together. To achieve
this, we adapt to our needs a technique used by Ajtai [1] for probability
amplification in product spaces.!

3 The Lower Bound

Throughout the proof, we assume that d is large enough and that logarithms
are to the base 2. The term “distance” refers to the Hamming distance
between two points in {0,1}¢. A “ball of radius r centered at z” denotes
the set {y € {0,1}¢ : dist(z,y) < r}. To begin with, we specify the size n
of the admissible key-sets and the number ¢ of rounds, and also define two
auxiliary numbers h and 3:

h Y 6ot (1)

B 4 16 . glloga)t <] (2)

_[ eloglogd "
| 2logloglogd

n=(h—1)"1a" (4)

The significance of these formulae will become clear in the proofs of
Lemmas 3.4-3.7.

! This simple but powerful technique, which is described in §3.3, has been used elsewhere
in communication complexity, for example by Karchmer and Wigderson [17].



3.1 Admissible Queries

Before we get down to defining the sets P, we shall need to prove a geometric
fact about the hypercube.

Definition 3.1 A family of balls is said to be y-separated if the distance
between any two points belonging to distinct balls in the family is more than
v times the distance between any two points belonging to any one ball in the
family. Here v is any positive real quantity.

Lemma 3.2 Let B C {0,1}¢ be a ball of radius k < d large enough. For
any v > 16 there exists a v/16-separated family of balls within B, such that
the size of the family is at least 28/13 and the radius of each ball in the family

is k/v.

Proof: We use an argument similar to the proof of Shannon’s theorem. Let
V; be the volume of (i.e. the number of points in) a ball in {0,1}? of radius
r, centered at a point in {0,1}¢. (Notice that this number does not depend

on the center). Clearly
(2
Vi = |-
i=0 \"

Consider the ball B’, concentric with B and of radius k/3, and call its
points initially unmarked. We proceed to mark the points of B’ as follows:
while there is an unmarked point left in B’, pick one and mark all the points
at distance at most k/4 from that point. The number N of points we pick

in B’ satisfies
Viss

N >
~ Vip

We can estimate N from below.

Vis  SEEE) (s
N> = Jk/a N k/4 :
Vi 0@ T oY @)

Note that in each term of the sum in the denominator ¢ is at most d/4.
For such 1,
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Figure 1: Picking balls By, By, .... Light shading: marked points. Heavy shading: picked
balls.
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and for large enough k, this implies N > 2+/13,

Now pick balls of radius k/7v centered at the N picked points; their
centers are in B’ and their common radius is at most k/16, so these balls
lie within B. Moreover, it is easy to see that they form a y/16-separated
family. To see why, suppose on the contrary that two points p and ¢ in balls
centered at distinct points py and gg lie within k/8 of each other. Then,

dist(po, o) < dist(po, p) + dist(p, q) + dist(g, go)
<k/y+k/8+k/y < k/4,

since v > 16. But this is a contradiction since by construction dist(pg, qo) >
k/4. O

Corollary 3.3 For k divisible by S, there ezists a B/16-separated family of
radius-(k/B) balls within B, of size 2%/5.



The partitioning of P, into equivalence classes can be unwieldy, so we
restrict the admissible query sets to be part of another, better-structured,
nested sequence

PfDOPyD---2D P,

where each P} D P,.

To define P, we build a hierarchy of balls: Let # be the tree whose root
is associated with the ball of {0, 1}¢ of radius d centered at (0,...,0). The
children of the root are each associated with one of the 24/8 balls specified
by the above corollary.? Their children, grand-children, etc., are defined
similarly. In general, a node of depth k (root being of depth 0) is associated
with a ball of radius d/8* and its number of children is 2¢/5""" | We iterate
this recursive construction until the leaves of H are of depth h!~!. Note
that the balls associated with the leaves of H are of radius at least d/ ;Bht_l,
and thus, by our choice of ¢, large enough for the application of Lemma 3.2;
specifically, its corollary.

The tree H is used to build other trees, each one associated with a
separate round. We begin with the round-one tree H;. Given v € H, let
Hi(v) denote the subtree of depth h! 2 rooted at v. For each node v of
H whose depth is divisible by =2, remove from A all the nodes of H?(v),
except for its leaves, which we keep in 4 and make into the children of v:
these operations transform 7 into a tree H; of depth h. In this way, each
node v of H; (together with its children) forms a contraction of the tree
H3(v). We can easily check that a node of #; of depth k < h has exactly

2,,d//3kht*2+1

children, where v = (1 —1/87*)/(1 —1/8).

For 1 < r < t, we define #, by induction. We pick some internal node v
of H,_1 and consider the tree H;_;(v) of which it is the contraction. This
tree now plays the role of H earlier: For z € H}_,(v), we let H}(z) denote
the subtree of H}_;(v) of depth A*="~! rooted at z. If the depth of z in
H:_,(v) is divisible by hi="~!, we turn the leaves of () into the children
of z, which transforms #}_;(v) into a tree of depth h that is the desired .

For r = t, we define #, (with respect to an internal node v € H,_1) as
simply the tree formed by v and its children. Observe that, for any r > 1,
the definition of H, is not deterministic, since the initial choice of v is left
unspecified.

2To simplify the notation, we shall assume that d is a large enough power of 2. Note
that 8 is already a power of 2.



Lemma 3.4 Any internal node v of any H, satisfies 2V < K(Hyv) <
224/8 where k(T ,v) denotes the number of children of node v in tree T.

Proof: Observe that x(H;,v) = Kk(Hi—1,v). So, it suffices to prove the
lemma for 1 < r <t — 1. Pick any such r and consider any internal node v
of Hy: k(Hy,v) is the number of leaves of H}(v), which itself is a subtree of
H of depth A*="~1. So, if k is the depth of v in H, then

ht—r—l

k(He,v) = ] 2d/8* "

=1

It follows that the number k(#,,v) is largest when r = 1, £ = 0, and
smallest when r =t — 1, k = ht~! — 1. Thus

ht—2 )
K(Hy0) < [ 247 = 2408 < 22408,
=1

t—1
On the other hand, k(H,,v) > 24/8" o it suffices to prove that
1
Rt llog B < 5 logd. (5)

But this follows after some routine algebra from (1), (3), and the fact that
d is large enough. O

The association between balls and nodes of H, is inherited from # in
the obvious manner. The centers of the balls at the leaves of H constitute
the set P. For r > 1, we define P as the intersection of P’ ; with the
balls at the leaves of #,. We define P, = P;". For r > 1, Alice chooses the
set P, to be a certain subset of P’ according to a strategy to be specified in
Section 3.4. Recall that to be admissible a query must be consistent with
all of the information exchanged between Bob and Alice so far. For r > 1,
we keep the set P, of admissible queries from being too small by requiring

the following:

® QUERY INVARIANT: The fraction of the leaves in #H, whose
associated balls intersect P, is at least 1/d.

Note that the size of the initial collection P; of admissible queries is not
quite as large as 2¢, although it is still a fractional power of it. Indeed,



1-1/87" !

71| = (20 T
By our assumption on table size, the index fi(z) that Alice gives Bob
during the first round can take on at most (dn)¢ distinct values. This sub-
divides P; into as many equivalence classes. The same is true at any around
r <1, and so P is partitioned into the classes Py 1,..., P (gn)c. An internal
node v of H, is called dense for P,; if the fraction of its children whose
associated balls intersect P, ; is at least 1/d. The node v is said to be dense

if it is dense for at least one P, ;.

Lemma 3.5 The union of the balls associated with the dense non-root nodes
of Hy contains at least a fraction 1/2d of the balls at the leaves.

Proof: Consider one of the partitions P.;. Color the nodes of H, whose
associated balls intersect P,.;. Further, mark every colored non-root node
that is dense for P.;. Finally, mark every descendant in H, of a marked
node. For 1 < k < h, let Ly be the number of leaves of H, whose depth-
k ancestor in #, is colored and unmarked. (We include v as one of v’s
ancestors.) Let L be the number of leaves of H,. Clearly Ly < L. For
k > 1, an unmarked colored depth-k£ node is the child of a colored depth-
(k — 1) node that is not dense for P, ;. It follows that Ly < Lj_;/d and so,
forany k > 1, Ly < L/dk_l.

Repeating this argument for all the P, ;’s in the partition, we find that
all the unmarked, colored nodes, at a fixed depth & > 1, are ancestors of at
most (dn)°L/d*~! leaves. In particular, the number of unmarked, colored
leaves is at most

(dn)°L/d"~' < L/2d. (6)
This last inequality follows from (1) and (4). Incidentally, the quantity A is
defined the way it is precisely to make this inequality hold.

The query invariant ensures at least L/d colored leaves, so there are at
least L/2d colored, marked leaves. Moving up the tree ,, we find that the
marked nodes whose parents are unmarked are ancestors of at least L/2d
leaves. All such nodes are dense, which completes the proof. O

3.2 Admissible Key-Sets

The collections K, of admissible key-sets need not be specified explicitly.
d
Instead, we define a probability distribution D, over the set of all (2n) key-



sets of size n and indicate a lower bound on the probability that a random
key-set drawn from D, is admissible, i.e., belongs to K. Beginning with the
case 7 = 1, we define a random key-set S recursively in terms of a random
variable So, which itself depends on Ss,...,S;. To treat all these cases at
once, we define S;, for 1 <1 <t

e For r < t, we define a random S, within H, in two stages:

[1] For each k = 1,2,...,h — 1, choose d® nodes of #, of depth
k at random, uniformly without replacement among the nodes
of depth & that are not descendants of chosen nodes of smaller
depth. The (h — 1)d® nodes chosen in this way are said to be
picked by S,.

[2] For each node v picked by S, recursively choose a random S 1
within the corresponding tree H,1 (i.e., defined with respect to
node v). Such a Sy41 is called the canonical projection of S, on v.
The union of these (h — 1)d® projections S,1 defines a random
S, within H,.

e For r = t, a random §; within (some) H; is obtained by selecting d®
nodes at random, uniformly without replacement, among the leaves
of the depth-one tree H;: S; consists of the d® centers of the balls
associated with these leaves.

Note that a random S, consists of exactly (b — 1)!="d?(=+1) points, thus
satisfying the definition of n in (4) for the case of S;. A random S is
admissible with probability one (since no information has been exchanged
yet), and so the set of all Si’s constitutes Kj. Obviously, this cannot be
true for r > 1, since for one thing S, does not even have the right size, i.e.,
n.

Suppose we have defined the distribution D,_1, for some r > 1. As we
shall see from Bob’s strategy, this implies the choice of a specific H,_1. To
define D,, we choose some node v in H,_; (which immediately implies the
choice of H, for the next round). Any key-set S; whose construction involves
choosing an S, within the tree H, associated with node v is called v-based
and its subset formed by the corresponding S, is called its v-projection.

By abuse of terminology, we say that S, is admissible if it is a v-projection
of at least one key-set of K,_1: for each admissible S, choose one such key-
set arbitrarily and call it the v-extension of S,; for any other S,, choose

10



as its (unique) v-extension any v-based key-set whose v-projection is Sy
(such a key-set is non-admissible). To define the distribution D,, we assign
probability zero to any key-set S; that is not a v-extension; if it is, we
assign it the probability of its v-projection with respect to the distribution
of a random S,. During round r — 1, Bob gets to choose K, among the
key-sets with nonzero probability in D,.

We set a lower bound on the number of admissible key-sets by requiring
Bob’s strategy to enforce the following

e KEY-SET INVARIANT: A random S, is admissible with proba-
bility at least 2=¢".

The underlying distribution is the one derived from the construction of S,,
which is also equivalent to D,.

In what follows, we shall need a tail estimate for the hypergeometric
distribution. The next lemma provides it:

Lemma 3.6 Consider a set of N of objects, a fraction 1/T of which are
“good”. Let us pick a subset of size m < N of these objects, uniformly at
random, and let the random variable X denote the fraction of elements of
this subset that are good. Then for any real t > 0 we have Prob[% -X >
t] < ef2mt2'

Proof: See [15].

Lemma 3.7 Fiz an arbitrary H, (r < t). There ezxists some ko (1 < ko <
h) such that, with probability at least 2_d2_1, a random S, within H, is
admissible and picks at least d® dense nodes of H, of depth ky.

Proof: By Lemma 3.5, the dense non-root nodes of H, are ancestors of at
least a fraction 1/2d of the leaves. By the pigeonhole principle, for some
kg with 1 < kg < h, at least a fraction 1/2dh of the nodes of depth kj are
dense. Of course, not all these nodes can be picked by S,: only those that do
not have ancestors that have been picked further up the tree are candidates.
But this rules out fewer than hd® nodes, which by Lemma 3.4, represents
a fraction at most hd®2~V? of all the nodes of depth k. This means that
from among the set of depth-ky nodes that can be picked by S;, the fraction
1/Tp that is dense satisfies

1 _ hd
1 2dh ~ 9vd
Ty = 1-2&  3dh

11



Among the d® nodes we pick at depth ko, we expect at least d°/3dh of
them to be dense, and thus we should exceed the lemma’s target of d® with
overwhelming probability, say, 1 — 2—d’-1, Using Lemma 3.6 we see that
this is indeed the case: choose the set of objects in the lemma to be the set
of depth-ky nodes that are available for picking by S, and let the “good”
objects among these nodes be the dense nodes. Choose m = d°, T = Ty
and t = 1/Tp — 1/d?> > 0. The lemma now says that the number R of dense
nodes we pick satisfies

11

Prob[R < d®] = Prob[R/d® < 1/d?] < ¢ 2% (%~ 32)"

But, as observed above, Ty < 3dh and so, after some routine algebra, we
. 2

obtain Prob[R < d3] < 2741,
The key-set invariant completes the proof. O

3.3 Probability Amplification

In the r*® round, the table entry T'[f.(x, T[f1(x)],...)] that Bob returns to
Alice can take on at most 2¢ distinct values, and so the collection of admis-
sible key-sets is partitioned into equivalence classes Ky 1, ..., K, 4. Bob has
to choose one of these classes to form the new collection K, of admissible
key-sets. Unfortunately, such a large number of classes is likely to cause a
violation of the key-set invariant. To amplify the probability that a random
key-set is admissible back to 2_d2, we exploit the fact that the distribution
is defined over a product space, and borrowing an idea from Ajtai [1], we
project the distribution on its “highest-density” coordinate.

Lemma 3.8 For r < t, there exists a dense node v of H, such that the
conditional probability that the canonical projection on v of a random S, is
admissible, given that it picks v, is at least 1/2.

Proof: Let D be a subset of dense nodes of depth k¢ (referred to in
Lemma 3.7). We define £p to be the event that the set of dense nodes
of depth kg picked by S, is exactly D. Let pp be the probability that S,
is admissible and that £p occurs, and let ¢p be the conditional probability
that S, is admissible, given £p. By Lemma 3.7, summing over all subsets
D of dense depth-ky nodes of size at least d®, we find that

Z cp - PI‘Ob[ED] = Z PD > 2_d2_1,
D D

12



and therefore cp, > 2_d2_1, for some Dy of size at least d°.

Now we derive a key fact from the product construction of the probability
spaces for key-sets. Consider the |Dy|-dimensional space, where each v €
Dy defines a coordinate. Each point in this space represents an S, and is
characterized by a vector (nq, ..., n| D0|), where n; is the canonical projection
of S, onto the i** node of Dy. By the definition of admissibility for S,’s, if
(ni, ..., n| D0|) is an admissible S;., then all the n;’s in its vector representation
are admissible S;11’s. Let Ay, be the set of all admissible S;’s within the
M1 corresponding to the i*® node of Dy. Clearly the admissible S,’s that
belong to the |Dy|-dimensional space are all contained in

Ap, X ... x A

7 Do|

the size of which is a fraction [[ ¢, ¢y of the S;.’s for which Dy is exactly the
set of dense nodes of depth kg picked by S,., where ¢, is the probability that
a random Syy1 within the H,41 corresponding to v is admissible. Because
within S, the random construction of any S, is independent of S, \ Sy41,
¢y is also the conditional probability that the canonical projection on v of a
random S, is admissible, given that it picks v. Thus we see that

cp, < H Cy-

v€ Do

Since |Dy| > d?, it follows that
_d2_1 1/|D0‘ 1
2 (277 2 0,

for some v € Dy. O

3.4 Maintaining the Invariants

We summarize the strategies of Alice and Bob and discuss the enforcement
of the two invariants. Skipping the trivial case r = 1, we show that if
the invariants hold at the beginning of round r < ¢, they also hold at the
beginning of round r + 1. Prior to round r, consider the node v from H,
described in Lemma 3.8. Since v is dense there is some F,; such that the
fraction of v’s children whose associated balls intersect P, ; is at least 1/d.
Alice chooses such a F,; and defines P.; N P, to be Py, the set of
admissible queries prior to round r + 1. The tree #H,,1 is then rooted at v,

13



and its leaves coincide with the children of v in H,. Thus, the fraction of
the leaves of H,; whose associated balls intersect P41 is at least 1/d, and
the query invariant holds.

Turning now to the key-set invariant, recall that during round r, Bob
is presented with a table entry, which holds one of 2¢ distinct values. By
the choice of v in Lemma 3.8, the probability that a random S,4q at v is
admissible is at least a half. A key observation is that this is the same
probability that a random key-set from D, is in K,. By the pigeonhole
principle, there is a value of the table entry for which, with probability at
least (1/2)27%, a random key-set from D, is in K, and produces a table
with that specific entry value. Since 279! > 2_d2, the key-set invariant
holds after round r.

3.5 Forcing ¢t Rounds

To complete the proof of Theorem 1.1, we must show that the invariants
on query-sets and key-sets are strong enough to guarantee that P; x K; is
nontrivial, i.e. that after ¢ — 1 rounds, we still have at least two admissible
problem instances which produce different answers. We shall soon prove
that there exists at least one key-set S € K; which picks two distinct leaves
v1 and ve of the tree H; whose associated balls contain queries ¢; and ¢o,
respectively, in P;. Notice that by construction, the family of balls associated
with the leaves of H; is a [/16-separated family. Since any key must lie
within some ball in this family, no key can be a $/16-ANN for both ¢; and
go- But (2) says that 8/16 = 2L0°69"°] which concludes the argument.

We prove the existence of such an S by contradiction. For any S; let
v(St) denote the number of queries in P; that it picks (which is shorthand
for “the number of nodes it picks each of whose balls contains at least one
query in P;”). Suppose that no admissible S; picks more than one query.
Then the probability p that a random S; is admissible satisfies

p < Prob[v(S;) = 0] + Prob[v(S;) = 1].

To form a random S; we pick d° leaves of H; at random, uniformly. By the
query invariant, at least 1/d of them belong to P;. So,

p< (1 - %)ds + Zd(l — %)ds_l < e podtlg=d o o=

By the key-set invariant, we must have p > 2_‘12, hence a contradiction.
This concludes the proof of Theorem 1.1. O
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