JOURNAL OF COMPUTER AND SYSTEM SCIENCES 32, 156-182 (1986)

Reporting and Counting Segment Intersections
BERNARD CHAZELLE*

Department of Computer Science, Brown University,
Providence, Rhode Island 02912

Received September 11, 1984; revised April 28, 1985

This paper partly settles the following question: Is ir possible to compute all k intersections
between n arbitrary line segments in time linear in k? We describe an algorithm for this
problem whose running time is O(n(log? n/log log n) + k). This is the first solution with a time
bound linear in the size of the output. To obtain this result we turn away from traditional,
sweep-line-based schemes. Instead, we introduce a new hierarchical strategy for dealing with
segments without reducing the dimensionality of the problem. This framework is also used to
answer related questions. New results include an O(n'%°%) time algorithm for counting intersec-
tions (as opposed to reporting each of them explicitly) and an optimal algorithm for com-
puting the intersections of a line arrangement with a query segment. Using duality arguments
we also present an improved algorithm for a point enclosure problem. © 1986 Academic Press,

Inc.

1. INTRODUCTION

Computing the intersection of arbitrary line segments is one of the most fun-
damental tasks of computational gecometry. For this reason and because of practical
motivation, a considerable amount of effort has been devoted to determining the
complexity of this problem. Until now, all efficient algorithms known have had a
running time of the form O(f(n)+ k log n), where f is a subquadratic function of n.
This has left open the basic question: Is it possible to remove the factor log » and
thus make the algorithm linear in the output size? Besides its practical importance,
this problem also addresses a key issue, i.e., the relationship between intersecting
and sorting. To understand this, one must know that a// efficient methods
previously discovered involve sorting the intersections along a given direction. Con-
sequently, deciding whether intersecting arbitrary segments necessarily entails
sorting the intersections has been one of the outstanding questions in geometric
complexity.

We settle this question by presenting the first algorithm to compute all k intersec-
tions among n arbitrary segments in time O(f(n)+k). We achieve f(n)=

* This research was partly supported by by NSF Grants MCS 83-03925 and the Office of Naval
Research and the Defense Advanced Research Projects Agency under contract N00014-83-K-0146 and
ARPA Order 4786.

156

0022-0000/86 $3.00

Copyright & 1986 by Academic Press, Inc.
All rights of reproduction in any form reserved.

SEGMENT INTERSECTIONS 157

O(n log’ nflog log n), and show that the algorithm is the most efficient to date for
cach value of . At the basis of our method, we find a new scheme for computing all
k intersections between a fixed arrangement of » lines and a query segment in time
O(k +logn). We also apply the hierarchical approach that underlies the main
algorithm to other related problems. In particular we present an O(n'%®) time
algorithm for counting (rather than computing) all intersections between n
segments, which constitutes the first subquadratic method known for this problem.
We also give an application of our main technique to a point enclosure problem.

The remainder of this paper is organized as follows: in the next section we recall
the main results known previously and we outline a preliminary version of the
reporting algorithm, delaying the final version till the next section for the sake of
clarity. In Section 4, we turn our attention to the counting problem, and finally give
concluding remarks in Section 5.

2. REPORTING INTERSECTIONS: A FIRST ATTEMPT

We consider the following problem: Given a set S of n line segments in the plane,
determine all k intersecting pairs exactly once.

Previous work on this problem is abundant, so for the sake of brevity we will
only mention the most efficient algorithms found so far. A partial solution was first
given by Shamos and Hoey [12] with an O(n) space, O(n log n) time algorithm for
determining whether or not S contains any intersecting pair. The sweep-line techni-
que used in [12] was later extended by Bentley and Ottmann, who gave an
O(n + k) space, O((n+ k) log n) time algorithm for reporting all & intersections in S
[1]. The storage requirement of the algorithm was subsequently reduced to O(#n)
by Brown [3]. An O(n+ k) space, O((n+ k) log n) time algorithm by Nievergelt
and Preparata also appeared in [11]. In [9] Mairson and Stolfi give an O(n)
space, O(nlogn+k) time algorithm for merging two sets of non-intersecting
segments (k = #intersections). Their algorithm can be used as the merge step of a
divide-and-conquer algorithm for the general problem, but this leads to the
(previously achieved) O((n+k) logn) time complexity, and thus suggests no
solution for breaking the klogn barrier. For other work dealing with restricted
cases, see also [1, 11].

The algorithm which we propose involves breaking up the original problem into
two easier sub-problems, both of which deal intimately with the following geometric
figure, called a hammock: consider the arrangement formed by » arbitrary (infinite)
lines in the plane, and clip it along two vertical lines L and R. The planar graph H
formed between L and R is called a hammock (Fig. 2). It will be essential in the
following to be able to

1. construct a hammock in optimal time, and

2. compute the intersections between a hammock and a query segment in
optimal time.

158 BERNARD CHAZELLE

1. Weaving the Hammock

Simply computing all k vertices of H can be casily done in O(nlog n+ k) time
with a procedure similar to insertion-sort. To do so, sort the left endpoints, and for
each of them in ascending order, insert the corresponding right endpoint in
descending order. Setting up the graph H with all its adjacencies, however, is more
difficult. We represent H by means of adjacency lists, i.e., we associate with each
vertex a list of its adjacent vertices in, say, clockwise order. Since in general the
degree of each vertex is 3 or 4, this representation allows us to traverse any face of
the graph in time proportional to its number of vertices in both the clockwise and
counterclockwise directions. To handle singularities, we must convert the
adjacency-list representation into the doubly-connected-edge-list representation [10]
or the quad-edge structure [7]. More simply, we can use an edge-based represen-
tation, whereby each edge e is associated with a 4-field vector containing the names
of the four edges sharing an adjacent face with e (Fig. 1). This representation suits
our needs for the following reason: from any edge it is possible to start walking
clockwise (or counterclockwise, for that matter) along either of its two adjacent
faces, and the walk involves a constant number of operations at each step. For con-
sistency we consider the two unbounded upper (resp.lower) edges of H to be
adjacent to each other.

Without loss of generality, assume that L lies to the left of R. Let S= {s,,..., 5, }
be the n segments joining L and R and let /; denote the left endpoint of s,. Assume
that the sequence /,...., [, is vertically ascending; we proceed to insert into H each
segment s,...,, 5, in turn. Let s, be the segment currently considered, and let ¢ denote
the edge of H that contains /. We traverse the (unbounded) face adjacent to e,
clockwise, until we reach an edge ¢’ that intersects s,. If this edge lies in R, s, does
not intersect any segment in {s,...,s;,_}, so we can update H in constant time.
Otherwise, we restart the clockwise traversal from e, now with respect to the other
face adjacent to e'. We iterate on this process until we reach an edge that lies in R
(Fig. 2).

LEMMA 1. [t is possible to compute the planar graph formed by n segments joining
two parallel lines in time O(nlog n+ k), where k is the number of intersecting pairs of

FiGuRre 1

SEGMENT INTERSECTIONS 159

FIGURE 2

fefi-hangin
oing — L-right—
onchored

FIGURE 3

160 BERNARD CHAZELLE

segments. If the sorted order of the endpoints on either of the two lines is already
available, then the graph can be computed in O(n+ k) time.

Proof. Tt suffices to show that inserting s; into H requires O(k;) operations,
where k; is the number of edges in H that intersect s,. Let ¢ ,..., e, be the edges of H
(not in L, R, or s;) that are visited during the computation, and let s(;) be the
segment of S supporting ¢;. We will show that p = O(k;), which is sufficient for our
purposes (no two edges on R are ever traversed consecutively). Since /; is the
highest point on L so far, all the segments s(1),..., s(p) intersect s,. Let f be any of
the faces in H, above and adjacent to s;, and let g be the unique edge of f that lies
on s,. Any edge e; adjacent to f'is said to be anchored if it is adjacent to s;, or lefi-
hanging (resp. right-hanging) if it is not adjacent to s, but s(;) intersects s, to the left
(resp. right) of g (Fig.3). Note that the notions of left- and right-hanging are
mutually exclusive. We can show that the total number of left-hanging edges is
dominated by k.. Let ¢; be the anchored edge that forms the widest interior angle 0
with s,. Since (/) cannot contribute any left-hanging edge, removing s(j) from H
will at most destroy one left-hanging edge (by merging a left-hanging edge with an
anchored or left-hanging edge). By induction, we thus prove that the number of
left-hanging edges cannot exceed k,. The same reasoning applied to right-hanging
edges completes the proof. |

II. Walking through the Hammock

We consider now the problem of computing all ¢ intersections between H and a
query segment ¢ that lies within the vertical slab (L, R). The method involves
locating the face of H that contains one of the endpoints of ¢ and then walking
through H toward the other endpoint. To overcome a number of difficulties soon to
be apparent, we augment the representation of H as follows:

1. Preprocess H so as to allow for efficient planar point location. Since it is
crucial to achieve linear preprocessing time, we use the methods in [8, or 4]. These
methods allow us to locate a query point in optimal O(log n) time; also given that
we can easily triangulate each face of H (since they are convex) and at the same
time keep a clockwise-order list of the edges adjacent to each vertex, the preprocess-
ing can be done in O(n+ k) time. We assume the existence of face-lists giving the
edges surrounding each face of H in clockwise order. Conversely, we assume that
each edge is associated with two pointers, pointing to the name of each of its
adjacent faces. We can dispense with one of these pointers when dealing with edges
on LorR.

2. Attach to each face a pointer to its rightmost vertex, ie. the vertex with
maximum x-coordinate (resolve ties arbitrarily). Do the same with respect to its
leftmost vertex.

This preprocessing can be accomplished in O{|H|) time and space, once H has
been computed as described earlier—throughout this paper, we will use the

161

SEGMENT INTERSECTIONS

FIGURE 4

FIGURE 5

162 BERNARD CHAZELLE

notation | X| to designate the size of X, i.e., the size of its representation, whether X
is a set or a graph. Let A4 (resp. B) be the left (resp. right) endpoint of ¢ (if ¢ is ver-
tical, then 4 is its lower endpoint), and let ¢,,..,, ¢, be the edges intersected by g, in
order from A4 to B. Let f, (resp. f3) designate the face containing 4 (resp. B). It is
tempting to retrieve the intersections of ¢ by determining either f, or fp, and then
walking around each face which g intersects. Unfortunately, this may be highly
inefficient when traversing faces with many vertices (Fig.4). We get around these
difficulties by jumping directly to the rightmost vertex of each new face encountered
(Fig. 5). Let e, be the last intersecting edge detected so far, and let f be the face
adjacent to ¢, that we are about to traverse next. Let v be the rightmost vertex of f,
and assume without loss of generality that v lies above ¢ (i.e., above the line sup-
porting ¢). The main point to consider is whether or not the next segment adjacent
to v intersects ¢. If this is the case, we say that the hanging-condition is satisfied for f.
More precisely, let w be the next vertex after v in clockwise order around f. We say
that the hanging-condition is satisfied for f (with respect to ¢) if the segment of S
that supports vw intersects ¢ (note that if v lies below ¢, w is defined as the counter-
clockwise neighbor of v).

If the hanging-condition is satisfied for all faces (# f,) intersecting g, then, after
locating the faces f, and fp, we can start the traversal at the rightmost vertex of f,
and retrieve the name of the face adjacent to ¢; that does not contain 4. With this
information, we can find the rightmost vertex of this face in constant time. Next we
traverse the face from there, until we find e,, at which point we simply iterate on
this process. Note that the traversal proceeds clockwise (resp. counterclockwise) if
the rightmost vertex just found is above (resp. below) ¢. This process will terminate
when we reach the edge e,, which is adjacent to f,. Since f; has been previously
determined, the termination condition can be checked in constant time at every
edge e; newly encountered (Fig. 5).

We next show that when the hanging-condition is satisfied for all the faces traver-
sed (# f3), the procedure which we just described allows us to determine ¢,,..., €, in
O(log n+ 1) time. First of all, it is clear that all the edges visited during the com-
putation have their supporting segment intersect g. Let £ be the subset of these
edges that lie totally or partially above ¢g. We can show that the number of these
edges, |El, is O(t), a result which by symmetry will also apply to the edges below.
Borrowing terminology from Lemma 1, we see that the edges of E are either
anchored or right-hanging. It directly follows from the previous lemma that |E] <21

It is clear that if B lies on the line R, the hanging-condition is always satisfied, so
we can apply the technique just described. Furthermore, notice that we actually do
not need to perform a planar point location for B; instead, we pursue the traversals
through f3, ie., until we reach the line R—the same can be said, of course, if the
query segment is incident to L instead of R.

OBSERVATION 1. Given a hammock H with O(n + k) vertices and an arbitrary
query segment g = AB with B incident to one of the bounding lines, it is possible to
report all ¢ intersections between ¢ and the segments of H in time O(logn+1).

SEGMENT INTERSECTIONS 163

Most important, the computation does not involve any point location with respect
to B.

We are now ready to drop the hanging-condition and give an algorithm for the
general problem. We assume that both f, and f; have been already located and
that, without loss of generality, f, # f5. Let ¢, be the last edge detected (i < t) before
the hanging-condition is found to fail. Let f be the face to the right of ¢; and let v be
its rightmost vertex, with w the next vertex clockwise (Fig.6). Without loss of
generality, we can assume that v lies above ¢. Since i < ¢, the segment supporting vw
does not intersect ¢, yet some edge of f further in clockwise order does cross ¢
{(from above to below). The algorithm will stop the traversal upon encountering v
and will restart counterclockwise, from the rightmost vertex of fj, detecting e,,
€,_ 1, €; . in this order, as explained later on. The criterion for termination will
be easy to test: simply check whether the last intersecting edge found, e;, is adjacent
to f.

The walk proceeds in quite the same way as before. After determining e;, we
retrieve the rightmost vertex, v;, of the face f; adjacent to e; (to the left), and
proceed around f; in counterclockwise order from v,, until we cross g. This
corresponds precisely to the edge e, ;, at which point we simply iterate on the
process. In the course of proving the correctness of this algorithm, we will show
that when v lies above g, all the traversing takes place above g, therefore we never
have to traverse e; twice. Note that, of course, this traversing should proceed always

FIGURE 6

164 BERNARD CHAZELLE

clockwise instead of always counterclockwise, should v lie below ¢q. This case is
mirror-image of the other, so we will not elaborate on it any further.

OBSERVATION 2. The procedure described above reports all the edges e,, ¢,_ ...,
€;+1, 1n O(1 —1i) steps.

Proof. We assume throughout this proof that v lies above ¢q. The correctness of
the method is obvious, so we directly turn to a study of its performance. We will
show that all the edges visited belong to segments that intersect ¢, and that all the
traversals take place above g. The latter point will imply that in going from v, to
e; |, we never have to visit e; again. For consistency, we define f,,, as fj. The
proceduse traverses each face f; (i+ 1 < j< ¢+ 1) counterclockwise, from the vertex
v; to the edge e, ;. We mimic the traversal of the procedure backwards. Let
Wy,.., w, be the vertices visited during the traversal, in clockwise order, with
wywy,=e; , and w,=v,. For any vertex w, visited in the course of the traversal, we
define R, as the ray emanating from w, and passing through w, _,w,. We will show
by induction that for /=2,..., p:

The vertex w, lies above g¢.
2. The ray R, is left-oriented, i.e., lies entirely to the left of w,.
The segment s(/) of S supporting w,_, w, intersects g.

FIGURE 7

SEGMENT INTERSECTIONS 165

Let M (resp. P) be the intersection of the lines passing through g and e, ,
(resp. vw) (Fig. 7). The basis (/=2) is obviously true, except perhaps for property 2.
Assume that R, is not left-oriented. This implies that the segment s(2) intersects
Mw, hence the interior of f, which leads to a contradiction. Let us now consider the
inductive case (2</< p) and assume that all three properties are true for /—1.
Because of the convexity of /;, R, differs from R, , by a clockwise turn. Since on
the other hand the sequence w, ,, w, is directed clockwise toward the rightmost
vertex of £}, the ray R, has to be left-oriented, which establishes property 2. Assume
now that w, lies below g¢; it then follows from property 2 that the ray R,, hence s(/),
intersect Mw, which for reasons already mentioned, is a contradiction. This proves
property 1.

To establish property 3, let’s define / as the intersection of s(/—1) and ¢. Since
w, , lies above ¢, it must lie in the triangle MwP. We also know that the ray R, is
left-oriented, therefore it must intersect either MP or Mw. The latter case is
obviously ruled out since Mw lies totally inside a face of H. It then follows that R,,
and hence s(/), intersect MP. From the convexity of f;, this intersection lies
necessarily to the left of 7 with respect to g, therefore it lies on the segment M/ This
shows that R,, hence s(/), intersect ¢, which completes the inductive proof. This also
justifies the prescription always to turn in the same direction, i.e., counterclockwise
(resp. clockwise) if v lies above (resp. below) g. We have thus proven that all the
edges visited lie on segments of S that intersect ¢. This shows that only left-hanging
and anchored edges will ever be ®aversed on the way from e, to e,, ,. Therefore,
the technique of Lemma 1 once again applies directly, which completes the
proof. {

Putting previous results together, we conclude:

LEMMA 2. Given a hammock H with O(n+k) vertices and an arbitrary query
segment g, it is possible to report all t intersections between g and the segments of H
n time O(logn+t). This assumes that the hammock has been preprocessed
appropriately (in O(nlog n+ k) time and O(n + k) space).

Note that the procedure described above returns the intersections with ¢ in
sorted order. It is possible to speed up the algorithm by a constant factor if we do
not require this feature. This involves taking shortcuts as soon as a segment inter-
secting ¢ is found. The improvement is not significant enough to be described here,
however.

1l The General Reporting Algorithm

Lemmas 1 and 2 can be combined to form the inner loop of an algorithm for
solving the general reporting problem. Let S={s,,..,s,} be n arbitrarily oriented
segments in the plane. We define a segment tree [2] over the intervals formed by
projecting the segments s,,..., s, on the x-axis. Let L be the smallest interval that
covers all the projections. The set S induces a partition of L into at most 2n— 1
intervals, over which we define a complete binary tree 7. For each node v of T, let

166 BERNARD CHAZELLE

FIGURE 8

I(v) be the interval formed by the union of the intervals associated with the leaves
of the subtree rooted at v; let S(v) be the vertical slab with base /(v). We say that an
interval J on the x-axis covers a node v if I(v) = J and I(z) ¢ J, where z is the father
of v. We endow each node v of T with a pointer to a list, L(v), that contains the
indices of the intervals of S that cover v (Fig. 8). The tree T induces a decom-
position of each segment in S into O(log n) canonical segments. For simplicity, we
will treat the elements of L(v) as canonical segments, i.e., physical subsegments
from S, rather than pointers to their respective supporting segments in S. The key
observation is that the canonical segments of L(v) form a hammock, denoted H(v).
We can show that the only intersections to be reported are

1. the vertices of the hammocks not on the boundary, and

2. the intersections between H(v) and the segments of S which happen to
have an endpoint within S(v).

We use Lemmas 1 and 2 to handle the first and second cases, respectively. Unfor-
tunately, there are still a number of difficulties to overcome, the major one being
the excessive cost of computing the full-fledged segment tree at once. Instead, we
proceed bottom-up (for example) and, most important, on a level-by-level basis. Let
vy, U, be the nodes of T (in order from left to right) at level . We compute the
lists L(v,),..., L(v,) by considering each segment s, in S and examining the search
path in T corresponding to its two endpoints. This allows us to determine in
O(log n) time whether s, contributes any canonical part to level 4. If this is the case,
we add the index j into the (one or two) corresponding lists. We make no
assumption on the order in which the elements of L(v;) appear. Next, we compute
the hammocks H(v,),..., H(v,) by applying the algorithm of Lemma 1. The entire
computation requires O(nlogn + 3, ., , |H(v;)|) time, and O(n+ 3, ;< , 1H(v;))

SEGMENT INTERSECTIONS 167

space. A hammock has two kinds of vertices: the boundary-vertices that lie on the
slab-lines, that is, the vertical boundary lines, and the intersection-vertices that are
intersections between segments of S. Let £,(4) denote the total number of intersec-
tion-vertices in all the hammocks at level A. Since any segment of S can contribute
at most two canonical segments at any level, we have

Y H@)I=0(n+k,(1)).

1<i<p

Next we form each set W(v;), defined as the subset of S consisting of the
segments that have at least one endpoint in the slab S(v,), yet do not contribute any
entry to L(v;). The idea is to compute the intersections between H(v;,) and the
segments of W(v;). Once again we can compute W(v,),.., W(v,) in O(nlogn) time
with a simple sort on the x-values of the endpoints. Consider the number of inter-
sections between the (non-boundary) edges of H(v;) and the segments of W(v,), and
let k(1) designate the sum of these numbers for i=1,..., p. Applying the algorithm
of Lemma 2, we can compute all these intersections in time O(k, (A)+3 <ic)
|W(v,)] x log n).

Iterating on the process outlined above for each level 1 in T and outputting the
ky(A)+ k,(4) relevant intersections at every stage of the process eventually gives us
all £ intersections among segments in S exactly once. To see this, let / be an inter-
section between two segments s and ¢ in S. Let s* and 7* be the canonical segments
of s and ¢, respectively, that contain . If s* and ¢* are generated at the same node v
of T, i.e., s*, t* € L(v), their intersection will be detected while computing the ham-
mock H(v). Otherwise, assuming that s* is generated at node v and ¢* at node w, it
is easy to see that one node, say w, is a descendant of the other. It then follows that
t must have an endpoint in S(v), therefore ¢ will appear in W(v), which shows that 7
will be discovered when computing the intersections between H{v) and W{(v). The
uniqueness of each intersection report follows directly. Of course, extra care must
be given to degenerate cases, arising for example when segments have coinciding
endpoints, or more than two segments intersect in one point. These special cases
can all be handled in a uniform manner without changing the asymptotic com-
plexity of the algorithm—we omit the details. Summing up all the quantities k,(4)
and k,(4) for all levels A in 7, we find

OBSERVATION 3. le,«_sl”logzzﬂ (ky(A)Y+ k. (A)=k.

After an initial O(#n) space, O(n log n) time preprocessing, the algorithm iterates
for each level on a two-step procedure: for each node v,..., v, on the current level,
call the following functions.

t. HAMCOMP (v,): Compute W(v;} and H(v;), and preprocess the latter for
planar point location.

2. INTERCOMP (v;): Compute the intersections between H(v;) and W(v;).

168 BERNARD CHAZELLE

TaeoREM 1 (Preliminary result). Given a set S of n arbitrary segments in the
plane, it is possible to report all k intersecting pairs exactly once, in O(nlog” n+k)
time and O(n + k) space.

Proof. From the fact that 3, .., IW(v)| <2n. |

Note that the space requirement should be in general significantly less than
O(n + k). Indeed, at each level, we only need one hammock at a time. The storage
needed is therefore O(n + k*), where k* is the maximum size of any hammock com-
puted.

3. AN IMPROVED ALGORITHM VIA COST MATCHING

We can show that it is possible to save a factor of “log log #»” in the running time
of the algorithm by carefully balancing the costs of its various components. The
new method is based on a redefinition of segment trees over a representation of
segment coordinates in base [log, n'|. To begin with, we must point out a dis-
crepancy in the performance of the previous algorithm. The method described
earlier rests essentially on two main components, HAMCOMP and INTERCOMP,
called at each level of the tree. Both parts require O(n+ K) space and
O(nlog n+ K) time per level. In the following, for simplicity, the term K appearing
in any expression will be used in a generic sense to designate the number of inter-
sections either reported or simply used by the procedure to whose complexity the
expression refers. In this case, for example, we have K=k ,(1)+ k,,(1). The apparent
evenness of cost between HAMCOMP and INTERCOMP is deceiving. Indeed, we
will show that the complexity of HAMCOMP can be made O(n + K), at each level,
with relatively little effort. Unfortunately, INTERCOMP is more recalcitrant, and
only a fairly heavy treatment will succeed in cutting down its complexity. The
development of this section will proceed in four parts. To begin with, we show how
to speed up the computation of HAMCOMP. In the second part, we introduce a
new type of hammock, and in the third we show how to use it in order to improve
the performance of INTERCOMP. In the fourth part we analyze the complexity
of the new algorithm; to find out that the space requirement falls slightly short of
our expectations. We fix this minor discrepancy by resorting to a more adaptive
technique.

3.1. Speeding Up HAMCOMP

LEMMA 3. After O(n log n) time preprocessing it is possible to compute the sets
L(v,), W(v,), for all the nodes v,,..., v, at level 4, in O(n) space and time.

Proof. Let v,,.., v, designate, as usual, the nodes of T at level . We can com-
pute the sets W(v)),..., W(v,) in O(n) time and space, by maintaining the search
path in T of all the endpoints in S at each level. More precisely, when dealing with
level 4, we ensure that we have a pointer from each endpoint in S to the node in T
at level A that is on the search path corresponding to the endpoint. It is easy to

SEGMENT INTERSECTIONS 169

RB (v}

)

FIGURE 9

maintain these pointers incrementally, at a cost of O(1) per pointer as we proceed
to the next level higher. We compute the lists L(v,),..., L(v,) in a similar manner. At
each level, each segment of S hasg0, 1, or 2 canonical segments in 7, and it is easy
to keep track of the corresponding nodes of the tree by incremental updates. This
allows us to maintain, at a cost of O(n) time per level, two arrays PL[1---n] and
PWI[1---n] defined as follows: PL[i] indicates the O, 1, or 2 nodes at level 4 to
which s; contributes a canonical segment. We also define PW[i] to indicate in
which slabs S(v) at level the left and right endpoints of s, fall. As mentioned before,
we do not have to keep a pointer to v in PW/[i] if PL[{] already point to it. ||

Applying Lemma 1 to compute H(v,;) requires the availability of the y-order of
the left endpoints of the canonical segments in L(v;). Since we cannot afford to sort
these endpoints, we must proceed incrementally, using information collected at
lower levels to form the sorted lists in O(n) time. As usual, v, denotes a generic node
of T at level i. Let Y, (v;) (resp. Yx(v,;)) be the y-sorted list of the left (resp. right)
endpoints of the segments in M(v;) (Fig. 9). Recall that L(v;) contains the
canonical, i.e., clipped parts of the actual segments in S, therefore all the points in
Y, (v;) or Yg(v;) are vertically aligned. Note also that these two lists give exactly the
boundary vertices of H(v,;). To compute Y, (v,;) and Yg(v,) efficiently, we use lists

571/32/2-2

170 BERNARD CHAZELLE

computed at level 41 —1. Let w,.., w, be the nodes on the rightmost path from v,
We defif® RB(v;) to be the y-ordered list of right endpoints of a// the canonical
segments in L(v;), L(w,),.., L(w,). Note that all these endpoints (1) lie on a com-
mon vertical line and (2) are, in general, not endpoints in S (Fig.9). We define
LB(v,) similarly with respect to the left endpoints of the segments in the L-lists on
the leftmost path from the node v;. We successively show how to compute RB(v,)
and LB(v;), and then how to use these lists to compute hammocks. Actually, what
we really need for computing the hammocks at level 4 are the lists RB(z) and LB(z)
for the nodes z at level 4 — 1. Conversely, it will turn out that H(z) is necessary for
the computation of RB(z) and LB(z), we will therefore set up the latter lists as the
last task performed at level 1 — 1.

LEMMA 4. Computing the lists LB(v;) and RB(v;), for all the nodes v,,..,v, at
level A, can be done in O(n) space and time.

p

Proof. As usual, let v,..,, v, be the nodes of T at level 4, given in order from left
to right. To compute RB(v,) and LB(v,) at level A, we assume that H(v,) is
available, as well as RB(z) and LB(z), for all nodes z at level 1 — 1. Because of
obvious symmetry, we only describe the computation of RB(v;). First, we form
Y(v;) by retrieving the vertices of the hammock H(v,;) on the right slab-line of
S(v;). Next, we form RB(v,) by merging Y ,(v,) and RB(w,). This step takes time
O(|RB(w;)| + | Yx(v;)]). Any segment of S contributes at most two entries in
{Y (V). Yi(v,)}, therefore 3, ;o , | Y g(v;)] = O(n). Similarly, all the segments of
S contributing an entry in RB(w,) must have their left endpoint strictly within the
slab S(v;), therefore they must be in W(uv,). Since 3, ., , | W(v;)] = O(n), the proof
is complete. |

LEMMA 5. Computing the hammocks, H(v,), for all the nodes v,,..., v, at level 1
can be done in space and time O(n+ k,(2)).

Proof. We show how to use the lists RB(z) and LB(z) at level 1— 1 in order to
compute Y, (v;), and hence H(v;). For the sake of generality, assume that 1 <i< p;
the case i=1 or i= p will follow directly from the general case. Let s be a segment
of S that has a canonical part ¢ in L(v,). This segment falls in one of four categories
(Fig. 10): (1, 2) one of the endpoints of s coincides with an endpoint of ¢, i.c., lies on
one of the slab-lines of S(v;) (this breaks down into two cases); (3) s has a
canonical part in L(z), where z is on the rightmost path from v;_, (z#wv;_,); (4) s
has a canonical part in L(z), where z is on the leftmost path from v, | (z#v,,,).
Note that these four cases are not mutually exclusive:

1. s has a canonical segment in L(v;) and its left endpoint lies on the left slab-
line of S(v,;). The endpoints to fall in this category form a y-ordered list V,(v,),
which we can set up directly for all nodes v, at level 4, provided that s,,..., s, have
been pre-sorted along the y coordinates of their left endpoints. A simple scan
through PL (defined in proof of Lemma 3) will provide all these lists in O(n) time.

SEGMENT INTERSECTIONS 171

FIGURE 10

2. Similarly, we form the list V5(v,) consisting of the points that lie on the
right slab-line of S(v,) and are the right endpoints of segments of S with a canonical
part in L(v;). Next, we sort the left endpoints of the corresponding canonical
segments, using insertion sort, thus ensuring that the time is O(|V5(v,}| + K) time.
This provides us with a list of points, V,(v;), y-sorted along the left slab-line of
S(v;). Note that, most often, the lists V,(v;) and V,(v;) will have 0 or 1 elements, so
their computation will be in general much simpler than described.

3. Let V; be the p-ordered list of the left endpoints of all the canonical
segments to fall in case 3. Let w be the right son of v;_,; V5 is a sublist of RB(w),
therefore a linear scan through the latter list will enable us to compute V.

4. Let U be the set of canonical segments in L(v,) that fall in the fourth
category. In a first stage, we compute V,(v;), the y-ordered list of U's right
endpoints, by applying the same remark as in case 3: F(v;) is a sublist of LB(w),
where w is the left son of v;, ,. This allows us to retrieve F7(v;) in a linear pass
through LB(w). As in case 2, we use insertion sort (following the order of V,(v,)) to
set up ¥,(v;), the y-ordered list of the left endpoints of the canonical segments in U.
This takes time proportional to the cardinality of U and the number of intersections
between the elements of U.

We are now ready to form Y, (v,) by merging the four lists V' (v;), Va(v;), Vi(v)),
V4(v,). The result may contain duplicates, which we then discard. As mentioned

172 BERNARD CHAZELLE

earlier, the procedure above also applies to Y, (v;) and Y,(v,). This allows us to
apply the algorithm of Lemma 1 and set up H(v,),..., H(v,). To evaluate the time
complexity of the procedure just described, it suffices to observe that each list RB(z)
and LB(z) at level 1 —1 is examined at most once, and the insertion sorts of cases 2
and 4 require O(n + K) (where K counts here a subset of the intersection-vertices in
{H(v,),..., H(v,)}). Combining this result with Lemma 4 completes the proof. |}

3.2. Generalizing Hammocks

To improve the performance of INTERCOMP, we need to reorganize the com-
putation slightly. Whereas each level in 7" used to represent a basic stage in the
algorithm, we now regroup levels by layers of fixed height. Let o be a positive
integer (1 <a <log,2n), and let 4;=a x j. We define a layer 4, as the set of o con-
secutive levels {4, ;+ 1, 4, ;+2,.., 4;}. The algorithm will now proceed exactly as
usual from the lowest level upwards, but every time we switch to a higher layer, a
certain amount of preprocessing on all the nodes in the new layer will be accom-
plished.

What is the purpose of this preprocessing? The inefficiency of the previous
algorithm comes essentially from the repeated application of planar point locations,
which alone amounts to O(n log n) operations per level. We can partly remedy this
flaw by balancing out cost factors. The idea is to refine the data structure so that a
point need be located in a hammock only once per layer. To do so, we construct a
planar graph K(v) for each node v of T at level 4, defined as the superposition of all
the hammocks below v in the layer. We define the superposition of two planar sub-
divisions, A and B, as the new subdivision, C, obtained by merging 4 and B, thus
possibly adding new vertices (Fig. 11). Since the graphs K(v)’s will be refinements of

FiGure 11

SEGMENT INTERSECTIONS 173

every hammock in the layer, we will be able to use an appropriate pointing
mechanism to avoid repeated planar point locations.

Let’s review the data structures needed at this point to preprocess layer 4,. We
keep the hammocks H(w) for all we A4, as well as the list PW corresponding to the
lowest level in A, ie., 4, |+ 1. We also keep all the lists LB*(w), where LB*(w) is
defined as the sublist of LB(w) consisting of the left endpoints in {L(z)|z€ 4, on
leftmost path from w}. The same applies to RB*(w), defined in a similar way with
respect to right endpoints and rightmost paths. We can easily obtain LB*(w) and
RB*(w) with a single pass through LB(w) (resp. RB(w)).

We are now ready to show how to compute K(v). Let T* be the subtree of T (in
the sense of subgraph) consisting of v and all its descendants in 4,. We define K(v)
as the planar graph formed by superposing all the hammocks H(w), for all nodes w
in 7*. Observe that each vertex of K(v) is either a vertex of some hammock H(w),
or it i1s an added vertex; these added vertices will not cost overhead to the com-
putation since, as intersections of segments in S, they are to be reported, anyhow.
Unfortunately, storing all of K(v) is prohibitive, so we must devise a method for
computing K(v) by pieces, following a lazy evaluation scheme.

Let w,,.., w,, be the leaves of T* in left-to-right order (note that m=2*""), and
let p; be the path in 7* from v to w,. Observe that any hammock H(w), for we T*,
either lies totally outside of the slab S(w;) or completely overlaps it. The hammocks
that fall in the latter category correspond to the nodes of p;. We define K,(v) to be
the part of K(v) that lies inside S(w;). More precisely, K,(v) is the superposition of
the hammocks H(w), for all w on p,, each of them being clipped so as to fit exactly
within S(w;). We also include the vertical lines of S(w;), so that K, (v) has exactly
the shape of a hammock. We will show how to compute K,(v),..., K,,(v) in this
order.

The vertices on the left boundary of K,(v) are exactly the points in LB*(v). We
may then apply the algorithm of Lemma 1 to compute K,(v). Suppose now that we
have already computed K,(v). Let z be the lowest common ancestor of w, and w;, |,

FIGURE 12

174 BERNARD CHAZELLE

and let V (resp. W) be the y-ordered list of the vertices on the right (resp. left)
boundary of K,(v) (resp. K, (v)). W can be derived from V' by deleting from it the
points of RB*(z,) and adding to it the points of LB*(z,), where =, and z, are
respectively the left and right sons of z (Fig. 12). The availability of the lists LB*
and RB* allows us to construct W from V' in two passes through V. Once W is
available, we turn to Lemma ! and compute K,, ,(v). As usual, each of the new
hammocks will be preprocessed for efficient point location (in linear time).

LEMMA 6. Let K=3 | .o, k(A4 —i+ 1)+ k (4, —i+1)). The set of hammocks,
H(w), for all nodes we A; can be computed and stored in time and space O(an+ K).
The set of new hammocks K(v), at layer A;, can be computed in O(2°n+ K) time,
with only O(an+ K) space needed, if we keep only one new hammock at any time.

Proof. The first statement is a direct consequence of Lemma 5. Next we analyze
the complexity of computing the new hammocks. The necessary ingredients for
these computations are the hammocks H(w) and the lists LB*(w) and RB*(w), for
all weA,. We already know that these ingredients can be made available in
O(an + K) time and space. Finally, disregarding the O(xn) time spent “using” the
lists LB* and RB*—each of them is used at most once—the construction of the
new hammocks requires time and space proportional to their size. It is therefore
sufficient to evaluate the total number of vertices in all the new hammocks at layer
A;. As usual, we distinguish between intersection-vertices and boundary-vertices.
The cardinality of the first set is clearly O(K), so we can turn our attention to the
latter. Let us evaluate the maximum number of times a segment s of S can con-
tribute a boundary-vertex to a new hammock at layer A,. A canonical segment
from S at level 4, ,+ A contributes at most 2” boundary-vertices. Since, on the
other hand, s cannot have more than two canonical segments on the same level, it
contributes at most 3, _, ., 2"7!'<2*? vertices to the new hammocks. This
establishes the claimed O(2*1 + K) upper bound on the time complexity of the con-
struction. Finally, since s can contribute only two boundary-vertices to a single new
hammock, the storage necessary for any of them is O(n + K), which is dominated
by the space requirement of the other structures, i.e., O(an + K). This completes the
proof. |

3.3. Improving INTERCOMP

INTERCOMP involves computing the intersections between W(w) and H(w) for
each node w in T. Following the layer-based strategy, we describe an efficient
method for carrying out this computation for all the nodes w at layer 4,. As usual,
we proceed separately for all the subtrees T* rooted at level ;. As usual, let
Wi,..., W,, be the leaves of T*; obviously,

U Ww)e U Ww),

I1<ism weT™*

SEGMENT INTERSECTIONS 175

but do we actually have a set equality? Not quite, since a segment s in W(w) may
have its endpoint in S(w) lie precisely on the slab-line of S(w,) in such a way that s
contributes a segment in H(w,) and hence does not appear in W(w;). To remedy
this discrepancy, we augment W(w,) with all such segments. Practically, this
involves dropping the prescription in the proof of Lemma 3: “As mentioned before,
we do not have to keep a pointer to v in PW[i) if PL[i] already points to it.” Of
course, the price to pay is that we might occasionally try to apply the algorithm of
Lemma 2 with a query segment that is already in the hammock under con-
sideration. This can be detected immediately, however, and will thus not affect the
asymptotic complexity of the algorithm.

We compute INTERCOMP by considering each node w; in turn (1 <i<m), and
performing the following task: compute the intersections of each segment in W(w,)
with the hammocks in SH = { H(z)|z € p,} (recall that p; is the path in T* from v to
w;). To do so, the only data structures needed will be K(v) as well as all the ham-
mocks at layer A4,. We proceed by considering each segment s in W(w,) separately.
Let s= AB, with A the endpoint lying in S(w;). Note that B may or may not lie in
S(w,). Without loss of generality, assume that A4 is the left endpoint of AB.

We are now faced with the main bottleneck of our earlier implementation, sum-
med up in the following question: how can we apply the algorithm of Lemma 2 to
the pairs (s, H(z)) without having to perform a planar point location for every pair?
We solve this problem by making use of K,(v} as a guide to the desired hammock-
faces; the idea being to perform planar point locations only on the graphs K.(v).
Processing T* will therefore proceed in two passes. In a first stage, we compute
each of the new hammocks K,(v),..., K,,(¢) in turn, storing only one at a time. For
each K,(v) we perform a planar point location on each endpoint from W(w,) that
lies in the slab S(w,;). We will actually refine this information so as to be in a
position to apply Observation 1 or Lemma 2 at the end of the first pass. After this
first, information-gathering, pass we will compute INTERCOMP for all nodes in
T*. We describe these two passes successively.

Pass One. 1f both 4 and B lie in the slab S(w,), we can locate the faces of K,(v)
where they lie, which puts us in the conditions of Lemma 2 with respect to the new
hammock. We can then compute all the relevant intersections of AB at layer 4, in
time O(log n+ K). If B does not lie in S(w,), we must consider whether it lies in
S(v) or not. We will assume that it does, since the treatment for this case actually
encompasses the treatment for the other case as well.

Let S(w,) be the slab containing B; h > i. Note that 48 also appears in W(w),).
To start off, we compute the intersections between AA* and K,(v), where A* is the
intersection of AB with the right slab-line of S(w,). Similarly, when processing K,(v)
later on, we will compute the intersections between BB* and K,(v), where B* is the
intersection of AB with the left slab-line of S(w,) (Fig. 13). This can be done in time
O(log n + k) again, since we are still in the conditions of Lemma 2. Actually, we
could even use the faster algorithm of Observation 1, since in both cases one of the
endpoints lies on a slab-line. At this point, it is clear that the remaining intersec-

176 BERNARD CHAZELLE

K, {v)

g
K, (V)
&«

Stw) S(wy)

FIGURE 13

tions to report will involve A*B* so we turn our attention to this subsegment
exclusively.

Recall that in Pass 2, we will have to compute the remaining intersections that
involve AB, i.e., the intersections of 4A*B* with H(z), for all zep,u p,. If z belongs
to p,M p,, both 4* and B* lie in S(z), so locating both points in H(z) is needed in
order to apply Lemma 2. Otherwise, it is easy to see that only one of A* or B* lies
in S(z), therefore one location only must be performed, since we can then apply the
algorithm of Observation 1.

Since A* and B* play identical roles, we may without loss of generality concen-
trate on A* only. Let p,=z,,.., z,; our goal is to determine, for /=1,..., &, which
face in H(z,) contains A*. We will take advantage of the fact that 4* lies on a slab-
line to make these point locations very efficient. Let e,,..., e, be the list of edges on
the right slab-line of K,(v), given in y-descending order (Fig. 13). Recall that since
Observation 1 has already been applied to the segment 44* in the hammock K,(v),
we know which edge e, contains A* We can therefore solve our problem by
precomputing, for each edge ¢,,..., e,, the a faces in SH that contain it. Let’s define
the array F,[1..a] as follows: F,[!] contains the name of the face in H(z,) that con-
tains the edge e,. Note that by construction of K(v) this face is well defined and
unique.

SEGMENT INTERSECTIONS 177

To save storage, we compute a generic array F[1...a], which will be successively
F,,.., F,. At the outset, F[/] contains the name of the unique upper (unbounded)
face of H(z,). We will then scan edge e,,..., e, in this order, updating the array F
accordingly, so that at step v, we have F=F,. Let H(z,) be the unique hammock
from which the upper endpoint of ¢, emanates, and let f be the corresponding face.
Updating F simply involves setting F{/]= f. Of course, before starting this com-
putation, all the segments of the form 44* will have been processed, so that each
point A* will have been assigned the unique edge e, where it lies. Now, in the
course of updating F, whenever we encounter an edge e, that contains a point of
the form A*, we look up in F to find the « faces in SH that contain the point. At
this stage, we will simply copy these « names in a list N(4*), and proceed.

Pass Two. Only after all the K,(v) will have thus been processed and the N-lists
computed, we will use these lists in order to apply Observation | and Lemma 2
(depending on the position of B). It is easy to see that this two-pass scheme is
necessitated by the fact that the algorithm of Lemma 2 requires the locations of
both 4* and B*. Note, however, that storing all the lists N requires only O(na)
storage. With all these lists, we are now in a position to apply either Observation 1
or Lemma 2 depending on the position of B. We can see, as claimed earlier, that the
case where B lies outside of S(v) can be treated similarly (applying Observation 1).

LemMa 7. Let K=3% ;<o (ky(A,—i+ 1)+ k (4, —i+1)). All the intersections
between segments of W(w) and hammocks H(w), for all nodes we A;, can be com-
puted (exactly once) in time O((logn+2*)n+k), using O(an+ K) space. This
accounts for all the preprocessing as well. :

Proof. We review the various components of INTERCOMP, excluding the
parts that have already been studied in Lemma 6:

I. Calling on optimal planar point location procedure. From Lemma 3, we
know that the total size of the sets W at any level is O(n), therefore O(n) calls are
executed, which amounts to O{n log n) time.

2. Reporting intersections at a cost of O(1) time per report.

3. Setting up the array F: for each w,, takes time proportional to
IW(w)| + o+ “number of boundary-vertices in K, (v)”. From Lemma3 and the
proof of Lemma 6, this will amount to O(n+ a + 2%r) = O(2%n) time for the entire
layer.

4. Checking for intersections in SH: for each w;, takes O(a | W(w,)| + K) time,
hence a total of O(an + K) time.

The space needed is
0 <an + max {max |K{v)l + Y |H(w)|}) =0(an+ K).
™ wieT* we T

It is routine to fine-tune the implementation so as to report each intersection
exactly once. |

178 BERNARD CHAZELLE
3.4. Putting the Pieces Together

LeMMA 8. Given a set S of n arbitrary segments in the plane, it is possible to
report all k intersecting pairs exactly once, in O(n(log? n/loglogn)+k) time and
O(nloglog n+ k) space.

Proof. - Recall that K=3,.;, (ky{A,—i+ 1\)~+kw(/”.‘,—i+ 1}). We recap the
chronological sequence of the entire algorithm. After an initial O(n log n) time sort
on the coordinates in S, and the O(n) time set-up of the binary tree T, we start the
computation of HAMCOMP and INTERCOMP on each layer 4,,..., A,, with d=
[(14 log, 2n7)/a"). This involves updating the arrays PW and PL in O(n) time, as
well as computing all the hammocks in the layer. The latter operation requires
O(an + K) time and space, as shown in Lemma 6. We then proceed with the com-
putation of the new hammocks K,(v) and the execution of INTERCOMP. Lemmas
6 and 7 show that this requires O((log#n+2*) n+ K) time and O(an+ K) space.
The entire computation will thus require O(nlogn+ (logn/a) n(logn+2*)+k)
time and O(an + k) space, where k is the total number of intersections between
segments of S. Setting « =| log, log, n | establishes the lemma. ||

We next show how to reduce the storage requirement to OQ(n+ k). To do so,
we switch between the previous algorithm and any of the standard sweep-
line algorithms. Recall that these algorithms report all & intersections in time
O((n+k)logn), using O(n) [3] or O(n+k) [1,11] space. Let C=[nlogsn/
log, log, n'], and T(n) (resp. S(n)) be the time (resp. space) necessary for the com-
putation. The new method we propose consists of starting the computation using
the sweep-line algorithm for exactly C steps. If the algorithm terminates within C
steps, it will have achieved T(n)= O(nlog?n/logiogn) and S(n)= O(n+k)
Otherwise, we will have k=Q(nlogn/loglogn). We finish the computation
by using the algorithm of Lemma 8, which gives T(n)= O((n log® n/log log n) + k)
and S(n)=0(nloglogn+ k)= O(k). We can conclude with the main result of this
section.

THEOREM 2. Given a set S of n arbitrary segments in the plane, it is possible to
report all k intersecting pairs exactly once, in O(n log” nfloglogn+ k) time and
O(n+ k) space.

Open problem. s it possible to reduce the time complexity of the algorithm to
optimal O(n log n+ k)?

Before closing this section, for the sake of completeness, we include an immediate
corollary of Lemmas 1, 2.

THEOREM 3. Given an arrangement of n lines in the plane and an arbitrary query
segment q, it is possible to report all t intersections between q and the line
arrangement in O(log n + t) time, using O(n?) preprocessing.

SEGMENT INTERSECTIONS 179
4. THE COUNTING ALGORITHM

In this section we look at the problem of counting, rather than reporting the
intersecting pairs of segments in S. As before, we represent the segments in a
segment tree T which we construct bottom up, level by level. Let v,,.., v, be the
nodes of T at level 4. We set up the lists L{v,) and W(v,) as in the previous section,
but we do not compute the hammocks H(v,). Instead, for i=1,..., p, we directly
count all the intersections between segments of L(v;,) themselves, and between
segments of L({v,;) and segments of W(v,). Consider the dual mapping which puts in
one-to-one correspondence the point (g, #) and the line ax + Ay + 1 =0. The point
and the corresponding line are called dual of each other. Geometrically, if d is the
distance from the origin O to point p, the dual of p is the line perpendicular to Op
at distance 1/d from O and placed on the other side of O (in order to handle the
case of lines passing through the origin, this definition requires that the plane be
extended to the two-sided plane, as defined in [6]). A segment s€ S is mapped into
a double wedge, C(s) (Fig. 14), with the property that s intersects a line L if and
only if C(s) contains the dual of L.

THEOREM 4. Given a set S of n arbitrary segments in the plane, it is possible to
evaluate the number of intersecting pairs in O(n'**®) time, using O(n) space.

Proof. The algorithm is intimately based on a recent result by Edelsbrunner and
Welzl [5]. This result states that it is possible to preprocess a set of » points in
O(n'? log® n) time and O(n) space, so that the number of points lying inside any
query triangle can be evaluated in O(n®®®) time. This uses a novel data structure,
called a conjugation tree. As usual, let v,,..., v, be the nodes of T at level A. For each
t;, we will use conjugation trees to compute the number of intersections (1) among
the segments of L(v;) and (2) between segments of W(v,;) and segments of L{v;).

Let /(s) be the infinite line passing through segment s and #(s) be the dual of /(s);
also let r{s) be the intersection of s with the slab associated with v;, that is, s clip-

FIGURE 14

180 BERNARD CHAZELLE

ped to fit inside S(v;). For each level 4, and each node v; at level A, perform the
following steps:

Step 1. Construct a conjugation tree with respect to the point-set P,=
{1(s)|se L(v,)}, and set 1=0.

Step 2. For each se L(v;), let ¢, 1, be the two triangles formed by the wedge
C(s). Use the conjugation tree to compute I=1+ [t,"P,|+|t,P,.

Step 3. Set C=1/2—|L(v,).

Step 4. For each se W(v,), let 1,, t, be the two triangles formed by the wedge
C(r{s)). Use the conjugation tree to compute I =1+ |t, " P,| + |t, " P,].

The final value of 7 is precisely the number of intersections between the segments of
L(v;) and those of S. To see this, recall that each segment s of L(v;) is the intersec-
tion of the slab S(v,) with some segment s; of S. Since any segment s of L(v,) inter-
sects u € L(v;) if and only if it intersects /(u), we can detect such an intersection by
checking whether #(u) lies in C(s). Following this method, Step 2 computes the
number of intersections among segments of L(v;). This actually computes every
intersection twice, including the intersection of a segment with itself. The proper
value is reset in Step 3. Finally, Step 4 performs a similar sequence of operations
with respect to the (clipped) segments of W(v,).
Applying this procedure to L(v,;) and W(v,) requires time

O(|L(v;)]"* log?| L(v,)| + (| L(v;)] + | W(v)l) |L(v,)|**°%)

and space O(IL(,)]). Since ¥ <, , [L(e)] ST\ <<, |W(0,)] <2n, we easily derive
that

O((n'* log? n+n'"*%) log n)=0(n"** log n)

operations and O(#n) storage will be required. The proof of correctness follows from
Section 2.I11. Note that given the conservative approximation of log,(1 +\/§) by
1.695, the number of operations can be legitimately written as O(n'%°). |

It is always interesting to recast a problem in a dual space, if only to appreciate
the various disguises it can take on. In particular, the dual form of Theorem 3 states
that there exists an O(n?) data structure, with which it is possible to report the sub-
set of n fixed points lying inside a query double wedge. If k points are to be
reported, the algorithm takes O(log n + k) time.

5. CONCLUDING REMARKS

We wish to close this paper on a methodological note. Our main result is an
algorithm for intersecting line segments, whose running time is linear as a function
of the output size. It is interesting to notice that previous algorithms fail to achieve

SEGMENT INTERSECTIONS 181

this result, partly because of their reliance on what is otherwise one of the most suc-
cessful methods of computational geometry, ie., the iterative reduction of the
problem’s dimensionality (via line-sweeping). Also, straightforward divide-and-con-
quer seems inadequate because the merging phase seems as difficult as the original
problem, when no sorted order on the intersections is available. In order to break
the k logn barrier, we had to base the computation on a hierarchical decom-
position of line segments: (1) proceeding bottom-up and (2) dealing only with a
subpart of the underlying abstract data structure at any given time. This global
approach (which preserves the dimensionality of the problem) may provide a
general framework for the study of point sets and their dual, line arrangements.

The main contributions of this paper are: (1) an algorithm for reporting all &
intersecting pairs among n arbitrary segments in O(n(log® n/log log n) + k) time,
using O(n + k) space; (2) an algorithm for computing the number of intersections in
0O(n"%%°) time, using O(n) space. Neither of these algorithms has been shown to be
optimal, and it appears safe to conjecture that neither is. In particular, it is possible
that a (yet) more global treatment of hammocks may reduce the run time of the
reporting algorithm to O(n log n+ k), thus making it optimal. It is clear, however,
that the very notion of hammocks seems incompatible with any O(n) space
algorithm. In this regard, any attempt at reducing the space complexity will have to
contemplate a very different approach.

ACKNOWLEDGMENTS

I wish to thank Leo Guibas and Janet Incerpi for helpful comments on the presentation of these
results.

REFERENCES

[. J. L. BENTLEY aND T. OTTMANN, Algorithms for reporting and counting geometric intersections,
{EEE Trans. Comput C-28, No. 9 (1979), 643-647.

2. J. L. BENTLEY AND D. WooDp, An optimal worst-case algorithm for reporting intersections of rec-
tangles, /EEE Trans. Comput. C-29 (1980), 571-577.

3. K. Q. BrRown, Comments on “Algorithms for Reporting and Counting Geometric Intersections,”
IEEE Trans. Comput. C-30 (1981), 147-148.

4. H. EDELSBRUNNER, L. Guisas, aND J. StoLFi, Optimal point location in a monotone subdivision, to
appear.

5. H. EDELSBRUNNER AND E. WELZL, “Halfplanar Range Search in Linear Space and O(n
Time,” Tech. Univ, Graz., I[IG Report 111, 1983.

6. L, GuiBas, L. RaMsHAW, AND J. STOLFI, A kinetic framework for computational geometry, in “Proc.
24th Annu. Found. Comput. Sci.,” pp. 100-111, 1983.

7. L. J. GuiBas AND J. StoLF1, Primitives for the manipulation of general subdivisions and the com-
putation of Voronoi diagrams, in “Proc. 15th Annu. SIGACT Sympos.,” pp. 221-234, 1983.

8. D. G. KirkpPaTRICK, Optimal search in planar subdivisions, SIAM J. Comput. 12, No. 1 (1983),
28-35.

0.695) Query

182 BERNARD CHAZELLE

9. H. G. MarsoN aND J. SToLF, Reporting and counting line segment intersections, unpublished.

10. D. E. MuLLER AND F. P. PREPARATA, Finding the intersection of two convez polyhedra, Theoret.
Comput. Sci. 7 (1978), 217-236.

11. J. NIEVERGELT AND F. P. PREPARATA, Plane-sweep algorithms for intersecting geometric figures,
Comm. ACM, 25, No. 10 (1982), 739-747.

12. M. L. SHaMOs AND D. J. HoEY, Geometric intersection problems, in “Proc. 17th Annu. Found. Com-
put. Sympos.,” pp. 208-215, 1976.

