BIT 25 (1985), 76-90

THE POWER OF GEOMETRIC DUALITY

BERNARD CHAZELLE '), LEG J. GUIBAS?) and D. T. LEE?®)

Yy Department of Compuier Science, Brown University, Box 1910, Providence, R.1., U.5.4.
3y Computer Science Laboratory, Xerax FARC, Pale Alio Research Center, Palo Alto, Califerniy
94304, U.S.A.
3} Northwestern University, Evanston, [llinois 60201, U.5.4.

Abstract.

This paper uses 2 new formulation of the notion of duality that allows the unified treatment of &
number of geometric problems. In particular, we are able to apply our approach to solve two
iong-standing problems of computational geometry: one is to obtain 2 guadratic algorithm for
computing the minimum-area triangle with vertices chosen among # peints in the plane; the otheris
to produce an optimal algerithm for the half-plane range query problem. This problem is-te:
preprocess n points in the piane, so that given a test half-plane, one can efficiently determine ali
points lying in the haif-plane, We describe an optimal Ok +logn) time algorithm for answering
such gueries, where k is the number of points to be reported. The algorithm requires G{n} space asd
O(n tog m) preprocessing time. Both of these results represent sigrificant improvements over the best
methods previously known. In addition, we give a number of new combinatorial results related %6
the computation of line arrangements.

1. Introduction.

1.1, Generalities on the concept of duality.

A natural cuality between points and lines in the Cartesian plane has long
been known to geometers, Under this duality a point p with coordinates {a,b)
corresponds to the line T, with equation ax+by+1 = 0. The point and the
corresponding line are called dual of each other; the point belongs to the primal
plane, and the line to the dual plane. Geometrically, if d is the distance from
the origin O to point p, the dual T, of p is the line perpendicular to Op at
distance 1/d of & and placed on the other side of O {Fig. 1). In order to handle
all cases, this definition requires that the plane be extended {(by the addition of
points at infinity} in such a way that it becomes topologically equivalent to a
non-orientable surface, the so-called projective plane. As a consequence of this
non-crientability, there is no consistent way to define the “left side” of an oriented
line, or to define a “counterclockwise sense of rotation” for all points of the
plane.

We solve this problem by using a different extension of the plane, that is
endowed with the topolegy of & sphere (and therefore is orientabie). Informally

Received December 1983, Revised May 1984,

THE POWER OF GEOMETRIC DUALITY 77

m:0X+bY+i=0

Fig. 1. The duai transform 7.

peaking, this extension is made by distinguishing a point on the “top” side of
he plane from its antipode, 2 point with the same position but on the “bottom”
ide of the plane. For such a point, the meaning of “counterclockwise” is defined
- with respect to an observer standing on the same side of the plane. So, if a car
escribes a counterclockwise loop on the top side of the plane, a second car on
the-hottom side that passes through the same positions in the same order will
describe a clockwise loop. We call this extension the two-sided plane {2S8P). One
“can view this construction algebraically by thinking about homogeneous coor-
_dinates. In classical homogeneous coordinates we identify the peints [x.y,z]}
: and fAx, Ay, Az] for each real 4 # 0. In the new manifold we only do so if 4 > 0.
Multiplying by a negative constant gives us the antipode of our point.

A straight line extends to both sides of the 28P, and therefore passes through
#-peint if an only i it passes through its antipode. An ornented line has the
same direction vectbr on both sides; however, since the notions of “left” and
“right” are relative to a local observer, a point is 1o the left of an oriented line
L i and only if its antipode is to the right of L. The left and right “haif-planes”
of L. are well-defined concepts, and their union is the whele 28P minus the
Hine L.

By working on the 2SP, we can define the duality between points and lines
s¢-as to preserve relative orientations. Under this rapping, a point p is trans-
formed to an oriented line T, and vice versa: the line T, is oriented counter-
clockwise {as seen from the origin O} if and only if p les on the top side of
__the plane. Note that the dual of a line passing through the origin is a point at
infinity, and the dual of the origin is the fine ar infinicy. It follows from this

78 BERNARD CHAZELLE, LEO 3. GUIBAS AND D. T, LEE

construction that a point p lies to the left of an oriented iine L if and only if
the dual point T lies to the left of the line 7,. As is weli-known, the trans-
formation T has also the property of preserving incidence relations, i.e., a point
p lies on a line L if and only if the line T, contains the point 7.

The concept of duality is & powerful tool for the description, analysis, and
construction of algorithms. By applying i to theorems, proofs, operations, and
algorithms we can obtain twice as many results with practically the same effort
{1,151 For example, an algorithm for computing the convex huill of n points
in the plane automatically becomes an algorithm for computing the intersection
of n haif-planes. A more formal development of the theory underlying this new
duality, due to Guibas, Ramshaw. and Stolfi, is given in [12].

{.2. Organization of the paper.

The purpose of this paper is to use the concept of duality to study a number
of preblems involving points in the plane. In Bection 2, we describe an optimal
algorithm f{or computing the planar graph G formed by n lines in the plane, and
we use this result in Section 3 to improve on the best algorithm previously
known for finding the smallest-area triangle among n points. In the same section,
we prave a property of G that is fairly unusual for a planar graph, and we usg
this fact to derive an improved algorithm for computing the empty wedges of
a point set. Finally, we give the main result of this paper in Section 4, ie, the
first space and time optimal algorithm for the half-plane range query problem.
This problem is to preprocess » points in the piane, so that given a test hall
plane, one can efficiently determine all points lying in the half-plane. We describe
an G(k+logn) time algorithm for answering such queries, here & is the number
of points to be reported. The algorithm requires Of{n) space and Of{nlogn} pre-.
processing time.

2. Computing line arrangements.

Since the dual of a point set is a set of lines, it is important for the followin
developments to devise an efficient method for computing the planar grap
formed by a set of lines. Let T;,..., 7, be n lines in the plane and let G denot
the subdivision of the piane induced by the lines. For simplicity, we will assum
that ail the infinite rays of the graph meet at a common point at infinity*
This will ensure that all the faces of G are properly enclosed by edges, Let
{resp. q} be the number of vertices (resp. edges} of the planar graph forme
by G. it is easy to see that p(ly=1, q(l)=1, pm} S pn—1}+n—1, an

* This convention fs eguivalent to assuming that our construction takes place on the uppe
hemisphere of a sphere whose equator has been: pinched to a point.

THE POWER OF GEOMETRIC DUALITY 79

g{ny = gn—1}+2n—1, therefore

py =™ g s e

We now turn to the actual computation of the graph G. We represent the
graph by means of adjacency lists, t.e., we associate with ee.ch vertex a list of
its adjacent vertices in, say, clockwise order. This includes a list for the vertex
at infinity. This representation is called a vertex-to-edge representation of G
Since generally the degree of each vertex is four, this representation allows
us to traverse any face of the graph in time proportional to its number of
vertices in both the clockwise and counterclockwise directions. To handle
singularities such as the collinearity of several points in the primal plane and
still retain the capability of efficient face traversal, we convert the traditional
adjacency-list representation into the doubliy-connected-edge-list representation
or the guad-edge structure {11}, These are linear time transformations which
invoive only simple pointer manipulations, so we omit the details and instead
refer the reader to the aforementioned sources.

We compute G iteratively, inserting each line 7 in turn. Assume that we have

already inserted Ty,..., T, _¢. To insert the line L = 7, we start by determining
which edge on T, it mtersects. This can be done by keeping track of a reference
edge on T,, from which we can begin traversing the line 7, towards its imter-
section 1 with L. To do so, we can assume that we keep the ordered sequence
of edges on Ty in a special list. We begin by inserting the intersection [as a
new vertex in G. Note that if L and T, are parallel, this new vertex is actually
the vertex at infinity.

This preliminary step in the procedure involves adding a new vertex-tc-edge
list and updating the lists corresponding to I's neighbors. We then start
traversing the edges of G around each face crossed by L. We first do it in one
direction, then restart in the other direction. There 18 no difficulty doing this
traversal, since it involves only taking rightmost (or leftmost) turns at each vertex
{Fig. 2). Note that by backing up one edge at each new face, we can carry out the
complete traversal, while staying entirely on one side of L. This is indeed
possible, because of the vertex at infinity which ensures the effective boundedness
of all the faces. Of course, appropriate updating should take place during the
traversal of G. This involves straightforward graph manipulation, and we omit
the details. Note that when first encountering two consecutive edges adjacent
1o the vertex at infinity and lying on distinct side of L, the procedure should
stop-after inserting the last edge. This edge will point to infinity.

The entire traversal requires O{t} operations, where ¢ is the total number of
vertices on all the faces of & intersecting L. The next result establishes an upper
bound on r.*

A similar result has been recently discovered independently by Edelsbrunner et al. {71,

80 BERMNARD CHAZELLE, LEO J. GUIBAS AND D. T. LEE

Fig. 2. Computing a line arrangement.

Lemvma L. The total number of edges on the faces of G intersecting the line L
does not exceed 8n.

Proor. For convenience we may assume that L is horizontal. We can then
distinguish the faces adjacent to L above from the faces adjacent below. Since the
two cases are sirictly dentical, we will restrict our attention to the former. In
clockwise order, a face f consists of a horizontal or base edge, followed by a
sequence of first left then right edges. An edge is said to be left {resp. right) &
its supporting line intersects L on the left (resp. right) hand side of the base.
Note that the edges adiacent to L, called grounded edges, are right edges for the
face on their left-hand side and left edges for the face on their right-hand side.
Let us charge each leflt but non-grounded edge to the intersection of the line
supporting the previous (in the clockwise sense) left edge with L (Fig. 3). We
define a symmetric charging scheme for the right non-grounded edges. It is easy
to see that each veriex on L can be charged at most once from a left edge and
at most once from a right edge. Actually the leftmost vertex cannot be charged
from a left edge and the rightmost vertex cannot be charged from a right edge.
Thus the number of traversed edges above L is bounded by 4k—2, where
& is the number of intersections of L by the rest of the lnes. This bound is in
fact the best possible. Since the same reasoning can be apphed to the faces
beiow L as well, the proof is complete. B

From Lemma 1, we find that each insertion takes G{n} time and therefore,
as claimed earlier, the overall algorithm is guadratic,

Tusorsm L. [t is possible to compute an arrangement of n lines in O(n?) time.

THE POWER OF GEOMETRIC DUALITY 81

left edge
(f) right edge

e baose edge
[~ 8 %

|

(e

!

Fig. 3. Inscrting a new line.

3. Smallest-area triangle, empty wedges, and other appiications.

Let §={p,,...p, be a set of » points in the plane. We will apply

Theorem 1 to the problem of determining which of the (§) triangles with vertices
in S has the smallest area. The difficulty of this problem resides essentially in
the absence of locality. Indeed, the vertices of the smailest triangle may be
arbitrarily distant from one another, if they happen to be collinear (this iliustrates
the fact that solving this probiem will allow us to determine whether three points
in S are collinear}. Using duality, we are able to strenghien the time complexity
of the best algorithm known for this problem, i.e., the O(n* logn) time and O(n)
space algorithm of [8].
 For the sake of convenience, we will use a slightly different dual transform,
_denoted D, and defined as foilows. A point p: {a,b) is mapped to the line D,:
Y =aX+bh and a line L: ¥ = kX +d is mapped to the point D : {—k, d). We
hould observe that two points are mapped to two paraliel lines if and only i
these points have the same X-coordinates. We will assume that no points of §
_share the same X-coordinates. This may possibly entail rotating the axes by a small
_angle, easily determined in O(niogn) time. We define G as the planar graph
formed by the lines {D,,...,D; }.
Let L{i, j, k) denote the line passing through p, that is parallel to p;p;, and let
h{i, j, k) be the vertical distance between pp, and L{i, j, k), ie, the length of a
_vertical segment joining p;p; and L{,j, k). It is clear that the smallest-area
triangle with p;p; as an edge minimizes h(j, j, k) forallk # i, j; 1 S k £ n. Wecan
express this property in the dual plane. The line through pp;, becomes the
intersection point I of D, and D,, and L(j, k) is mapped to the point on
D, which has the same X-coordinate as /. It is now easy to check that the
_vertical distance between I and D, is precisely {x() and y{) denote the X and Y
“coordinates respectively):

x(pLy{p)) — ¥l]+ x(p)y(p) — x(p)yip))
x{pi)—x(p;)

h(i, J, k) = y(p)+

82 BERNARD CHAZELLE, LEO J. GUIBAS AND D. T. LEE

To determine the smallest-area triangle among the points of §, we simply
mimic the computation of G described in the previous section. We traverse each
line D, in turn, examining ali the vertices »; of each face incident to D, . Note
that each v; is the intersection of two lines D, and D,. From the remarks
above, it follows that the smallest triangle with vertex p, will be of the form
{py a;» B}, so it wiil be effectively found with this procedure. Finally, Theorem |
shows that the entire computation will take O(n?) time. We conclude:

TureoreMm 2. It is possible to compute the smallest-area triangle among n points
in O{n?) time and space.

We can use Lemma 1 in order to derive a fairly curious result about arbitrary
arrangements of iines in the plane. Consider the dual graph of G (in the graph-
theoretic sense), denoted H, and defined as follows: cach face of G is a vertex
of H and two vertices of H are connected by an edge if and only if the
corresponding faces in G share a common edge. Let V' (resp. £) denote the
number of vertices (resp. edges} in H. Clearly V = O{n*), and since H is &
planar graph with no muitiple edges, we have E = G(V). Let w,...,w, be the
vertices of H, and let d; denote the dégree of vertex w,. It is easy to see that

S d,=2E = O(V).

tSksV

HA
A

We can strenghten this relation and prove a relation that is not true for
general planar graphs.

Lemma 20 Let G be any arrangement of n lines with V = Q(rn®)} vertices. The
vertex-degrees of the dual graph H satisfy the relation:
Y di=0).
t2kEy

A
A

Proor. Let fi,....f; be all the faces of G incident to a given line L of the
arrangement. Without loss of generality, assume that w,,...,w, are the corre-
sponding vertices in H. From Lemma I, we have

Y d—1)<8n
/

i

1

A
A

Summing the left-hand side of the ineguality over all the lines in G will have
the effect of duplicating each term (d,~ 1) exactly d; times, therefore

dy(d,~ 1) < 8n?.
14

WA
=
A

THE POWER OF GEOMETRIC DUALITY 83

Since, as we already noticed, 3 ; <, < yd, = O(V), we have } | <4 < ydf = O(n?) =
o). ®m o

We can use Lemma 2 to derive an interesting combinatorial result on planar
point sets. Consider §, our set of n points in the plane, p;,...,p,, and let L; ;
be the iine passing through p; and p;. Any pair of such lines defines two double
wedges, and it is easy to see that the a points define on the order of n* double
wedges. We say that a8 double wedge is empty if it does not strictly contain any
point of § (Fig. 4). The next result will show in particular that there are only
3{n?) empty double wedges. "

Fig. 4. An empty double wedge.

Lemma 3. It is possible to enumerate all the empty double wedges formed by n
points in O(n?) time,

Proor. Place a line L in arbitrary position in the original plane, and move it in
a continuous fashion anywhere, as long as it does not intersect any point of S,
It is easy to see that the locus of the points D, thus defined coincides exactly
with one of the faces of G. It follows that the dual transform D puts the empty
double wedges in one-t0-one correspondence with the segments that have vertices
of+G as endpoints and do not intersect any edge of G except at their endpoints.
Since there are no more than) ; <, < (%) such segments, Lemma 2 shows that
we have at most O(V) = O(n?) empty double wedges. To compute them, we can
use the representation of G and examine each face in turn. Note that in order
to obtain the empty wedges containing a vertical line, we can reset the problem
with the roles of x and y now exchanged. B

4. The half-plane range query problem,

We now turn to the main resuit of this paper. Given a set § of n points

84 BERNARD CHAZELLE, LEO J, GUIBAS AND D. T. LEE

in the plane, we consider the problem of reporting all the points in S that lie
on a given side of a query line. From now on, &k will refer to the number of
points to be reported. Previous work on this problem includes an O(n’) space
data structure that allows us to answer a query in Otk +logn) time [6]. Other
sotutions have been proposed for solving the half-plane range query problem,
using only linear space: one is the polygon tree of Willard [17}. and more
recently the conjugation tree of Edeisbrunner and Welzl [9] These structures
yield 0(n®77) and O(n®°°%) guery time, respectively. Yao [18] provided an
G{n®28 +k) time and O{n) space zlgorithm for the same problem in three
dimensions, as well as for circular queries in two dimensions. We show here that
in two dimensions it is possible to achieve optimal O(k +logn} query time, using
only O(n) space. We should stress the fact that blithely comparing these
complexity results would be unfair. Although our algorithm is significantly
superior to the methods of {6, 9, 17] when the points are to be explicitly reported,
it ie inadequate for, say, counting points or dealing with more complex test
figures such as polygons. For these situations, the polygon tree of {17] and
the conjugation tree of {91 are still the most efficient tools known to date.

As a starter, recail the basic method of the algorithm in {6]. We compute G,
the dual set of S, via the transform D, and for each face of the graph, we keep
a list of all the iines of G lying respectively above and beiow the face. This allows
us to solve our problem in time O{k+licgn), since a point p of § is above
{resp. below) a query line L, if and only if its dual line, D, is above {resp.
below} the dual point D;. Indeed, with this preprocessing in hand, we can answer
a query by first determining which face of G contains the point D,, and then
cutputting the contents of the associated list containing the lines above (resp.
below} B if the query haifplane lies above (resp. below} L. Kirkpatrick’s optimal
planar point location algorithm can be used for this purpose {13}, so as to
locate 7 in G in O(logn) operations. This scheme clearly entails the use of cubic
space, which we can then proceed to reduce to O{(n?) by providing G with a set
of 0{n?) additional pointers.

We say that an edge of a face [of G is an upper (resp. lower) edge with
respect to f if its inward-directed normal points downward (resp. upward). Lat
¢, and ¢. be two arbitrarily chosen edges of f, respectively of the upper and
lower type with respect to f. We set up a pointer {rom each lower (resp. upper)
edge of f to e, {resp. ¢,). With this construction, we can simply follow the
pointers from D, upward or downward, depending on the orientation of the
query haifplane. This will lead us to cross each of the desired lines exactly once.
Proving the validity of this fact is straightforward, so we leave out the details.
Note that we stop when reaching a face with no upper (lower) pointer, if going
upward (resp. downward). The choice of ¢, and e, will determine the order in
which the lines are reported, which is immaterial for our purposes. This addition
of special pointers allows us to save a factor of »n in storage, thus reducing it
to Ot

THE POWER OF GEOMETRIC DUALITY 85

To preduce a more radical breakthrough in the complexity of the algorithm,
while retaining the same basic idea, let us momentarily step back to the original
point set S. The first phase of our algorithm consists of partitioning S into its
set of convex layers (sometimes referred to as “onion”). These layers are convex
polygons, defined iteratively as follows {Fig. 5): intially i is 1.

i. Define §; as the convex huil of all the points currently in 8.

2. Remove the vertices of S, from 8.

3. If § is not empty, increment { and go back to 1. Otherwise stop.

Fig. 5. The set of convex layers.

Let # be the total number of layers; from now on, any use of duality wiil
refer to the transform T, with the origin placed anywhere in the interior of §,.
Overmars and van Leeuwen have shown how to compute the layers of n points
in O{nlog?n) time using a general technique for computing convex hulls in a
dynamic environment {16]. This result was recently improved in {2}, where an
optimal O(n) space, G(nlogn) time algorithm was described. With this pre-
processing in hand, we may now proceed to present the main part of the
algorithm, Let L be the line delimiting the query half-plane n. It is easy to
determine whether L intersects §,, for a given i, in Oflogn) time, using the
Fibonacci-search technique of [4]. If the answer is negative, cither = contains
no point of 8; or it contains them all, and this can be decided in constant
time. It is easy to prove that the set of hulls §; intersected by L forms
an initial segment of the sequence §,,8,,.... 5,. Let us assume also that L does
intersect §,, which implies in turn that # contains ai ieast one point of S;

g6 BERNARD CHAZELLE, LEO 3. GUIBAS AND D. T. LEE

otherwise the problem is trivial. Let §,,..., 8, be the layers that L intersects.
We say that S,, is the neighboring layer of L (Fig. 5). We will prove later on
that the index m can be computed in O(logn) operations, so we assume the
validity of this resuit for the time being, With this information, we can compute
the two (possibly coinciding) intersection points of L and §,, in O(logn) time.
This immediately gives us a vertex v of S, that lies in the haif-piane n. |

The goal at this point is to find one vertex lying in = on each layer S,,.... S, ;.
To do so, we augment our set of layers with vertical connections, by proceeding
as follows: for each vertex w of S;(1 £ i < u) keep a pointer to the two edges
immediately above and below w, i.e. the edges hit by a vertical ray emanating
from w upward or downward (Fig. 5). The first type of pointers is called
upper, the second lower. Once the convex layers have been computed, we can
easily set up these pointers in linear time, proceeding in a merge-like fashion
for each pair of consecutive layers. We omit the details of this very simple
procedure. To achieve our goal, we now iterate on the following process: starting
from v, follow the upper (resp. lower} pointer, if L lies below {resp. above) 7.
The edge e pointed to has at least one endpoint in n (for example its endpoint
in n further from L), 30 we can simply continue the iteration from this point.

Since we proceed from the layer S, outwards, we will effectively report one
vertex on each of the layers §,,..., 8§, (Fig. 6-A). Depending on the position
of L with respect to the origin, we may even end up reporting more vertices,
but all these extra vertices will be in =z, bowever (Fig. 6-B}. The next step is
to start a traversal from each of the vertices reported, on their corresponding
layer, sweeping across the part of the layer inside 7. Note that if the origin Hes
in # —which can be determined in constant time— we must also report all the
vertices in S, , 4, 8,.,,..... 5, (Fig. 6-B). This may cause vertices to be duplicated
in the report. It is easy, however, to eliminate duplicates in O(k) time, using an
array of indices, so this will not affect the overall asymptotic complexity of the
algorithm.

Fig. 6. Walking across the layers.

THE POWER OF GECMETRIC DUALITY 87

The method above is very simple to describe, but it may lead io certain
implementation difficulties if L is vertical. We describe below a different method
for the same “walk outwards” that requires slightly more storage but is completely
isotropic. This alternative method rests crucially on an interesting geomsetric
observation. If Q is a convex polygon that contains another convex polygon P
in its interior so that each diagonal of Q intersects P, then we call an immediate
cover of P {Fig. 7}

Fig. 7. The triangulation approach.

Lemma 4. Suppose that convex polygon Q is an immediate cover of convex polygon
P.and that the region between P and @ has been triangulated. Then each vertex
of P will be connected to ar least one vertex and at most four vertices of Q in
the triangulation. ’

Proor. Let p be a vertex of P. Consider the two edges of P incident at p.
Each of them defines a half-plane not containing P. No more than two vertices
of ¢ may lie in such a half-plane, as otherwise there would be a diagonal of Q
avoiding P. From this the lemma foliows. B

Given two successive convex hulls S; and 5, ,, the outer hull can be triangulated
in any greedy fashion, as long as none of the diagonals drawn intersects the
inner hull. At that point the polygon enclosing the inner hull forms an immediate
cover of it. The trianguiation of the ring between the two layers can now
be-completed in any manner whatsoever. This guarantees that at most four of
the triangulation edges reach every inner vertex. It is easy to see how to implement
such a triangulation in linear time by keeping two roving pointers, ong on §;

£8 BERNARD CHAZELLE, LEC J. GUIBAS AND D. T. LEE

and one on §;, . The aigorithm of Garey et al. [10] can also be adapted to this
task. Once obtained, the doubly-connected-edge-list or quad-edge representation
of this planar graph can be used to carry out the above walk.

{mplementing and testing both methods on concrete examples will decide
which one should be retained in practice. We now turn ocur attention to the
computation of §,,, the neighboring layer of L.

Lemma 5. Once the convex layers have been computed, the value of m can be found
in O{log n) time, after O(n) preprocessing.

Proor. The probiem is that of “locating” a line among a set of convex polygoens.
We use duality to recast the problem &s a planar peint location problem. Applving
the transform T to each point p; we can show that, if as mentioned earlier, the
origin is chosen inside §,, each layer is mapped into another convex polygon,
and furthermore, the u layers of § are mapped into another set of u layers with
the nested order reversed, ic., the innermost layer becomes the outermost one
and vice-versa. Also, it can be easily shown that the point T; lies between the
duai versions of the two layers S, and S,,.,. We can then preprocess the set
of dual layers in O{n} time, sc as to apply a planar point location algorithm
to T;, and thus determine m in Oflogn) time. Possible choices are Kirkpatrick’s
method [13] based on a hierarchy of coarser and coarser subdivisions, or Lipton
and Tarjan's remarkable, yet impractical algorithm {14]. B

The proof of the lemma is complete; yet we wish to strengthen this result
from a practical standpoint. One drawback of the method which we have just
presented is its reliance on planar point location, Even for Kirkpatrick's
algorithm, which is conceptuaily quite simple, it is not clear at all that this
simplicity will carry over in practice. To circumvent this difficulty, we will show
that it is possible to dispense with planar point location altogether, using the
concept of filtering search introduced in {3]. Since, in our case, O(logn) seems
to be an inherent search cost, we will try o partition the set of layers §,,..., 8,
into groups of roughly log » consecutive layers. Let C; = §jpq,, The algorithm
will consist of searching for the value of the index m by computing the inter-
sections of L with C,,C,, C,,..., iterating as long as there are, indeed, inter-
sections to report. Let Cy, ..., C, be the intersecting layers thus discovered. Using
a3 logarithmic intersection algorithm, as usual, this step will take O(hlogn) time.
Certainly S,, lies between C, and C, .. To refine this information and actually
determing the value of m, we will step into the dual space, proceeding:as
described above. One major difference, however, is that the dual structure will
now consist of only [logn} convex boundaries. This allows vs to do planar point
tocation in a radically different (and simpler} way.

Let D be the dual structure of the layers S, between €, and C, . To locate
the point T; among the boundaries of D, we first compute the o edges of D that
intersect the vertical line V passing through 7. To do so, we use the hive-graph

THE POWER OF GEOMETRIC DUALITY 84

structure described in [3]. This is a simple structure which allows us to report
all the intersections in time O(logn+a) = G(logn). From this information, we
sastly derive the value of m. Once m has been computed, we can proceed as
described earlier. Since for any i, if L intersects both C, and (, {, at least roughly
logn points will be later reported between these two layers, the O{rlogn) time
spent in the first phase of the algorithm is also Ok}, so the total run time of
the algorithm s Ok +logn).

An alternative for computing m, suggested to us by H. Edeisbruaner {5},
involves using the fact that the hive-graph structure of [3] will also aliow us to
compute all § intersections between the segment OT, and the dual structure of §
“in O{fi+logn) time. It is easy to see that the farthest intersection from O lies
‘on the dual of S, which gives us the value of m immediately. Since § < &, this
“method will aiso require Ok +logn).

- TueoreM 3. It is possible 10 solve the half-plane range query problem on n points
i Olk+logn) time, using O{n) storage and O{nlog n} time in preprocessing ¢k being
“the number of points reported). The methed is modulur and practical: it involves
a straightforward planar point location and does not require the use of dynamic
_tree structures.

The contribution of this work is to show the power of geomeiric duality for
solving several geometric problems. We have described an optimal algorithm for
_computing the planar graph G formed by n lines in the plane. Using a duality
‘argument, we have then shown how this result can be used for computing, in
 O(n”) time, the smallest-arez triangle formed by n points. We alsc pointed out
_a property of G that is fairly unusual for a planar graph, and we used this
property to derive an algorithm for computing the empty wedges of a set of n
_ points, We then looked at the half-plane range query problem and described
_an optimal O(n) space, Ok +log) time algorithm for solving this probiem, using
“again a duality argument {k is the size of the output).

~An interesting open question is to investigate the possibility of implicitly
_representing the dual graph of a set of points so as to avoid a guadratic
_ complexity. We have shown how to compute this graph optimally in two dimen-
_sions, But perhaps, the most interesting open problem is to try to study the
__existence of Ofn) or O{nlogn) space algorithms for reporting or counting the
;Epoints inside a polygon in Ok+f{n}} time, where f{n) is a polylogarithmic
function of n. Note that we have exploited the fact that a convex polygon
entering a half-plane must have a vertex in the half-plane, a property which is
false for more general query regions. Also our method for the half-plane range
query problem’ entails the explicit enumeration of the points and thus seems
_inadequate to handle counting problems. This discrepancy is not specific to this
- problem, however: it is recurrent in most of the range search problems studied
~in the past.

S0

i,

BERNARD CHAZELLE, LEO J. GUIBAS AND D. T. LEE

REFERENCES

K. Q. Brown, Geometric transforms for fast geometric algorithms, PhD thesis, Carnegie-Mellon
Univ,, 1979,

. B. Chazelle, Optimal algorithms for computing depths and layers, Brown University, Techaical

Repori, CS-83-13, March 1983.

. B. Chazelle, Filiering search: A new approach 1o guery-answering, Proc. 24th Annual FOCS

Symp., pp. 122 132, November 1983

. B. Chazelle and D. Dobkin, Detection is easier than computation, Proc. 12th Annual SIGACT

Symp., Los Angeles, California, pp. 146-153, May 1980.

. K. Edeisbrunncr, Private Communication, June 1983,
. H. Edelsbrunner, B. G. Kirkpatrick and H. A. Maurer, Polygonal intersection searching, inf.

Proc. Lett., 14, pp. 74-79, 1982.

. H. Edelsbrunner, J. O'Rourke and R. Seidel, Constructing arrangemenrs of lines und hyperplanes

with applications, Proc. 24th Annual FOCS Symp., pp. 83-91, November 1983

. H. Edelsbrunner and E. Welzl, Halfplanar range esiimation, Tech. Univ. of Graz, Tech Rep.

F98, 1982.
H. Edeisbrunner and E. Weizl, Halfplanar range search in linear space and Ofn
time, Tech. Univ. of Grez, Tech Rep. Fill, 1983.

0.695) query

. M. R. Garey, [. S. Johnson, F. P. Preparata and R. E. Tarjan, Triengulating a simiple pelygon,

Inf. Proc. Lett. 7{(4), pp. 175- 179, 1978,

. L. L Guibas and §. Stolfi, Primitives for the manipulation of general subdivisions and the

computations of Voronoi diagrams, Proc. 15th Annual SIGACT Symp., pp. 221-234, April 1983,

. L. Guibas, L. Ramshaw and J. Stolfi, 4 kinetic framework for computational geomeiry, Proc:

24:h Annpual FOCS Symp., pp. 100-111, November 1983

. D. G. Kirkpatrick, Optimal search in planar subdivisions, SIAM J. on Comp., Vol. 12, No. |,

pp. 28-35, February 1983.

R. i Lipton and R. E. Tarian, Applications of a plancr separator thecrem, S1AM J. Comp.,
9(3), pp. 615-627, 1980.

D. E. Muller and F. P. Preparata, Finding the intersection of iwo convex polyhedra, Theoret,
Comput. Sci. 7(1978), pp. 217-236.

. M. H. Overmars and }. van Leeuwen, Maintenance of configurations in the piane, Journat of

Computer and System Sciences, 23, p. 166-204, 1981,

. D. E. Wiliard, Polygon retrieval, SIAM 1. Comp,, 11, pp. 149-1865, 1982,
. F. F. Y80, 4 3-space partition and its applications, Proc. 15th Annual SIGACT Symp., pp.

258-263, April 1983

