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Abstract
The paper resolves a long-standing open question in network dynamics. Averaging-based consensus
has long been known to exhibit an exponential gap in relaxation time between the connected and
disconnected cases, but a satisfactory explanation has remained elusive. We provide one by deriving
nearly tight bounds on the s-energy of disconnected systems. This in turn allows us to relate the
convergence rate of consensus dynamics to the number of connected components. We apply our
results to opinion formation in social networks and provide a theoretical validation of the concept of
an Overton window as an attracting manifold of “viable” opinions.
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1 Introduction

Consensus dynamics based on local averaging has been the object of considerable attention [5,
8, 9, 10, 11, 21, 26, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 45, 48, 47, 50, 54]. This owes largely
to the ubiquity of these systems, from flocking and swarming to synchronization, social
epistemology, and opinion dynamics [7, 12, 18, 21, 22, 26, 32, 34, 37, 55]. Agents interact
across a network by averaging their state variables with those of their neighbors. Under mild
conditions, such systems are known to converge to a fixed-point attractor.

When the network is fixed, the dynamics is dual to a Markov chain, which puts a
wealth of analytical tools at our disposal. It is well known that convergence within ε is
reached in time C log(1/ε), for some parameter C depending only on the graph’s size and
topology. This bound still holds for time-varying graphs as long as they remain connected
at all times. When connectivity is not guaranteed, however, the convergence time shoots
up to C log(1/ε)n−1. This exponential jump has been a puzzling mystery in the field of
time-varying network dynamics [13, 26, 34, 50, 51]. Recent works on oblivious message
adversaries also exhibit exponential gaps in the time complexity of certain broadcast and
consensus problems [17, 23, 24, 25, 57]. The gap is also behind the emergence of hyper-torpid
mixing in Markov influence systems and the slow-clock phenomenon [14].

This paper explains the exponential jump in consensus dynamics by relating it to the
number of connected components in the system. The convergence rate is shown to be of
the form C(log 1/ε)m, where m < n is the maximum number of connected components at
any time. We derive quasi-optimal bounds on the parameter C. In addition, we look at
three important special cases – reversible, expanding, random – and we discuss applications
to opinion formation in social networks. The results in this work rely on new s-energy
bounds of independent interest. The s-energy is a generating function designed specifically
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10:2 A Connectivity-Sensitive Approach to Consensus Dynamics

for the analysis of networked averaging systems [12, 13]. Its main purpose is to overcome the
technical difficulties one encounters when systems become disconnected and one does not
have apriori bounds on how long they might stay so. The difficulty is fundamental: With
changing topologies, networked systems cease to have coherent eigenmodes and spectral
techniques break down. In other words, when linear algebra fails, the s-energy gives us a
way out.

Averaging dynamics

Let (Gt)∞
t=1 be an infinite sequence of graphs over the vertex set [n]. Each graph has a

self-loop. Let Pt be the stochastic matrix of a random walk over Gt. By construction, a
matrix entry is positive if and only if it corresponds to an edge of Gt. Each row sums up to
1 and the diagonal is positive. We assume that the nonzero entries in Pt are at least some
fixed ρ ∈ (0, 1/2].1 Let P≤t denote the product Pt · · ·P1. The set of orbits (P≤tx)t>0, over
all x ∈ Rn, forms an averaging system, often called consensus dynamics in the literature [26].
When all the matrices Pt = P are identical, the map x 7→ Px is the dual map of the Markov
chain (y 7→ yP ) and its convergence time is the chain’s mixing time. The case of a fixed
matrix has been studied exhaustively, so the novelty of the paper comes from the dynamic
nature of the networks.

A general averaging system (genS ) assumes only that the graphs Gt are undirected.
A reversible averaging system (revS ) is a genS whose individual Markov chains Pt are
reversible and share the same stationary distribution. This means that Pt = diag(q)−1Mt,
where Mt is symmetric with nonzero entries at least 1 and q = Mt1 ⪯ 1/ρ.
An expanding averaging system (expS ) is a revS where q = d1 and the connected
components of each Gt are d-regular expanders. Recall that a d-regular expander is
a graph of degree d such that, for any set X of at most half of the vertices, we have
|∂X| ≥ h|X|, where ∂X is the set of edges with exactly one vertex in X; the factor h is
called the Cheeger constant.
A random averaging system (ranS ) assumes that the graphs Gt are d-regular and random.

Our results

Given x ∈ [0, 1]n, each point of the orbit (P≤t x)t>0 corresponds to an embedding of the
graph Gt over the reals. Let Tε be the number of timesteps t at which Gt has an embedded
edge of length at least ε > 0. We denote by Tm,ε the maximum value of Tε over all graph
sequences (Gt)t>0 such that no graph has more than m connected components.2 We use
superscripts to distinguish among the general, reversible, expanding, and random cases:
T gen, T rev, T exp and T ran respectively.

For simplicity, T rev, T exp and T ran do not assume that the initial diameter is bounded by
1 but, rather, that the initial variance is. Here we define the (scaled) variance as ∥x− x̂ ∥2

q,
where x is shorthand for x(1) and (i) x̂ is the mean initial position ∥q∥−1

1 ⟨x, 1⟩q1; (ii)
∥x∥2

q := ⟨x, x⟩q; and (iii) ⟨x, y⟩q :=
∑

i qixiyi.

1 If ρ > 1/2, the only edges of Gt have to be self-loops, which is of no interest.
2 Since the systems always converge to a fixed-point attractor, the reader might wonder why we do not

define Tε as the time past which no edge length exceeds ε. This would not work because an adversary
could always insert the identity matrix repeatedly to delay convergence at will and push Tε to infinity.
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Note that unit diameter implies a variance of at most n/ρ and, conversely, unit variance
implies a diameter bounded by 2. Thus, the following bounds can be easily scaled to
accommodate either assumption about initial conditions.

▶ Theorem 1. For some constant c > 0 and any positive ε small enough,

T gen
m,ε ≤ c(1/ρ)n−1 (mn log 1

ε

)m

T rev
m,ε ≤ c

(
n2

ρ log 1
ε

)m

[15]

T exp
m,ε ≤ c

(
d3mn

h2 log 1
ε

)m

& T exp
1,ε ≤ cd3

h2 log 1
ε

ET ran
1,ε ≤ c log 1

ε .

Proof. The upper bound on T rev
m,ε was proven in [15] and is mentioned here for completeness.

Note that the case m = 1 of genS and revS recover the classic mixing times for Markov
chains (Pt = P ), in particular the polynomial vs. exponential gap between general and
reversible chains. We also rediscover the logarithmic bound for expanders (m = 1). Previous
work addressed only the cases m = 1 or m = n− 1. What made any connectivity-sensitive
extension challenging is that the proof techniques for the s-energy do not seem to generalize.
It is often possible to set up recurrence relations but these are too coarse to deliver good
upper bounds. Intricate multiscale amortization arguments were used to overcome these
limitations. In a surprising turn, we show how to rescue the divide-and-conquer approach
via a new linearization technique. Before we turn to the s-energy Em,s, we need to mention
its relevance: Theorem 1, indeed, follows from combining the corresponding s-energy bounds
with the inequality

Tm,ε ≤ inf
0<s≤1

ε−sEm,s. (1)

The idea is to provide upper bounds on Em,s for each of the four cases: general, reversible,
expanding, and random. Proving Theorem 1 is then a matter of choosing s to minimize the
right-hand side in (1). This step is straightforward calculus and, hence, omitted. ◀

The bounds in Theorem 1 are very general and can be applied to countless instances
of real-world dynamics (swarming, flocking, polarization, power grid sync, firefly flashing,
etc. [12]). We conclude this work in Section 3 with an application of our ideas to opinion
formation in social networks. We extend the model to include directed edges so as to capture
both evolving and fixed sources of information. We show that, while all opinions might keep
changing forever, they will inevitably land in the convex hull of the fixed sources. Furthermore,
we bound the time at which this must happen. Our result is a quantitative validation of the
Overton window as an attracting manifold of “viable” opinions [4, 6, 19, 27, 46].

2 New Bounds on the s-Energy

Let (Gt)∞
t=1 be an infinite sequence of graphs over the vertex set [n]. A vertex is also called

an agent. Each graph is embedded in R and we denote by xi(t) the position of agent i. The
union of the embedded edges of Gt forms disjoint intervals, called blocks. Let l1, . . . , lk be
the lengths of these blocks and put Es,t =

∑k
i=1 ls

i , with s ∈ (0, 1].3 We define the s-energy
Es =

∑
t≥1 Es,t and we denote by Em,s the supremum of Es , over all initial agent positions

x ∈ [0, 1]n, under the constraint that Gt should have at most m connected components.

3 For example, if Gt consists of three edges embedded as [0.1, 0.3], [0.2, 0.4] and [0.7, 0.8], then there are
two blocks [0.1, 0.4], [0.7, 0.8] and Es,t = (0.3)s + (0.1)s.

SAND 2023



10:4 A Connectivity-Sensitive Approach to Consensus Dynamics

2.1 General averaging systems
We begin by stating our bounds on the s-energy of any genS with at most m connected
components. As stated above, we assume that the initial diameter ∆ of the vertex positions
is 1. If it is not, it suffices to multiply the bounds by a factor of ∆s.

▶ Theorem 2. Egen
m,s ≤ (c/s)m(1/ρ)n−1, for any s ∈ (0, 1], where c = O(mn). For s = 1, the

bound can be improved to Egen
m,1 ≤ 3en(1/ρ)⌊n/2⌋.

Twist systems

A genS is a special case of a twist system [13]. The latter is easier to analyze so we turn our
attention to it. Relabel the agents so their positions x1 ≤ · · · ≤ xn appear in sorted order at
time t. A twist system moves them to positions y1 ≤ · · · ≤ yn at time t + 1 in such a way
that

(1− ρ)xu + ρxmin{i+1,v} ≤ yi ≤ ρxmax{i−1,u} + (1− ρ)xv, (2)

for any i in [u, v] and yi = xi otherwise. We repeat this step indefinitely. Twist systems are
highly nondeterministic. At each step, a new interval [u, v] ⊆ [n], called a block, is picked
and the agents’ motion is only constrained by (2) and the need to maintain their ranks (ie,
agents never cross).

For the purposes of this work, we extend the concept to m-twist systems by stipulating,
at each time t, a partition of [n] into up to mt blocks [ut,l, vt,l] (1 ≤ l ≤ mt ≤ m). Each
agent is now subject to (2) within its own enclosing block. We define the s-energy Etw

s of
a twist system as we did with a genS by adding together the s-th powers of all the block
lengths. We use the same notation with the addition of the superscript tw.

▶ Lemma 3. A genS with at most m connected components at any time can be interpreted
as an m-twist system with the same s-energy.

Proof. Fix a genS and let (xi)n
i=1 and (yi)n

i=1 be the positions of the agents at times t and
t + 1, given in nondecreasing order. We denote by x′

i the position of agent i at time t + 1.
Let [xu, xv] be a block of the genS at time t. Pick k < v and write z = ρxk + (1 − ρ)xv.
All the diagonal elements of Pt are at least ρ; hence x′

i ≤ z, for all i ≤ k, and yk ≤ z. In
fact, the inequality even holds for i = k + 1: Indeed, the embedded edges of Gt cover all of
[xu, xv], so at least one of them, call it (l, r), must join [u, k] to [k + 1, v]; hence x′

r ≤ z. Our
claim follows. This proves that, for all i ∈ (u, v], yi ≤ ρxmax{i−1,u} + (1− ρ)xv. We omit the
case i = u and the mirror-image inequality, which repeat the same argument. Summing up
all the powers (xv − xu)s shows the equivalence between the two s-energies. ◀

Proof of Theorem 2. We may assume that the agents stay within [0, 1]. We begin with
showing the bound Egen

m,1 ≤ Etw
m,1 ≤ 3en(1/ρ)⌊n/2⌋.

Case s = 1

We prove a stronger result by bounding Kt(z) :=
∑n

k=1
(
xv(k) − xk

)
zk, where v(k) = vt,l

for l such that k ∈ [ut,l, vt,l]. As usual, 0 ≤ x1 ≤ · · · ≤ xn ≤ 1 denotes the sorted positions of
the agents at time t; we omit t for convenience but it is understood throughout. We define
the weighted 1-energy K(z) =

∑
t>0 Kt(z) and, finally, K(z) = sup K(z). As long as z ≥ 1,

the 1-energy is obviously dominated by its weighted version. We improve this crude bound
via a symmetry argument:
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▶ Lemma 4. For any z ≥ 1, Etw
m,1 ≤ 2z−ν K(z), where ν = ⌈n/2⌉.

Proof. We define the mirror image of Kt as K̄t(z) =
∑n

k=1
(
xk − xu(k)

)
zn−k+1, where u(k)

is the left counterpart of v(k). We have

Etw
1,t ≤

∑
k≤ν

(
xk − xu(k)

)
+
∑
k≥ν

(
xv(k) − xk

)
≤ z−ν

∑
k≤ν

(
xk − xu(k)

)
zn−k+1 + z−ν

∑
k≥ν

(
xv(k) − xk

)
zk

≤ z−ν
(
K̄t(z) + Kt(z)

)
.

Because K(z) = sup K(z), the lemma then follows by summing up all t > 0. ◀

We define the polynomial Pt(z) =
∑n

k=1 xkzk for z > 1/ρ and exploit two simple but
surprising facts: Pt(z) cannot increase over time;4 and, at each step, the drop from Pt(z) to
Pt+1(z) is at least proportional to Kt(z). Thus, we develop a discrete version of the inference:
dPt/dt ≤ −cKt implies∫

t≥1
cKt ≤ −

∫
t≥1

dPt

dt
≤ P1 .

▶ Lemma 5. For any z > 1/ρ, Pt(z)− Pt+1(z) ≥ (ρz − 1)Kt(z).

Proof. The inequality is additive in the number of blocks so we can assume there is a single
one [u, v] at time t. Using the notation of (2), we have yk ≤ ρxmax{k−1,u} + (1− ρ)xv; hence

Pt(z)− Pt+1(z) =
v∑

k=u

(xk − yk)zk ≥
v∑

k=u

(
xk − ρxmax{k−1,u} − (1− ρ)xv

)
zk

≥ (ρ− 1)(xv − xu)zu +
v∑

k=u+1
ρ(xv − xk−1)zk −

v∑
k=u+1

(xv − xk)zk

≥ (ρ− 1)(xv − xu)zu +
v−1∑
k=u

ρz(xv − xk)zk −
v∑

k=u+1
(xv − xk)zk

≥ (ρ− 1)(xv − xu)zu +
v∑

k=u

(ρz − 1)(xv − xk)zk + (xv − xu)zu

≥ (ρz − 1)Kt(z) + ρ(xv − xu)zu. ◀

The lemma implies that

(ρz − 1)K(z) =
∑
t>0

(ρz − 1)Kt(z) ≤ P1(z) ≤
n∑

k=1
zk = zn+1 − z

z − 1 . (3)

4 Recall that xk depends on t. Note also that, among the n agents, rightward motion within [0, 1] might
greatly outweigh the leftward kind. Thus, if most of the xi’s keep growing, how can Pt(z) not follow
suit? The point is that Pt(z) puts weights exponentially growing on the right, so their leftward motion,
outweighed as it might be, will always dominate with respect to Pt(z). This balancing act between left
and right motion is the core principle of twist systems.

SAND 2023



10:6 A Connectivity-Sensitive Approach to Consensus Dynamics

With z = (1 + ε)/ρ, ε = 1/(n− ν + 1), and n > 2, we find that

z−νK(z) ≤ zn − 1
(z − 1)(ρz − 1)zν−1 ≤ 2ρν−ne(n−ν+1)ε/ε ≤ 2e(n− ν + 1)ρν−n ≤ 3en

2 ρν−n.

The case s = 1 of Theorem 2 follows immediately from Lemma 4. Finally, for n = 2, we
verify that Etw

m,1 =
∑

k≥0(1− 2ρ)k = 1/2ρ.

Case s < 1

The previous argument relied crucially on the linearity of the 1-energy. If s < 1, the
s-energy gives more relative weight to small lengths, so we need a different strategy to keep
the scales separated. We omit the superscript tw below but it is understood. We use a
threshold δ which, though set to 1/3, is best kept as δ in the notation.

A recurrence relation. Let Tδ be the number of steps at which the diameter remains above
1 − δ; note that these steps are consecutive and Tδ might be infinite. By scaling, we find
that Es ≤ Fs + (1− δ)sEs, where Fs =

∑
t≤Tδ

Es,t. Since (1− δ)s ≤ 1− δs, for δ, s ∈ [0, 1],
we have

Es ≤ (δs)−1Fs. (4)

If m = 1, then (1− δ)Fs ≤ (1− δ)Tδ ≤ F1 ≤ E1,1. Thus, by (4) and the previous section,

E1,s ≤
3en

δ(1− δ) (1/s)(1/ρ)⌊n/2⌋. (5)

The case m > 1. Fix t ≤ Tδ; if mt > 1, let j maximize xj+1(t)− xj(t) over all j = vi and
i < mt (break ties by taking the smallest j). This corresponds to the maximum distance
between consecutive blocks. For this reason, we call (j, j + 1) the max-gap at time t. We say
that t is ungapped if mt = 1 or xj+1(t)−xj(t) ≤ δ/m; it is gapped otherwise. Assuming that t

is gapped, let (j, j +1) be its max-gap and write ζt = mink

{
t < k ≤ Tδ | ∃ l : uk,l ≤ j < vk,l

}
:

If the set is empty, we set ζt = Tδ; else l is unique and we denote it by lt. We call the interval
[t, ζt] a span and the block lt, if it exists, its cap. We note that xj+1(k) − xj(k) cannot
decrease during the times k = t, . . . , ζt. This shows that a cap covers a length greater than
δ/m.

We begin with a few words of intuition. The energetic contribution of an ungapped time
t is easy to account for: It is at most m. On the other hand, the 1-energy is at least the
diameter minus the added length of the gaps between blocks, which amounts to at least
1 − 2δ ≥ 1/3; in other words, Es,t ≤ 3mE1,t. Summing up over all ungapped times and
plugging in our bound for s = 1 gives us the desired result. Accounting for gapped times is
more difficult, as it requires dealing with small scales. If we had only one span, we could
simply split the system into two decoupled subsystems and set up a recurrence relation. The
problem is that the presence of k capped spans would force us to repeat the recursion k − 1
times. With no apriori bound on k, this approach is not too promising. Instead, we make a
bold move: We argue that, because a cap is longer than δ/m, its own 1-energy contribution
(ie, its length) is large enough to “pay” for the s-energy of its entire span. This is not quite
right, of course, but one can fix the argument by using the weighted 1-energy of the cap and
upscaling it suitably. Once again, this reduces the problem to the case s = 1, so our method
is, in effect, a linearization. Here is the proof.
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Proof. We partition the times between 1 and Tδ into two subsets G and U := [1, Tδ]\G, each
one supplied with its own energetic accounting scheme. We form G by greedily extracting a
maximal set of nonoverlapping spans and taking their union.

1. G← ∅ and t′ ← 1;
2. if t← min

{
gapped i | t′ ≤ i ≤ Tδ

}
exists

3. then G← G ∪
{

i | t ≤ i ≤ ζt

}
;

4. if ζt < Tδ then t′ = ζt + 1; go to 2;

We postulate that, for any 0 < s ≤ 1, and any number of agents j ≤ n,

Em,s ≤ cm(1/s)m(1/ρ)j−1 , (6)

and we derive a recurrence relation for cm (for given n).

Accounting for G: In line 3, let k = ζt and (j, j + 1) be the corresponding max-gap.
Suppose that the span [t, k] is capped. The absence of an interval including j and j + 1
during [t, k−1] implies that

∑
t≤l≤k Es,l ≤ L+R+m, where L and R denote the s-energy

of systems with at most m− 1 connected components. For reasons we address below, we
may assume that L is dominant; hence R ≤ L ≤ Em−1,s.5 It follows that

k∑
l=t

Es,l ≤ 2Em−1,s + m ≤ 3cm−1(1/s)m−1(1/ρ)j−1. (7)

Note that we (safely) assume cm−1 ≥ m. Using the shorthand v for vk,lt
, we have

xv(k)−xj(k) ≥ xj+1(k)−xj(k) ≥ xj+1(t)−xj(t) > δ/m. We add the artificial multiplier
xv(k) − xj(k) to (7) to make the right-hand side resemble K(z). Recall that δ = 1/3;
assuming that z > 1/ρ from now on, we have

k∑
l=t

Es,l ≤ B
(
xv(k)− xj(k)

)
zj , with B = 9cm−1mρ(1/s)m−1 (8)

The set G is a union of spans. If ζt = Tδ, the last span might not be capped. If so,
remove it from G and call the resulting set G′. Summing up, we find that

∑
t∈G′ Es,t ≤

B
∑

t∈G′ Kt(z). If the last span is uncapped then ζt = Tδ and no block contains both
j and j + 1 in the span [t, Tδ]. The s-energy expended in that span is thus of the form
L + R ≤ 2Em−1,s.
Accounting for U : Only ungapped times belong to U , so the 1-energy at time t ∈ U is at
least 1− δ − (mt − 1)δ/m ≥ 1/3. On the other hand, Es,t ≤ m ≤ 3mE1,t ≤ 3mρKt(z) ≤
BKt(z).

Set z = (1 + ε)/ρ, for ε > 0. Putting all of our bounds together, we have

Fs =
∑
t≤Tδ

Es,t ≤ B
∑
t∈G′

Kt(z) + 2Em−1,s + B
∑
t∈U

Kt(z)

≤ 2cm−1 (1/s)m−1(1/ρ)n−1 + BK(z).

5 The inequality relies on the (easy) fact that the maximum s-energy grows monotonically with the
number of agents. This is not even needed, however, if we redefine Em,s as the maximum s-energy over
all systems with at most n agents and then reason with the value n′ ≤ n that achieves the maximum.

SAND 2023



10:8 A Connectivity-Sensitive Approach to Consensus Dynamics

Actually, the exponent to 1/ρ can be reduced to n− 2, but this is immaterial. By (3),

BK(z) ≤ 18cm−1(1/s)m−1(1/ρ)n−1e(n+1)ε(m/ε).

Setting ε = 1/(n + 1) gives us, for some constant d > 0,

Fs ≤ cm−1(dmn)(1/s)m−1(1/ρ)n−1.

We tie up the loose ends by arguing that it was legitimate to assume that L ≥ R. The
point is that individual values of L and R do not matter: only their sums do. Thus, if the Rs
outweigh the Ls, we restore the dominance of the Ls by flipping the system around. Finally,
by (4), Es ≤ (3/s)Fs; and so, by (5), Theorem 2 follows from the recurrence: c1 = O(n) and
cm ≤ 3dmncm−1, for m > 1. ◀

◀

Lower bounds for twist systems

We begin with the case m = 1. Assume that n = 2k + 1. At time t = 1, we have
xk = −x−k = 1/2 and xi = −x−i = 1

2 (1− ρi), for 0 ≤ i < k and ρ small enough. For t > 1,
we set xi(t) = (1 − ρk)xi(t − 1). The agents are labeled −k, . . . , k from left to right. It
is easily verified that this constitutes a twist system for the block [−k, k] with initial unit
diameter. The s-energy E is

(
1− ρk

)s
E + 1 so, for constant c > 0,

E ≥ (c/s)(1/ρ)⌊n/2⌋. (9)

If n = 2k, we set xk = −x−k = 1/2 and xi = −x−i = 1
2 (1− 2ρi), for 1 ≤ i < k. For t > 1,

we set xi(t) = (1− 2ρk)xi(t− 1) and rederive (9).
For the general case, we describe the evolution of an m-block twist system with n agents,

and denote its s-energy by F (n, m): It is assumed that n − 1 agents are positioned at 0
at time 1 and the last one is at position 1. If m = 1, we apply the previous construction
after shifting the initial interval from [−0.5, 0.5] to [0, 1]. The initial positions still do not
match, but we note that, in a single step, we can move the agents anywhere we want in
the interval [ρ, 1 − ρ] while respecting the constraints of a twist system. This gives us
F (n, 1) = 1 + (1 − 2ρ)sE. By adjusting the constant c in (9), the same lower bound still
holds.

For m > 1, at time 1, we move the agents n−1 and n to positions ρ and 1−ρ, respectively,
and we leave the others (if any) at position 0. We then use an (m− 1)-block twist system
recursively for the agents 1, . . . , n−1. This brings these agents to a common position6 in [0, ρ].
This gives us the recurrence relation: F (n, m) ≥ 1 + ρsF (n− 1, m− 1) + (1− 2ρ)sF (n, m);
hence, by induction, for constant c > 0,

F (n, m) ≥ (c/s)mρ(m−1)s(1/ρ)⌊(n+m−1)/2⌋. (10)

The s-energy is often used for small s, so we state the case of s = O
(
1/m log 1

ρ

)
, which

matches the bound of Theorem 2 for m = n− 1.

▶ Theorem 6. Etw
m,s ≥ (c/s)m(1/ρ)⌊(n+m−1)/2⌋, for constant c > 0, small enough ρ and

s = O
(
1/m log 1

ρ

)
.

6 To keep the time finite, we can always force completion in a single step once the agents are sufficiently
close to each other.
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2.2 Expanding averaging systems
In a revS, the stochastic matrices Pt are of the form Pt = diag(q)−1Mt, where Mt is
symmetric with nonzero entries at least 1 and q = Mt1 ⪯ 1/ρ. We verify that q is the
common (dominant) left-eigenvector. We revisit the definition of Em,s to include only the
reversible averaging systems of unit variance ∥x− x̂ ∥2

q = 1, where x̂ = q⟨x, 1⟩. We denote
the s-energy by E rev

m,s . The following result is already known. (Note that, if the variance is
not one, it suffices to multiply the upper bound by ∥x− x̂ ∥s

q.)

▶ Theorem 7 ([15]). Erev
m,s ≤ (cn2/ρs)m, for any s ∈ (0, 1] and constant c > 0.

A d-regular expander with Cheeger constant h is a graph of degree d such that, for any
set X of at most half the vertices, we have |∂X| ≥ h|X|, where ∂X is the set of edges
with exactly one vertex in X. We say that G = (V, E) is a d-regular m-expander if it has
at most m connected components. Recall that an expanding averaging system (expS ) is
a revS consisting of d-regular m-expanders. Each nonzero entry in Mt is equal to 1 and
q = d1. We redefine the s-energy to include only expS of unit variance with at most m

connected components and denote it by Eexp
m,s. Adding the expanding assumptions cancels

the dependency on n in the case m = 1. More generally, we prove the following:

▶ Theorem 8. E exp
m,s ≤ (c/s)m, for any s ∈ (0, 1], where c = O(d3/h2) for m = 1 and

c = O(d3mn/h2) for m > 1.

We begin the proof with a lower bound on the Dirichlet form that exploits the expansion
of a d-regular expander with Cheeger constant h. This is known as Cheeger’s inequality. We
include the proof below for completeness.

▶ Lemma 9. If G = (V, E) is connected, then
∑

(i,j)∈E (xi − xj)2 ≥ b(h/d)2 ∥x − x̂∥2
q ≥

b(h∆)2/2d, for constant b > 0, where ∆ is the diameter of the agent positions x1, . . . , xn.

Proof. All of the ideas in this proof come from [3, 52]. The inequality is invariant under
shifting and scaling, so we may assume that x̂ = 0 and ∥x∥2 = 1. Relabel the coordinates of
x so they appear in nonincreasing order, and define y ∈ Rn such that yi = max{xi, 0}. Let
α = argmaxk(yk > 0) and β = min{α, ⌊n/2⌋}. By switching x into −x if necessary,7 we can
always assume that ∥y∥2

2 > c := 1/6 if α = β, and ∥y∥2
2 ≥ 1− c if α > β. By Cauchy-Schwarz,

(yi + yj)2 ≤ 2(y2
i + y2

j ); hence,

∑
(i,j)∈E

∣∣ y2
i − y2

j

∣∣ =
∑

(i,j)∈E

(yi + yj)|yi − yj | ≤
√ ∑

(i,j)∈E

(yi + yj)2
∑

(i,j)∈E

(yi − yj)2

≤
√∑

i

2dy2
i

∑
(i,j)∈E

(yi − yj)2 ≤
√ ∑

(i,j)∈E

2d(yi − yj)2 ≤
√ ∑

(i,j)∈E

2d(xi − xj)2.

(11)

By the expansion property of G, summation by parts yields

∑
(i,j)∈E

∣∣ y2
i −y2

j

∣∣ ≥
⌊n/2⌋∑
k=1

hk
(
y2

k −y2
k+1
)

+
n−1∑

k=⌊n/2⌋+1

h(n−k)
(
y2

k+1 −y2
k

)
= h

(
∥y∥2

2 −ny2
⌊n/2⌋+1

)
. (12)

7 Intuitively, by changing all signs if necessary, we force the minority sign among the coordinates of x to
be positive unless their contribution to the norm of x is too small.
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Suppose that α > β = ⌊n/2⌋. It follows from
∑n

i=1 xi = 0 that
∑n

i=α+1 |xi| = ∥y∥1 ≥
(β + 1)yβ+1. By Cauchy-Schwarz, this yields ny2

β+1/4 ≤
∑n

i=α+1 x2
i = 1− ∥y∥2

2, and by (12),∑
(i,j)∈E

∣∣ y2
i − y2

j

∣∣ ≥ (1− 5c)h = ch. If α = β, then y⌊n/2⌋+1 = 0 and
∑

(i,j)∈E

∣∣ y2
i − y2

j

∣∣ ≥
h∥y∥2

2 > ch. Applying (11) shows that
∑

(i,j)∈E(xi−xj)2 ≥ (ch)2/2d, which gives us the first
inequality of the lemma. The second one follows from the fact that the interval [a, b] enclosing
the vertex positions contains 0. By Cauchy-Schwarz, 1 = ∥x∥2

2 ≥ a2 +b2 ≥ 1
2 (b+ |a|)2 = ∆2/2,

and the proof is complete. ◀

Let G≤t be the graph obtained by adding all the edges from G1, . . . , Gt. Let mt ≤ m

be the number of connected components in Gt, and let ∆t,i denote the diameter of the
i-th component of Gt (labeled in any order). Let t1, . . . , tc be the times t > 1 at which
the addition of Gt reduces the number of components in G≤t−1. If no such times exist, set
c = tc = 1.

▶ Lemma 10. If G≤tc
is connected, then

∑
t≤tc

∑mt

i=1 ∆2
t,i ≥ 1

2dmn∥x− x̂ ∥2
q .

Proof. At any time tk > 1, the drop dk in the number of components can be achieved by dk

(or fewer) components in Gtk
. We collect the intervals spanned by these components into a

set F , to which we add the intervals for the components of G1; thus |F | < 2m. A simple
convexity argument (omitted) shows that the union of the intervals in F coincides with the
interval [a, b] enclosing the n vertices at time 1; so the lengths l1, . . . , l|F | of the intervals in F

sum up to at least b−a. By Cauchy-Schwarz,
∑

t≤tc

∑mt

i=1 ∆2
t,i ≥

∑|F |
i=1 l2

i ≥ (b−a)2/(2m−1).
The lemma follows from ∥x− x̂ ∥2

q ≤ ∥q∥1(b− a)2 ≤ dn(b− a)2.
If we define the variant of the Dirichlet form, Dt =

∑
i maxj: (i,j)∈Et

(
xi(t)− xj(t)

)2, we
know from [15] that, for any x = x(1) ∈ Rn,

∥Pt x∥2
q ≤ ∥x∥2

q −
Dt

2 .

It follows that ∥x∥2
q − ∥x(tc + 1)∥2

q ≥ 1
2
∑

t≤tc
Dt ≥ 1

d

∑
t≤tc

∑
(i,j)∈Et

(
xi(t) − xj(t)

)2.
Assuming that G≤tc is connected, Lemmas 9 and 10 imply that

∥x∥2
q − ∥x(tc + 1)∥2

q ≥
bh2

2d2

∑
t≤tc

mt∑
i=1

∆2
t,i ≥

bh2

4d3mn
∥x− x̂ ∥2

q . (13)

Let A(n, m) be the maximum s-energy of an expS with at most n vertices and m connected
components at any time, subject to the initial condition ∥x− x̂ ∥2

q ≤ 1 and, without loss of
generality, x̂ = 0. By (13), ∥x(t)∥2

q shrinks by at least a factor of α := 1− bh2/(4d3mn) by
time tc + 1. By scaling, we see that the s-energy expanded after tc is at most αs/2A(n, m).
While t < tc (or if G≤tc

is not connected), the system can be decoupled into two expS
with fewer than m components. Since ∥x∥q = 1, the diameter of the system is at most
2 maxi |xi| ≤ 2/

√
d; therefore A(n, m) ≤ αs/2A(n, m) + 2A(n, m−1) + m

(
2/
√

d
)s. It follows

that

A(n, m) ≤ 2
1− αs/2

(
A(n, m− 1) + m

)
. (14)

If m = 1 then tc = 1, so we can bypass Lemma 10 and its reliance on the diameter. Instead,
we use the connectedness of the graphs to derive from Lemma 9:

∥x∥2
q − ∥x(2)∥2

q ≥
1
d

∑
(i,j)∈E1

(xi − xj)2 ≥ bh2

d3 ∥x− x̂∥2
q .

Setting α = 1− bh2/d3 proves the first part of Theorem 8. The second part follows from (14)
and the boundary case m = 1 we just derived. ◀
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2.3 Random averaging systems

It is assumed here that each graph Gt is picked independently, uniformly from the set of
simple (d − 1)-regular graphs with n vertices, with d > 3 [58]. (We use d − 1 because d

must account for the self-loops.) The system is a special case of a revS, so we use the same
notation. The stochastic matrix Pt for Gt is 1

d Mt, where Mt is a random symmetric 0/1
matrix with a positive diagonal and all row sums equal to d; we have q = d1. We define the
s-energy Eran

s for systems with unit variance ∥x− x̂ ∥2
q = 1, where x̂ = 1

d ⟨x, 1⟩.

▶ Theorem 11. E E ran
s ≤ c/s, for any s ∈ (0, 1], where c is an absolute constant.

The term absolute refers to the fact that c is independent of the problem’s size and
parameters; we assume that d is fixed. Let xi, yi be the positions of agent i at step t and
t + 1 respectively. As usual, we may place the center of gravity x̂ at the origin at time 1,
where it will remain forever; that is,

∑n
i=1 xi = 0.

▶ Lemma 12. E
∑n

i=1 y2
i = (1− b)

∑n
i=1 x2

i , where b = (d−1)n
d(n−1) .

Proof. Write δij = xi − xj and Mt = (mij). With all sums extending from 1 to n, we have

∑
i

x2
i −
∑

i

y2
i =

∑
i

x2
i −
∑

i

(
xi − 1

d

∑
j

mijδij

)2

= 2
d

∑
i,j

mijxiδij − 1
d2

∑
i,j,k

mijmikδijδik

= 1
d

∑
i,j

mijδ2
ij − 1

2d2

∑
i,j,k

mijmik(δ2
ij + δ2

ik − δ2
jk) = 1

2d2

∑
i,j,k:i̸=j

mikmjkδ2
ij ,

(15)

with the last equality following from
∑n

k=1 mik = d and δii = 0. By symmetry, Pr [mij =
1] = (d− 1)/(n− 1) and Pr [mijmik = 1] =

(
d−1

2
)
/
(

n−1
2
)
, for any pairwise distinct i, j, k. For

any i ̸= j, we have
∑

k mikmjk = 2mij +
∑

k:k ̸=i,k ̸=j mikmjk; hence

∑
k

E [mikmjk] = 2E [mij ] +
∑

k:k ̸=i,k ̸=j

E [mikmjk] = d(d− 1)
n− 1 .

Since
∑

i xi = 0, we have
∑

i,j:i ̸=j δ2
ij = 2n

∑
i x2

i . By (15), it follows that

E
n∑

i=1
y2

i =
∑

i

x2
i −

1
2d2

∑
i,j,k:i ̸=j

δ2
ij E [mikmjk] =

∑
i

x2
i −

d− 1
2d(n− 1)

∑
i,j:i̸=j

δ2
ij .

Markov’s inequality tells us that
∑

i y2
i ≥ (1− b/3)

∑
i x2

i holds with probability at most
E
[∑

i y2
i

] / [
(1 − b/3)

∑
i x2

i

]
≤ 1 − b/2. Since ∥x∥q = 1, the diameter of the system is at

most 2/
√

d; by the usual scaling law, it follows that

E E ran
s ≤ 2s EK + b

2
(
1− b/3

)s/2 E E ran
s +

(
1− b/2

)
E E ran

s ,

where K is the number of connected components in G1. It is known [58] that, for d > 3, the
probability that the graph is not connected is O(n3−d); hence EK = O(1). Since b ≥ 1/2,
we conclude that E E ran

s = O
(
1/
(
1− (5/6)s/2)) = O(1/s); hence Theorem 11. ◀
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3 The Overton Window Attractor

Following in a long line of opinion dynamics models [9, 20, 21, 28, 31], we consider a
collection of n agents, each one holding an opinion vector xi(t) ∈ [0, 1]d at time t; we
denote by x(t) the n-by-d matrix whose i-th row corresponds to xi(t). Given a stochastic
matrix Pt, the agents update their opinion vectors at time t > 0 according to the evolution
equation x(t + 1) = Pt x(t). We assume that the last k agents n − k + 1, . . . , n are fixed
in the sense that xi(t) remains constant at all times t > 0. Algebraically, the square
block of Pt corresponding to the k fixed agents is set to the identity matrix Ik. The fixed
agents can influence the mobile ones, but not the other way around. The presence of fixed
agents (also called “stubborn,” “forceful” or “zealots” in the literature) has been extensively
studied [2, 1, 30, 43, 44, 53, 60, 59].

In the context of social networks, the fixed sources may consist of venues with low user
influence, such as news outlets, wiki pages, influencers, TV channels, political campaign
sites, etc. [16, 29, 35, 38, 49, 56, 61]. We how how the mobile agents migrate to the convex
hull of the fixed agents; crucially, we bound the rate of attraction. This provides both a
quantitative illustration of the famous Overton window phenomenon as well as a theoretical
explanation for why the window acts as an attracting manifold [4, 6, 19, 27, 46]. Interestingly,
the emergence of a global attractor does not imply convergence (ie, fixed-point attraction).
The mobile agents might still fluctuate widely in perpetuity. The point is that they will
always do so within the confines of the global attractor.

To reflect the stochasticity inherent in the choice of sources visited by a user on a given day,
we adopt a classic “planted” model: Fix a connected n-vertex graph G and two parameters
p ∈ (0, 1] and ρ ∈ (0, 1/2]. At each time t > 0, Gt is defined by picking every edge of G with
probability at least p. (No independence is required and n self-loops are included.) We define
an n-by-n stochastic matrix Pt by setting every entry to 0 and updating it as follows:
1. For i > n− k, (Pt)ii = 1.
2. For i ≤ n− k, set (Pt)ij ≥ ρ for any j such that (i, j) is an edge of Gt.
Note that the update is highly nondeterministic. The only two conditions required are that
(i) nonzero entries be at least ρ and (ii) each row sum up to 1.

▶ Theorem 13. For any δ, ε > 0, with probability at least 1− δ, all of the agents fall within
distance ε of the convex hull of the fixed agents after a number of steps at most

1
pδ

(
c

ρ
log dn

ε

)2(n−1)

for constant c > 0.

Proof. Let Qt be the h-by-h upper-left submatrix of Pt, where h = n − k. Note that
Q≤t := Qt · · ·Q1 coincides with the h-by-h upper-left submatrix P≤t. Thus, to show that
the mobile agents are attracted to the convex hull of the fixed ones, it suffices to prove that
Q≤t tends to 0h×h. To do that, we create an agreement system consisting of h + 1 agents
embedded in [0, 1] and evolving as y(t + 1) = At y(t), where: y(t) ∈ Rh+1; yh+1(1) = 0;
v = (Ih −Qt)1h; and

At =
(

Qt v

0T
h 1

)
.

The system lacks the requisite zero-symmetry to qualify as a genS, so we use symmetriza-
tion [12] by duplicating the h mobile agents and initializing the embedding of the two copies
as mirror-image reflections about the origin. The new evolution matrix is now ν-by-ν, where
ν = 2h + 1:
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Bt =

 Qt v 0h×h

u 1− 2∥u∥1 u

0h×h v Qt

 .

We define the row vector u ∈ Rh by setting its i-th coordinate to ρ if vi > 0 and 0 otherwise.
We require that 1 − 2∥u∥1 ≥ ρ; hence ρ ≤ 1/(2dt + 1), where dt is the number of mobile
agents (among the h of them) adjacent in Gt to at least one fixed agent. This condition is
easily satisfied by setting ρ ≤ 1/2n. The evolution follows the update: z(t + 1) = Bt z(t),
where z(t) ∈ [−1, 1]ν and zh+1(1) = 0.

Let G∗ be the augmented ν-vertex graph formed from G and let G∗
t be its subgraph

selected at time t. Note that, via z(t), these graphs are embedded in [−1, 1]ν . If ∆t denotes
the length of the longest edge of G∗ at time t and Tα is the last time at which the diameter of
the system is at least α, then ∆t ≥ α/ν for all t ≤ Tα because G∗ is connected. The longest
edge in G∗ (with ties broken alphabetically) appears in G∗

t with probability at least p. Fix
s ∈ (0, 1] and define the random variable χt to be ∆s

t if the longest edge of G at time t is in
Gt and 0 otherwise. By [13], the maximum s-energy satisfies Es ≤ 2s(3/ρs)ν−1; hence

ETα ≤
( ν

α

)s

E
∑
t≥0

∆s
t ≤

1
p

( ν

α

)s

E
∑
t≥0

χt ≤
1
p

( ν

α

)s

Es ≤
2
p

( ν

α

)s
(

3
ρs

)ν−1
.

Minimizing the right-hand side over all s ∈ (0, 1] yields

ETα ≤
4
p

(
3
ρ

log 2n− 1
α

)2(n−1)
.

By Markov’s inequality, Pr
[

Tα ≥ tδ

]
≤ δ, where

tδ := 4
pδ

(
3
ρ

log 2n− 1
α

)2(n−1)
. (16)

This implies that ∥Q≤t 1h∥∞ ≤ α, for all t > tδ, with probability at least 1 − δ. In other
words, for any such t, it holds that, for i ≤ h,

q :=
h∑

j=1
(P≤t)ij =

h∑
j=1

(Q≤t)ij ≤ α.

Trivially, xi(t + 1) = qu + (1− q)v, where

u = 1
q

h∑
j=1

(P≤t)ijxj(1) and v = 1
1− q

n∑
j=h+1

(P≤t)ijxj(1).

Observing that v lies in the convex hull of the fixed agents, we form the difference xi(t+1)−v =
q(u−v) and note that the distance from xi(t + 1) to the hull is bounded by q∥u−v∥2 ≤ α

√
d.

Setting α = ε/
√

d completes the proof. ◀

We can extend this result so as to relate convergence to connectivity. We now produce
the random graph Gt from fixed connected G as we did above, but if this results in a graph
with more than m connected components, we add random edges picked uniformly from G

until the number of components drops to m. Using Theorem 2 in the proof above leads to a
more refined bound:

SAND 2023
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▶ Theorem 14. For any δ, ε > 0, with probability at least 1− δ, all of the agents fall within
distance ε of the convex hull of the fixed agents in time bounded by

1
pδ

(
1
ρ

)2(n−1)(
cmn log dn

ε

)2m−1
,

for constant c > 0. This assumes that no graph used in the process has more than m connected
components.

Proof. By Theorem 2, we know that Egen
m,s ≤ (b/s)m(1/ρ)n−1, for any s ∈ (0, 1], where

b = O(mn). The previous proof leads us to update (16) into:

tδ := 1
pδ

(
1
ρ

)2(n−1) (
cmn log n

α

)2m−1
,

for constant c > 0, from which the theorem follows. ◀
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