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SUMMARY
A major challenge in cancer genomics is to identify genes with functional roles in cancer and uncover their
mechanisms of action. We introduce an integrative framework that identifies cancer-relevant genes by pin-
pointing those whose interaction or other functional sites are enriched in somatic mutations across tumors.
We derive analytical calculations that enable us to avoid time-prohibitive permutation-based significance
tests, making it computationally feasible to simultaneously consider multiple measures of protein site func-
tionality. Our accompanying software, PertInInt, combines knowledge about sites participating in interac-
tions with DNA, RNA, peptides, ions, or small molecules with domain, evolutionary conservation, and
gene-level mutation data. When applied to 10,037 tumor samples, PertInInt uncovers both known and newly
predicted cancer genes, while additionally revealing what types of interactions or other functionalities are
disrupted. PertInInt’s analysis demonstrates that somatic mutations are frequently enriched in interaction
sites and domains and implicates interaction perturbation as a pervasive cancer-driving event.
INTRODUCTION

Large-scale, concerted oncogenomic consortia, such as the

Cancer Genome Atlas (TCGA) and International Cancer Genome

Consortium (ICGC), have sequenced an unprecedented number

of tumor genomes from thousands of patients across tens of

cancer types (International Cancer Genome Consortium et al.,

2010; TCGA Research Network et al., 2013). Computational an-

alyses of these datasets promise a revolution in precision

oncology with additional insights into the genetic underpinnings

of a staggeringly complex and heterogeneous disease (Chin and

Gray, 2008). The recent, successful completion of these efforts,

heralded as the ‘‘end of the beginning’’ of cancer genomics, has

revealed a critical need for new methods that are able both to

detect less frequent cancer-driving mutational events as well

as to suggest the mechanistic, molecular impact of these muta-

tions (Bailey et al., 2018; The ICGC/TCGA Pan-Cancer Analysis

of Whole Genomes Consortium et al., 2020). More broadly, the

comprehensive detection of cancer-driving mutational events,

coupled with an understanding of their biological mechanism

of action, has the potential to expand our knowledge of altered

cellular processes in tumors, to reveal actionable, genetic simi-

larities between different cancer types, to inform how evolving,

heterogeneous populations of tumor cells may impact therapeu-

tic efficacy, and to further translational research and inform
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downstream clinical treatments (McGranahan and Swanton,

2017; Vogelstein et al., 2013).

Despite considerable efforts, the crucial first step toward

these goals—differentiating the small fraction of somatic muta-

tions with functional roles in cancer (‘‘drivers’’) from the prepon-

derance of neutral ‘‘passenger’’ mutations—still poses a sub-

stantial computational obstacle (Porta-Pardo et al., 2017).

While initial attempts to uncover cancer drivers at the gene level

based on frequency of mutation across tumor samples have

been fruitful (Dees et al., 2012; Lawrence et al., 2013), such

gene-centric, recurrence-based approaches are inherently un-

able to detect infrequently mutated driver genes and also cannot

distinguish amongmutations within the same gene that may lead

to distinct tumor phenotypes or clinical responses (Torkamani

and Schork, 2008). Indeed, different positions within genes can

contribute in varying degrees to different molecular functional-

ities; mutations falling within different gene positions can there-

fore have unequal impacts. In order to address the critical

need to detect and interpret rare mutational driver events, an

emerging class of ‘‘subgene’’ level approaches consider somatic

mutations affecting genes within the context of information

known about specific sites within their encoded proteins

(Porta-Pardo et al., 2017). Existing subgene-level methods

have derived such protein site functionality information from an-

alyses of evolutionary conservation (Adzhubei et al., 2010; Ng
2, July 22, 2020 ª 2020 The Author(s). Published by Elsevier Inc. 1
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and Henikoff, 2003; Reva et al., 2011), three-dimensional struc-

ture (Gao et al., 2017; Kamburov et al., 2015; Niu et al., 2016;

Porta-Pardo et al., 2015; Ryslik et al., 2014a; Tokheim et al.,

2016a), domains (Munro et al., 2018; Peterson et al., 2017;

Porta-Pardo and Godzik, 2014), or post-translational modifica-

tion (Reimand and Bader, 2013; Zhao et al., 2017). These

methods, however, tend to identify cancer genes by considering

whether somatic mutations alter just a single type of functionality

(e.g., determining whether mutations are enriched only within

protein domains [Porta-Pardo and Godzik, 2014] or only within

phosphorylation sites [Reimand and Bader, 2013]), whereas so-

matic mutations within putative driver genes have been found to

disrupt a broad range of protein functionalities. On the other

hand, machine learning approaches to classify cancer drivers

incorporate multiple types of information, but due to their ‘‘black

box’’ nature, mechanistic interpretations of their predictions are

not possible (Carter et al., 2009; Shihab et al., 2013).

Weandothershavepreviouslydemonstrated thatdetectingpro-

teins that harbor somaticmutations in their interaction interfaces is

a particularly effective approach topinpoint infrequent drivermuta-

tionsaswell as reasonabout theirmolecular impactsand therapeu-

tic sensitivities (Engin et al., 2016; Ghersi and Singh, 2014; Gress

et al., 2016; Kamburov et al., 2015; Kar et al., 2009; Nishi et al.,

2013; Porta-Pardo et al., 2015; Stehr et al., 2011). Indeed, several

cancer driver genes, including TP53 and IDH1, are well known to

harbor mutations within their interaction sites (Nishi et al., 2013).

While traditionally interaction sites have been identified directly

for the small fraction of human genes with actual or modeled co-

complex structures, we have recently developed a domain-based

approach that accurately detects residues that interact with DNA,

RNA, peptides, ions, or small molecules across 63% of human

genes (Kobren and Singh, 2019). A robust computational frame-

work that utilizes this vastly expandedknowledgebase about inter-

action sites and explicitly integrates it with additional lines of evi-

dence regarding subgene functionality would provide a powerful

new approach not only to detect but also to interpret a wide range

of mutations driving protein dysfunction in cancer.

Here, we introduce a fast, interpretable, and easily extendable

framework that enables us to uncover whether somatic muta-

tions within genes are enriched in sites associated with high

measures of ‘‘functionality’’ as determined by multiple, possibly

correlated, lines of evidence. Our implementation PertInInt (pro-

nounced ‘‘pertinent,’’ perturbed in interactions) incorporates

interaction site information, along with evolutionary conservation

and domain membership information, as each of these mea-

sures informs which sites are important for protein functioning.

We derive analytical calculations that obviate the need to

perform time-prohibitive permutation-based significance tests,

thereby making it feasible to integrate, in a principled manner,

these distinct measures of subgene-level functionality. Further,

we extend our framework to consider whole-gene mutation

rates, as genes that are recurrently mutated across tumors are

often found to be causally implicated in cancers (Forbes et al.,

2010). While other approaches have combined the output of

multiple programs post hoc (e.g., Bailey et al., 2018), PertInInt in-

tegrates multiple alternate sources of subgene resolution data

with whole-gene mutational frequency within a single unifying

framework in order to detect, evaluate, and infer the molecular

impact of patterns of somatic mutations within all human genes.
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We apply PertInInt to somatic missense mutation data arising

from 10,037 tumor samples across 33 cancer types to identify

genes with the most enriched mutational patterns. We find that

while each source of information—interaction, domain, evolu-

tionary conservation, and whole-gene mutation frequency—is

individually predictive of cancer genes, PertInInt uncovers

more comprehensive sets of cancer-relevant genes when

considering all sources of information together. We demonstrate

that PertInInt is able to identify even those cancer genes with

relatively low overall mutation rates, and that PertInInt readily

outperforms previous methods while revealing whether and

what type of interaction potential is perturbed. PertInInt finds

that numerous known oncogenes and tumor suppressors have

an enrichment of somatic mutations within their interaction inter-

faces and, in addition, predicts new cancer-relevant genes along

with their altered interaction functionalities. Altogether, PertInInt

provides a highly effective integrative framework to analyze

large-scale cancer somatic mutation data and further our under-

standing of the molecular mechanisms driving cancers.

RESULTS

Overview of the PertInInt Framework
PertInInt aggregates somatic mutational data observed across

tumor samples and identifies for each gene whether certain

types of its functional sites are enriched in somatic mutations

and/or whether the gene exhibits a high mutation rate across

its length. We briefly overview our approach next (see also Fig-

ure 1); more details can be found in the STAR Methods section

and Figure S1.

Different measures of protein site functionality are modeled

using distinct ‘‘tracks’’ where each position within a track has a

corresponding 0 to 1 weight that reflects its importance with

respect to the functionality being considered (Figure 1A). Though

any type of annotated functional region can be incorporated into

our framework, here, we consider four specific types of tracks.

First, "interaction tracks" model various protein–ligand interac-

tion interfaces, where higher positional weights indicate that

those positions are more likely to participate in interactions

with a ligand; each interaction track corresponds to the subset

of protein positions where we have any knowledge about

ligand-binding potential (Figures S1A–S1C). Second, "domain

tracks" span the length of the protein and simply identify portions

of the protein sequence that correspond to the domain of inter-

est; weights are 1 for amino acid positions within the domain and

0 elsewhere (Figure S1D). Third, the "conservation track" is also

the length of the protein sequence, and the weight of each posi-

tion measures its conservation across vertebrate homologs;

higher weights correspond to positions under more evolutionary

constraint (Figure S1E). Finally, to determine whether a gene as a

whole has more mutations than expected, we extend our frame-

work to incorporate the "natural variation track," which has a sin-

gle entry per gene that reflects its background mutation rate, as

estimated from the number of variants this gene has across

healthy populations (Lek et al., 2016; Przytycki and Singh,

2017) (Figure S1F). Approximately 63% and 90% of human

genes have per-site information about interactions or domains

respectively, while all genes have per-site conservation values

and background gene-level mutation rates. A gene may have



Figure 1. PertInInt Uncovers Cancer Driver Genes by Integrating Per-Site Interaction, Domain, and Conservation Information with Whole-

Gene Mutation Frequency Data

(A) Somatic mutations (orange triangles) found across sequenced tumors that affect a protein sequence (jagged line) with three domains (gray regions) are

evaluated with respect to different measures of functionality, each represented as a ‘‘track.’’ In interaction tracks (red), positions that are more likely to participate

in ligand interactions have higher weights (vertical bars). Interaction tracks arise from domain-based binding potential calculations (Kobren and Singh, 2019) (top

two red tracks, each covering the length of the respective domain) or homology modeling (Ghersi and Singh, 2014) (bottom red track, covering the length of the

modeled region). Domain tracks (green) specify which residues within a protein are part of a specific domain by 0/1 positional weights; here we have a track for

each domain within the sequence. The conservation track (blue) weights each position by its evolutionary conservation across species. The natural variation track

(purple) models howmuch each gene varies across healthy populations; here the height of the vertical bars indicates the background mutation probability rather

than a per-gene weight, which is 1 for the gene being considered and 0 otherwise. Figure S1 gives further intuition about how these track weights are determined.

(B) For each trackW, we compute the score SW of the observed somatic mutations as the sum of the track weights for the positions where they appear (top). To

determine whether this score is higher than expected, we consider a model where somatic mutations are shuffled across the positions of the track, and the

expected score (E½SW �) and the standard deviation of the scores (sSW
) are computed and used to estimate per-track Z scores (bottom); note that in our framework

these values are computed analytically instead of relying on the shuffles.

(C) Z scores for all tracks are combined after analytically determining a background covariance model.
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numerous interaction and domain tracks (e.g., for different

modeled interaction regions and for each of its identified do-

mains) but has only a single conservation and natural varia-

tion track.

For each track, we consider the somatic mutations observed

across tumor samples that fall within positions of that track

and compute a per-track score as the sum of the per-track

weights of the positions that each of the mutations fall into (Fig-

ure 1B); intuitively, a high score corresponds to the case where a

large number of mutations fall within important track positions.

To determine whether the score for a track is more than ex-

pected by chance, we could shuffle themutations across the po-

sitions of the track, and use the mean and standard deviation

computed from these permutations to compute a Z score; how-

ever, the mean and standard deviation for each track can be

computed analytically. For each protein, we next combine the in-

formation from each of its tracks. Because tracks can overlap

along the length of the protein sequence, and the somatic muta-

tions that fall in each of them can also overlap, these tracks

cannot be treated independently. Instead, for the background

model we derive an approach to compute the covariance be-

tween tracks analytically and then use this covariance matrix

to estimate a combined score (Figure 1C; see STAR Methods

for derivations). We find that even when considering just a single

track, our analytical formulation leads to >73 speedup over each

empirical permutation (Figure S2). In practice, numerous shuffles

are necessary to compute the mean and variance for a single
track, and empirical calculations to estimate the covariance

across all tracks is prohibitively slow, highlighting the power

and necessity of our analytical formulation.

The final per-gene score output by PertInInt considers whether

somatic mutations across samples are enriched (1) in positions

with high ligand-binding potential for an interaction track, (2)

within domain positions for a domain track, (3) within conserved

sites for the conservation track, and (4) within the gene overall.

PertInInt Effectively Identifies Cancer Driver Genes via
Integrating Multiple Sources of Information
We run PertInInt on somatic point mutation data aggregated

across 10,037 pan-cancer tumor samples and 33 tumor types

from TCGA (TCGA Research Network et al., 2013) (Figure S3

and Table S1). PertInInt’s analytical formulation enables the

simultaneous consideration of multiple types of biological data

regarding protein functionality. However, to first uncover to

what extent each source of information—per-site interaction,

domain, and conservation information as well as overall gene

mutational frequency—is independently useful for identifying

cancer-relevant genes, we run PertInInt on the pan-cancer data-

set when restricted to each of these track types in turn. To vali-

date the method in the absence of a complete gold standard, as

we consider an increasing number of output genes, we compute

how ‘‘enriched’’ this set is in genes from the Cancer Gene

Census (CGC), a curated list of genes implicated in cancer (Fu-

treal et al., 2004). In particular, enrichment is computed as the
Cell Systems 11, 1–12, July 22, 2020 3
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ratio between the fraction of CGC genes in the set of top-scoring

genes considered (i.e., the precision) and the fraction of CGC

genes in the whole set of genes (i.e., the precision you would

expect to achieve if genes are randomly ordered).

We find that utilizing subsets of only interaction, only domain,

only conservation, or only natural variation tracks in turn can

recapitulate known CGC genes to varying degrees, with interac-

tion tracks identifying the largest number of known driver genes

while maintaining perfect precision relative to other track sub-

sets (Figure 2A). Our integrative framework that incorporates

all track types outperforms every version of our algorithm that

considers only subsets of information; indeed, considering any

two sources of biological information outperforms versions of

PertInInt that utilize only one source, and considering any three

sources of data tends to improve performance even further (Fig-

ure 2B). Attempts to combine per-track scores without account-

ing for between-track covariance (e.g., by summing or averaging

track Z scores) not only are incorrect but also perform consider-

ably worse in detecting cancer-relevant genes (Figure S4). Alto-

gether, these results demonstrate the ability of our approach to

effectively leverage the distinct contributions of multiple,

complementary data sources regarding protein position and

whole-gene functionality in order to uncover cancer driver

genes. Furthermore, the enrichment of cancer genes among

PertInInt’s top predictions remains when considering different

gold standards (Figure S5).

We find low overlap between the sets of CGC genes identified

when utilizing distinct track types, indicating that mutations

within cancer genes tend to target a diverse array of functional

elements (Figure 2C). Only a small minority of CGC genes (less

than 10%) are identified by all four track types within the top

200 ranked genes. Mutations falling into known tumor suppres-

sor PTEN, for instance, tend to hit evolutionarily conserved pro-

tein positions but do not alter known inferred interaction inter-

faces or domain regions more than expected by chance. In

contrast, a small molecule-binding pocket in the IDH2 oncogene

is recurrently mutated across cancers, and, thus, it is readily de-

tected using interaction tracks alone but is less significantly

ranked when PertInInt is restricted to other functionality data.

Lowly Mutated Genes Harbor Mutations that
Preferentially Alter Functional Sites
We next show that PertInInt’s integrative approach can highlight

genes with preferentially altered functional sites that may be

lowly mutated overall; such ‘‘long tail’’ driver genes are easily

missed by traditional frequency-based driver gene detection ap-

proaches. When run on the pan-cancer dataset utilizing all track

types, PertInInt ranks highly several such infrequently mutated

genes (Figure 3A). Of the top 35 genes ranked by PertInInt on

the pan-cancer dataset, we find that 20 have a missense muta-

tion rate less than one-twentieth of the maximum observed mu-

tation rate (Figure 3B). These high-scoring long tail genes include

novel genes with potential roles in cancer as well as known driver

genes that cannot have been identified based solely on their rela-

tive mutation frequency (e.g., KMT2D andCIC, Figure 3B). Of the

20 highly ranked infrequently mutated genes, 18 harbor per-

turbed interaction sites, enabling immediate molecular insights

regarding their roles in cancer. For example, among long tail

genes that are highly ranked by PertInInt but have not yet been
4 Cell Systems 11, 1–12, July 22, 2020
identified as cancer relevant, several have an enrichment of mu-

tations in their DNA or small molecule interaction sites (e.g.,MGA

and GRIN2D, Figure 3B), in line with previous observations that

many cancer driver genes exhibit these types of protein interac-

tion perturbations (Delgado and León, 2006; Jeggo et al., 2016;

Raimondi et al., 2017).

Mutations Are Distributed across Interaction Interfaces
For each protein with a significantly perturbed interaction inter-

face, we next sought to determine whether mutations are found

within a small number of interaction sites or across several inter-

action sites. We consider all sites within the protein with non-

zero interaction track weights and use the frequency with which

somatic mutations occur within each of them to compute a

normalized Shannon entropy (Shannon, 1948). Higher entropies

correspond to proteins with mutations spread across many

interaction sites, whereas low entropies correspond to muta-

tional patterns that can be uncovered by methods that look for

mutation ‘‘hotspots’’ (Chang et al., 2016). As expected, PertInInt

highly ranks several oncogenes that have previously been de-

tected by hotspot detection algorithms due to their recurrent mu-

tations in critical interaction positions (e.g., IDH1, BRAF, and

NRAS). However, there are also many genes with significantly

perturbed interaction interfaces where mutations are spread

more widely across their interaction sites (Figure 3C). Known

cancer genes DICER1, SMARCA4, CREBBP, and KMT2D, for

instance, are among the top 35 genes ranked by PertInInt and

contain significantly mutated interaction sites (combined score

across interaction tracks > 6), each with several interaction sites

that together harbor an enriched number of somatic mutations.

Notably, this analysis reveals that the top-ranked genes with

significantly perturbed interaction interfaces include both onco-

genes and tumor suppressor genes (TSGs), reflecting a dichot-

omy in the impact of binding interface mutations. Whereas

some specificmutations within interaction sites have been linked

to oncogenic activity (Stehr et al., 2011), other binding site muta-

tions are known to entirely disrupt critical interactions and overall

protein function (Cho et al., 1994). Although we model the inter-

action sites of similar numbers of oncogenes and TSGs (238 and

246 respectively), we find that among the 50 genes with the high-

est enrichment of mutations within their interaction sites, the

enrichment of oncogenes is 2.36-fold greater than the enrich-

ment of TSGs. Nevertheless, PertInInt uncovers perturbed inter-

action interfaces in many genes that have been previously iden-

tified as drivers due to nonsense, frameshift, or other relatively

disruptive mutations typically associated with TSGs (e.g.,

RUNX1 and FOXO1). Indeed, enriched yet less common interac-

tion-altering missense mutations uncovered by PertInInt may

correspond tomore subtle knockdown phenotypes or previously

underappreciated oncogenic activities of genes traditionally

characterized as TSGs.

PertInInt Outperforms Previous Methods in Detecting
Cancer Genes
Having demonstrated that PertInInt can identify interaction inter-

faces enriched in mutations across tumor samples, and that this

is highly predictive of cancer genes, we next turn to assessing

PertInInt’s performance as compared with previously published

methods (Chang et al.,2016; Lawrence et al., 2014; Melloni et al.,



Figure 2. PertInInt Is Highly Effective in Uncovering Cancer Driver Genes Due to Combining Multiple Sources of Information

(A) Enrichment of CGCgenes (y axis) within a given number of top-scoring genes (x axis) when run on the pan-cancer dataset using all tracks together (black), only

interaction tracks (red), only domain tracks (green), only the conservation track (blue), and only the natural variation track (purple). Enrichment is computed as the

ratio between the fraction of CGC genes in the set of top scoring genes considered (i.e., the precision) and the fraction of CGC genes in the whole set of genes

(�0.0334). While uncovering genes enriched for somatic mutations within only interaction sites, only domain positions, only conserved sites, or only over their

lengths each yields cancer-relevant genes, performance is highest when PertInInt uses all sources of information together.

(B) Percent improvement in the area under the enrichment curve for the top 200 genes when using all track types versus specific subsets of tracks. PertInInt is

more effective in uncovering CGC genes when using all sources of information together than when using any other of the possible subsets of information.

(C) Venn diagram showing the overlap of CGC genes detected in the top 200 genes ranked when considering only interaction, only domain, only conservation, or

only natural variation tracks. The different sources of information yield distinct yet overlapping sets of cancer genes.
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2016; Mularoni et al., 2016; Porta-Pardo et al., 2015; Porta-

Pardo and Godzik, 2014; Przytycki and Singh, 2017; Ryslik

et al., 2013, 2014b; Tamborero et al., 2013; Ye et al., 2010) for de-

tecting cancer driver genes (see STAR Methods). These

methods differ substantially in terms of their statistical models
and overall goals and, unlike PertInInt, are largely unable to

distinguish among the various types of interaction and other

functional perturbations affecting the identified genes.

When applied to tumor samples from the pan-cancer dataset,

our method has a greater enrichment for CGC genes than the
Cell Systems 11, 1–12, July 22, 2020 5



Figure 3. Perturbed Interaction Interfaces

across Oncogenes and Tumor Suppressors

(A) Shown are the missense mutation rates (y axis)

of the top 200 genes ranked by PertInInt (x axis).

Top-ranked genes are both highly and infrequently

mutated. Genes are colored as in (C). The shaded

gray box highlights the plot to 35 genes, which are

featured in the part (B) inset.

(B) Genes are ordered by their per-tumor-sample

missense mutation rate in the pan-cancer dataset

(x axis), and their missensemutation rate is given (y

axis). PertInInt’s top 35-ranked genes are plotted

in color and exhibit a wide range of ranks with

respect to mutation rate. Of these, only genes with

below-median overall mutation rates and a Z score

R 1 in at least one interaction track are labeled.

(C) For each of the top 200 genes ranked by Per-

tInInt (x axis), for thosewith a Z scoreR 1 in at least

one interaction track, we also analyze the distri-

bution of somatic mutations across interaction

sites and compute their normalized Shannon en-

tropy (y axis). These genes contain recurrent (low

variation) as well as more distributed (high varia-

tion) mutations across their binding interfaces.
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other tested methods that we were able to run (Figure 4A). Per-

tInInt also outperforms these other methods in terms of enrich-

ment of CGC genes among top-ranked genes even after we

exclude tumor samples from the six most highly mutated cancer

types with 100+ missense mutations per patient on average,

demonstrating that PertInInt’s superior pan-cancer performance

is not driven by samples from cancer types that contribute large

numbers of mutations (Figure S6). PertInInt’s greater enrichment

as compared with other methods is observed as well for other

lists of driver genes, and, furthermore, neither PertInInt nor any

of the other tested methods show any enrichment for sets of

genes that have been suggested to be unlikely to play roles in

cancer (Figure S7; Table S2). Notably, the genes ranked highly

by PertInInt differ substantially from those identified by other ap-

proaches (Figure 4B). Specifically, the set of genes identified by

PertInInt has a consistently low Jaccard index (JI) with sets of

genes ranked by alternate methods (JI < 0.5 across all methods

for top 25 genes, JI < 0.25 across all methods for top 150 genes).

Moreover, due to our analytical formulation, PertInInt can pro-

cess the pan-cancer mutational data while considering multiple

sources of data about protein functionality in 10 min on a single
6 Cell Systems 11, 1–12, July 22, 2020
core of standard desktop; alternate

methods each consider a limited set of

mutational patterns and range in runtime

from minutes to days (Table S3).

We also repeat our analysis on datasets

restricted to samples from one cancer

type, as many alternate methods that

failed to run on the pan-cancer dataset

are able to run on these substantially

smaller subsets of tumor genomes. We

find that in general across individual can-

cer datasets, PertInInt tends to achieve a

higher area under the enrichment curve

than other methods, including whole-
gene methods, and a version of PertInInt that includes only sub-

gene resolution tracks also outperforms other subgene methods

(Figure S8). We note that since individual cancer types obviously

have smaller total numbers of somatic mutations as compared

with the combined pan-cancer dataset, the Z scores computed

by PertInInt when run on individual cancers tend to be smaller

than PertInInt’s pan-cancer Z scores; this trend is especially

notable for cancer types with fewer samples and/or lower muta-

tion rates. Similarly, fewer tracks can be evaluated for signifi-

cance in the per-cancer analysis; this has a larger effect on inter-

action tracks in particular as they tend to involve fewer protein

positions. Indeed, we find that the relative proportions of track

types with positive Z scores for each cancer type are not notably

different from each other, with the exception that the highly

mutated cancer types (i.e., colorectal, lung, and stomach adeno-

carcinomas; skin cutaneous melanoma; and uterine corpus

endometrial carcinoma, see Figure S3) each have a greater num-

ber of positively scoring domain and interaction tracks relative to

other cancer types. Despite these differences when run on

different cancer types, PertInInt is able to readily recover ‘‘can-

cer-specific’’ drivers (e.g., EIF1AX in uveal melanoma), and our



Figure 4. Detection of Known Cancer Genes from a Pan-Cancer Dataset by PertInInt and Alternate Methods

Each driver gene detection method was run on the pan-cancer set of missense mutations.

(A) Curves indicate the enrichment of CGC genes (y axis) as we consider an increasing number of output genes (x axis) for each driver gene detection method.

Enrichment is computed as the ratio between the fraction of CGC genes in the set of top-scoring genes considered (i.e., the precision) and the fraction of CGC

genes in the whole set of mutated genes (�0.0334). All methods scored at least 3,000 genes except for Hotspot (orange solid line), which only returned 1,530

genes and whose curve ends at that point. The gray shaded area highlights the plot to 200 genes, a closeup of which is shown in the inset. Vertical lines at 10, 50,

100, and 200 ranked genes in the inset correspond to gene set sizes featured in part (B).

(B) JIs are calculated between the top 10, 50, 100, and 200 genes output by PertInInt and the corresponding top 10, 50, 100, and 200 genes output by each other

method. Lighter colors indicate lower JIs and less overlap between the gene sets.
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analysis also reveals that genes that play dominant roles in

certain cancer types may be important for smaller proportions

of tumor samples in alternate cancer types as well (e.g., the

same gene in thyroid carcinoma, Figure S9). Overall, our results

show that PertInInt is a powerful method for evaluating muta-

tional patterns across tumors of the same cancer type as well

as across a pan-cancer dataset covering over 10,000 tumor

genomes.

Distinct Perturbed Molecular Mechanisms Uncovered
across Genes
Having shown that PertInInt is highly effective in identifying can-

cer genes, we next demonstrate its additional power to pinpoint

which specific functional regions andmechanisms are perturbed

by analyzing each track separately and determining which have

positive Z scores (Table S4). Altogether, we find that 665 CGC

genes have at least one subgene functionality track with a Z

score R 0.5, representing functional coverage of 93% of all

CGC genes (Figure 5). Specifically, we find that DNA, RNA, pep-

tide, ion, and small molecule interaction sites are enriched inmu-

tations in 16%, 5%, 19%, 14%, and 22%of CGC genes, respec-

tively; these numbers go up to 23%, 5%, 27%, and 24% of CGC

genes if including those that are more broadly enriched in muta-

tions across, respectively, DNA-binding, RNA-binding, peptide-

binding, or metabolite-binding domains (as categorized in

Pfam2Go;Mitchell et al., 2015). Up to 77%of CGC genes are en-

riched in mutations across at least one domain or interaction

interface. We note that the perturbed nucleic acid and small

molecule domains or binding sites found across 45% of cancer
genes would not be readily identified by analyses that focus

exclusively on protein–protein interaction alterations (Porta-

Pardo et al., 2015).

We now highlight a few of these genes that, though not present

in the CGC, were uncovered by PertInInt as having significantly

mutated interaction interfaces. For instance, transcription factors

MGA and KLF5 harbor mutations within their basic helix-loop-he-

lix and C2H2-ZF domains, respectively, that alter their DNA base-

binding positions (Figure 6A), suggesting cancer-specific changes

to normal DNA-binding and downstream regulatory activity.

Indeed, KLF5’s E419Qmutation has recently been experimentally

shown to change wild-type binding preferences and increase the

expression of tumor progression genes in vivo (Zhang et al., 2018).

Similarly,MGA normally subdues the activity of well-known onco-

gene MYC; its frequent deletion, truncation, or mutated binding

properties across cancers further indicates its role as a tumor sup-

pressor (Schaub et al., 2018). We also find that two RNA-binding

genes DIS3 and SF1 exhibit significant mutations in their putative

RNA-binding sites, with recurrent mutations in DIS3 altering mul-

tiple distinct RNA-contacting positions (Figure 6B). In support of

our predictions,DIS3 is recurrentlymutated in blood and skin can-

cers and has been identified as a candidate oncogene in colo-

rectal cancer (de Groen et al., 2014). SF1 is recurrently mutated

across cancers in a mutually exclusive fashion (i.e., indicating its

analogous functionality) toRBM10, a gene found to drive aberrant

splicing events in cancer (Seiler et al., 2018).

PertInInt also newly implicates a number of genes—present

neither in the CGC nor on other lists of known cancer genes

(Bailey et al., 2018; Kandoth et al., 2013; Lawrence et al., 2014;
Cell Systems 11, 1–12, July 22, 2020 7



Figure 5. Perturbed Mechanisms across

Oncogenes, Tumor Suppressor Genes, and

Putative Cancer Genes

Gene names are colored bydriver status; genes that

are not yet known to be cancer drivers but have a Z

scoreR 0.5 in one or more interaction tracks are in

lavender. For each gene, the circles indicate the Z

scores for enrichment of mutations in particular

types of tracks, with interaction tracks in red,

domain tracks in green, and the conservation track

in blue. Z scores for mutational enrichments in

domain tracks are shown only if the Z scores for the

corresponding interaction tracks are < 0.5. Z scores

for the conservation track are shown only ifZ scores

for all other track types are < 0.5.

(A and B) (A) PertInInt’s top 50 ranked known cancer

driver genes and (B) top 50 ranked putative cancer

driver genes with a significantly mutated interaction

trackexhibit awide rangeofperturbed functionalities.
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Vogelstein et al., 2013)—with mutations that appear to alter crit-

ical small molecule-binding positions (Figure 6C). The highly

conserved kinase GSK3A for instance harbors a significant

enrichment of mutations altering its ATP-binding positions. Sup-

porting our prediction, suppression of this gene is associated

with impaired growth and induction of apoptosis and it has

recently been proposed as a potential therapeutic target in acute

myeloid leukemia (Banerji et al., 2012; McCubrey et al., 2014).

We also find that the S-type lectin LGALS4 has an enrichment

of mutations altering the b-galactoside sugar-binding positions

in its galectin domains; indeed, LGALS4 has been linked to the

regulation of the cancer-relevant Wnt signaling pathway and

has been experimentally implicated as a tumor suppressor in

colorectal cancer cells in vitro (Satelli et al., 2011).

To more broadly characterize PertInInt’s novel cancer gene

predictions, we use gene set enrichment analysis (GSEA) (Moo-

tha et al., 2003; Subramanian et al., 2005) with Reactome path-

ways (Jassal et al., 2020) on the ranked list of non-CGC genes

output by PertInInt with combined score R 1 (Table S5). GSEA

uncovers 12 enriched Reactome pathways at false discovery

rate (FDR) corrected p value (or q-value) < 0.2, including known

cancer pathways such as Ras (q-value = 0.102), and signaling

pathways mediated by known cancer genes, such as CREB1

(q-value = 0.042), NOTCH3 (q-value = 0.071), and PDGF (q

-value = 0.195). In addition, a pathway related to cell adhesion,

which is known to be disrupted especially in metastatic tumors,
8 Cell Systems 11, 1–12, July 22, 2020
is also enriched (e.g., L1-ankyrin interac-

tions, q-value = 0.078). Intriguingly, two

enriched pathways suggest that nervous

system-related functionalities may play

roles across tumors (q-value < 0.2), an

observation that has only very recently

been explored (Zeng et al., 2019).

DISCUSSION

In this work, we have introduced a fast,

integrative framework to detect cancer

driver genes by uncovering whether so-
matic mutations across tumors are enriched in sites of different

types of functionalities. Our method utilizing this framework, Per-

tInInt, integrates knowledge from the largest set of protein–

ligand interaction sites to date (Ghersi and Singh, 2014; Kobren

and Singh, 2019) with additional biological data regarding sub-

gene functionality and whole gene mutability (Figures 1 and

S1). When applied to over 10,000 tumor samples from 33 cancer

types, PertInInt reveals a broad range of perturbed functional-

ities in several known driver genes as well as in relatively rarely

mutated genes with predicted tumorigenic roles (Figures 3A,

3B, and 5). Notably, PertInInt finds that mutations within many

known driver genes are enriched in protein interaction interfaces

(Figure 2A) and more broadly implicates interaction perturbation

as a frequent phenomenon in cancer cells (Figure 5).

Analyses of predicted cancer-relevant coding mutations often

involve—whenever possible—assessing their putative effect

with respect to protein structure (Bailey et al., 2018; Chang

et al., 2016; Kamburov et al., 2015; Niknafs et al., 2013; Raimondi

et al., 2017). Although using structure directly to identify relevant

mutations is rarely scalable in terms of runtime and coverage

(Ryslik et al., 2013), PertInInt’s use of structurally predefined re-

gions mediating protein interactions makes large-scale analyses

in the context of protein structure feasible. Moreover, since can-

cer-driving genetic aberrations do not always involvemutation of

protein–ligand interaction interfaces, a critical additional feature

of PertInInt—that extends its coverage to all human genes—is



Figure 6. Examples of Genes Ranked Highly by PertInInt that Are Not Known to Be Drivers

Across the length of each gene (x axis), the number of missense mutations at each protein position is given (y axis). Vertical bars corresponding to mutations

affecting binding sites are colored red. The band along the x axis depicts the likelihoods with which residues at each protein position are expected to interact with

the specified ligand, with darker bars corresponding to higher (R0.25) binding likelihoods. Domain locations and names are shown below.

(A) Putative cancer genes MGA and KLF5 are enriched for mutations in DNA base-binding positions.

(B) Putative cancer genes DIS3 and SF1 are enriched for mutations in RNA-binding positions.

(C) Putative cancer genes GSK3A and LGALS4 are enriched for mutations in small molecule- (ATP and b-galactoside sugar, respectively) binding positions.
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that it seamlessly incorporates additional lines of evidence

regarding protein site functionality. While here we have demon-

strated that PertInInt effectively utilizes per-site evolutionary

conservation and domain knowledge, we anticipate that encod-

ing more sources of functional information within our framework

(e.g., known phosphorylation sites or intrinsically disordered re-

gions) will unearth other driver mutations and alternate mecha-

nisms of action. Incorporating structurally resolved information

from protein–protein interaction networks will also be a valuable

direction for future work.

Genes that are frequently mutated across their lengths tend

not to overlap genes that exhibit nonrandom patterns of muta-

tions across individual protein positions, a pattern that has

previously been leveraged to distinguish TSGs from oncogenes

(Tokheim et al., 2016b; Vogelstein et al., 2013). By incorporating

whole gene mutability information into our existing framework,

we are able to uncover and profile a much more comprehensive

set of both oncogenes and TSGs (Figures 2B and 3C). Although

previous methods have also considered the frequency and

spatial patterning of mutations within genes together (Korthauer

and Kendziorski, 2015; Lawrence et al., 2013; Tokheim et al.,

2016b), we also simultaneously infer specific perturbed molecu-

lar mechanisms within uncovered genes. We note that while mu-

tation deleteriousness predictors—developed both in the

context of cancer (Carter et al., 2009; Shihab et al., 2013) and
otherwise (Adzhubei et al., 2010)—can evaluate the impact of so-

matic mutations, they tend to integrate multiple sources of

protein site functionality information via complex statistical or

machine learning approaches, where the contribution of each

data source and thus subsequent mechanistic interpretations

are obscured. In contrast, by determining mutational enrich-

ments in specific types of functional sites, PertInInt is able not

only to identify cancer-relevant genes but also to begin to explic-

itly reason about the biomolecular impacts of mutations. Indeed,

uncovering the mechanisms of action for cancer-driving muta-

tional events has been a major bottleneck in the critical step of

translating this knowledge to improve patient care and outcomes

(The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Con-

sortium et al., 2020).

Given the success of large-scale cancer genome sequencing

consortia projects in expanding our knowledge of basic cancer

biology (Bailey et al., 2018; Ding et al., 2018; Hoadley et al.,

2018; Sanchez-Vega et al., 2018), coupled with the decreased

cost of genome sequencing, it is clear that sequencing tumor ge-

nomes will be routine practice in both basic science and clinical

settings, thereby rapidly increasing the number of sequenced tu-

mors available for analysis. Importantly, PertInInt’s analytical

framework enables it to efficiently process increasing numbers

of tumor genomes; further, this speed is accompanied by better

identification of cancer-relevant genes when run on larger
Cell Systems 11, 1–12, July 22, 2020 9
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numbers of tumor samples (Figure S10). Since PertInInt’s under-

lying analytical framework is general, we anticipate that it will

also be effective in other settings. For example, because very

few non-coding somaticmutations in cancer tend to be recurrent

(Khurana et al., 2016), it may be especially powerful for identi-

fying regulatory regions with an enrichment of mutations within

sites associated with different measures of functionality (e.g.,

binding sites for different proteins).

In the future, one of the most tantalizing prospects of cancer

genomics is its potential in transforming clinical practice. While

identifying and linking cancer mutations to personalized treat-

ments remains a daunting challenge, PertInInt dramatically ac-

celerates the detection of rare mutational driver events from

sequenced tumors while providing important information about

their mechanisms of action, a key step in developing and

customizing targeted therapeutic regimens.
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Lead Contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Mona Singh (mona@cs.

princeton.edu).

Materials Availability
This study did not generate new unique reagents or materials.

Data and Code Availability
All original code generated during this study are available at http://github.com/Singh-Lab/PertInInt.

METHOD DETAILS

Protein Site-Based Functional Tracks
Any pre-defined functional region of a protein can be encoded as a track in the PertInInt framework. Currently, we consider three

types of per-site functional annotations—interaction, domain, and conservation—the former two of whichmay yieldmultiple subgene

resolution tracks per protein. Each type of track is described in more detail below.

Interaction Tracks

Interaction tracks correspond to portions of a protein that are inferred to interact with ligands. These tracks arise in two ways.

First, we leverage sequence homology directly to transfer information from co-complex structures to human protein sequences as

previously described (Ghersi and Singh, 2014). For proteins with one or more regions whose structure in complex with a ligand could

be homology-modeled, we introduce a track for each contiguous homology-matched region. Per-position weights reflect the

observed residue-to-ligand proximities, computed as the fraction of atoms in the amino acid residue found within 4.0Å of the ligand.

Second, we utilize the set of ‘‘confident’’ domain–ligand interactions from the InteracDome database (v0.3) (Kobren and Singh,

2019) to identify putative ligand-binding positions. We subset this collection to the 9,142 domain–ligand interactions across 1,850

domains that were characterized by InteracDome using at least five structural instances. Each position within an InteracDome

domain is associated with a ‘‘binding frequency’’ between 0 and 1 that corresponds to the fraction of the time residues in this position

were found to be in contact with the ligand of interest when analyzing co-complex structures. For each human protein, we identify

instances of InteracDome domains using HMMER (v2.3.2 and v3.1b2), and require complete, high-scoring domain instances as

previously described (Eddy, 2011; Finn et al., 2014; Kobren and Singh, 2019). Within a protein, there is a separate track for each

domain–ligand instance within it; this track consists of the residues comprising the match states of the domain, and the weights

of these residues are the binding frequencies for the ligand in the corresponding domain positions.

Finally,wenote that somedomain interactionsaremediatednot by individual domain instancesbutby repeating instancesof the same

domain family. Tocapture these interfaces,wealsoconsider additional tracksencodingmultiple instancesof thesamedomain family ina

protein; these ‘‘aggregate’’ tracks span noncontiguous intervals that correspond to the locations of individual domain instances, with

track positions weighted according to the binding frequencies at corresponding domain match states as described above. Interaction

domain tracks corresponding to domain families with 40+ instances in the same protein are replaced by their aggregate tracks.
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Domain Tracks

For each Pfam-A (v31.0) domain instance within a protein sequence, there is a domain track that specifies which amino acids

comprise the domain (Finn et al., 2014). Domain tracks span the length of the protein, and positions within and outside of the domain

instance are respectively assigned weights of 1 and 0. We again also encode aggregate domain tracks as before to model functional

regions mediated by repetitive domain families.

Conservation Tracks

Each protein has a single conservation track. We obtain the 100-vertebrate cross-species protein multiple sequence alignment from

the UCSC Genome Browser (Meyer et al., 2013) and compute per-protein-position conservation-based functionality weights by

multiplying the fraction of non-gap residues in the column by the Jensen-Shannon divergence (JSD) between those non-gap residues

and a Blosum 62 background amino acid distribution (Capra and Singh, 2007).

Per-track Functional Mutation Scores
Suppose we have a protein sequence of length L spanning positions P = fp1;.;pLg. This protein is associated withmultiple ‘‘tracks’’

W, each defined as W4P, where each position pi˛W is associated with a real-valued weight wi˛½0; 1� reflecting its functionality

with respect to the track. Suppose there are n cancer somatic missense mutations across a cohort of tumor samples that fall in

positions included in track W. For each mutation i, let zi˛fz1;.; zng be the weight in track W of the position where that mutation

lies. We further consider the case where each mutation i is associated with a value fi˛ð0;1�; here, each fi is set to the proportion

of sequencing reads that contain the mutation (i.e., its subclonal fraction), which has previously been shown to be associated

with a mutation’s relevance in cancer (McGranahan et al., 2015). The score of the somatic mutations with respect to track W is

then defined as:

SW =
Xn
i = 1

fizi: (Equation 1)

Intuitively, this score reflects the extent to which somatic mutations are falling into functionally important positions within a track.

Per-track Analytical Z score Calculations
For a given score SW for a track, we next want to determine if this score is higher than we would expect by chance. One approach

would be to repeatedly randomize the mutations within the positions of the track and use the distribution of resulting scores to

compute an empirical p value. Here we show that we can determine the significance of these scores analytically, obviating the

need for empirical mutation shuffles and dramatically improving runtime (Figure S2). Note that in the absence of any selective pres-

sure, the values z1;.; zn are independent and identically distributed (i.i.d.) random variables. We leverage this observation to

directly compute the significance of SW . First, we model all mutation locations zi as being drawn from the same background

mutation model l1; .; lL, where li is the probability that a mutation affects position i. If every position i within a protein of

length L is equally likely to harbor a missense mutation, li = 1=L. Here, we incorporate codon-specific missense mutation

probabilities as well as cancer-specific C/G-mutation biases into our background mutation model (see ‘‘Per-site background

mutational model’’ STAR Methods section below). We linearly scale these values with respect to each track W such thatP
j˛WlWj = 1. The expected weight of the position in which mutation i lies (E½zi�) and its variance (s2zi ) with respect to this null distri-

bution are computed as

E½zi� =
X
j˛W

lWj wj

and

s2
zi
= E
�
z2i
�� ðE½zi� Þ2 =

X
j˛W

lWj w
2
j �

 X
j˛W

lWj wj

!2

:

Because the total score of the set of mutations affecting trackW (i.e., SW ) is a sum of independent random variables (Equation 1),

the expectation and variance of SW can also be calculated directly as

E½SW � =
Pn
i =1

E ½fizi�

=
Pn
i =1

fi,E ½zi�

=
Pn
i =1

fi

 X
j˛W

lWj wj

! (Equation 2)
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and

s2
SW

=
Pn
i = 1

s2
fi zi

=
Pn
i = 1

f2i s
2
zi

=
Pn
i = 1

f2i

0
@X

j˛W

lWj w
2
j �

 X
j˛W

lWj wj

!2
1
A:

(Equation 3)

Finally, to determine the significance of the actual score SW , which indicates the propensity of somatic mutations to fall into highly

weighted positions in a track, since the sum of independent random variables tends towards a normal distribution, we compute the

mutational enrichment Z score for each track W as

ZW =
SW � E½SW �

sSW

: (Equation 4)

We note that if we (1) restricted each weight within a track to be 0/1 rather than real-valued, (2) restricted mutations to have equal fi
values of 1, and (3) restricted the li to be uniform across the track, we could determine per-track significance analytically using the

binomial distribution. Note that with these restrictions, however, wewould not be able to incorporate real-valued functionality weights

from conservation or interaction tracks, subclonal mutation fractions, or mutational signatures.

Per-site Background Mutational Model
We model the likelihoods of protein positions p1;.;pL to harbor a missense mutation as l1;.; lL such that

lj =
X

d˛f1;2;3g

 
Bjd,

X
u˛fA;T ;C;Gg

Mjdu

!
(Equation 5)

where

Bjd =

�
1 if the dth nucleotide in the codon at position pj is A or T
b otherwise; where b is the relative frequency of a C=G mutation in the pan-cancer dataset as compared

to a A=T mutation ði:e:; 3:063Þ
and

Mjdu =

�
1 if changing the dth nucleotide in the codon at position pj to u results in a missense mutation
0 otherwise

Between-Track Analytical Covariance Calculation
In our framework, a single protein may be associated withmultiple tracks, each representing a distinct aspect of protein functioning.

Since tracks can share positions, the track scores with respect to a set of somatic mutations are not independent of each other, and

thus we need to determine their covariance.

Suppose we consider two tracks V4P andW4P, where each position pi˛V is associated with a weight vi and each position pi˛W
is associated with a weight wi. Suppose there aremmutations (with associated values f 01;.;f 0m) that involve positions within track V,

and nmutations (as before with associated values f1;.;fn) that involve positions within trackW. Let y1; y2;.; ym be the weights of the

positions that themmutations in track V fall into, and let z1; z2;.; zn be the weights of the positions that the nmutations in trackW fall

into. Scores are thus calculated as before for tracks V and W as

SV =
Xm
i = 1

f 0i yi

and

SW =
Xn
i = 1

fizi:

Let X = VXW. If the two tracks do not overlap (i.e., X = B), then the covariance between SV andSW is 0. Otherwise, note that SV =

S0
V +SX

V , where S0
V =

P
j;X

f 0j yj and SX
V =

P
j˛X

f 0j yj. Similarly, SW = S0
W +SX

W . Therefore, we can write covariance as

cov
h
SV ;SW �= cov½

�
S0
V + SX

V

�
;
�
S0
W + SX

W

�i
:

Because the covariance is bilinear, we can now expand this equation as
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cov
h�

S0
V + SX

V

�
;
�
S0
W + SX

W

�i
= cov½S0

V ;S
0
W �+ cov½S0

V ;S
X
W �+ cov½SX

V ;S
0
W �+ cov

�
SX
V ;S

X
W

�
:

Finally, because mutations landing in track V outside of the overlap region X have no bearing on SW and vice versa, the first three

covariance terms in the equation above will be evaluated as 0, leaving us with

cov½SV ;SW �= cov
�
SX
V ;S

X
W

�
:

In our framework, we compute covariance conditional on the qmutations observed to fall on positions shared by tracks V andW.

Let F = f2i1 +/+ f2iq , with the fi associated with the q mutations in X. With the number of mutations q fixed, we have

cov
h
SX
V ;S

X
W

i
= cov

"Xq
j = 1

fij yij ;
Xq
j = 1

fij zij

#
=
Xq
j =1

Xq
k =1

cov
h
fij yij ; fik zik

i
:

Note that the samemutations from tracks SX
V and SX

W land on the same position in the overlap region and simultaneously impact the

SV and SW scores, whereas any other pair of mutations jsk are independent. Hence,

cov
h
SX
V ;S

X
W

i
=

Pq
j = 1

cov
h
fij yij ; fij zij

i

=
Pq
j = 1

f2ij $cov
h
yij ; zij

i
= F$cov

�
yi1 ; zi1

�
= F

 P
j˛X

lXj vjwj �
 X

j˛X

lXj vj

! X
j˛X

lXj wj

!!
(Equation 6)

Analytical Formulation Enables Precomputation

Note that the per-track expectation, variance and covariance calculations (Equations 2, 3, and 6) can each be rewritten as C,
P

i fi or

C,
P

i f
2
i , where C is fixed per track. We therefore precompute the per-track expectations, variances, and cross-track covariances

assuming a single mutation of value 1, and scale these precomputed values at runtime by the mutations observed to fall into

each track; this allows PertInInt to achieve an additional 16–183 speedup at runtime (Figure S11).

Whole Gene Mutability Tracks
Using the same analytical formulation described above, we can also compute a Z score per gene reflecting whether the gene is

more mutated overall than we might expect. We define a natural variation track of length L = 19,460 for each gene, where the

entry corresponding to the gene of interest has a functionality weight of 1, and all other entries have weights of 0 (i.e., one-hot

gene encodings). We then compute a corresponding background mutability probability distribution l1;.lL based on how much

each gene varies naturally across healthy human populations. Specifically, for each of 2,504 individuals included in the 1000 Ge-

nomes Project (The 1000 Genomes Project Consortium, 2012), we first min-rank all protein-coding genes by their variant count,

linearly scale these ranks to fall between 0 and 1, then round each normalized rank down to its nearest hundredth, which we

refer to as its bin. We compute the expected bin value (across individuals) for each gene, and finally to derive the values of

l1;.; lL linearly scale these per-gene expected bin values such that they sum to 1 across all genes. For each track, we

use this background mutation model and the n mutations observed to fall across all 19,460 genes to analytically compute

per-gene expectations, variances, and Z scores as before. Note that PertInInt models 23,278 genes—of which 20,356 are

on chromosomes 1–22, X or Y—but only 19,460 genes were profiled in the 1000 Genomes Project, and thus only this many

genes have associated natural variation tracks. The covariance between the natural variation track and all subgene tracks is

set to 0.

Since thewhole-gene trackW for geneGj is a one-hot encoding, we can simplify Equation 1 asSW =
P

i˛Gj
fi, Equation 2 as E½SW �=

lWj
Pn

i = 1fi and Equation 3 as s2SW
= lWj ð1 � lWj ÞPn

i =1f
2
i .

Because the number of mutations affecting all genes is often substantially larger than the number of mutations to affect any single

gene, the whole-gene Z scores can be much larger than for the other tracks. We thus effectively subsample the total number of mu-

tations by a factor s—set to 1ffiffi
n

p in our implementation—to compute the whole-gene Z scores using the values below before combining

them with other subgene Z scores:

SW = s
X
i˛Gj

fi;
E½SW � = slWj
Xn
i = 1

fi;
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s2 = slW
�
1
SW j � slWj

�Xn
i = 1

f2i :

Combining Per-track Z scores for Each Protein
We evaluate the significance of the scores for all tracks simultaneously using a multivariate normal distribution. Recall that our per-

track somatic mutation functional scores (SW , Equation 1) and their analytically-derived Z scores (Equation 4) computed for random

assignments of mutations are normally distributed when the number of mutations (n) is sufficiently large (i.e., by the Central Limit

Theorem).

For each trackW, we empirically determine this minimum n by randomly assigning up to 500 mutations to the track 1,000 times in

accordance with the corresponding background mutation model (i.e., the li’s) and recomputing SW each time. At each mutation

count, we ask whether we can reject the null hypothesis that the mutation functional scores are normally distributed via the Sha-

piro-Wilk test with p value < 5e-5. We keep track of theminimum number of mutations per track where we could no longer confidently

reject the normality assumption. Only scores derived frommutated tracks with the corresponding required minimummutation count

are modeled together in our multivariate Gaussian. We pre-compute this minimum mutation count value for each track (i.e., before

evaluating any cancer somatic mutation data).

For eachmutated protein, we compute a single combined score using aweighted Z-transform test with correlation correction (Zay-

kin, 2011) as

Z =

Pk
i = 1ciZiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk

i =1c
2
i + 2

P
i<jcicjrij

q (Equation 7)

where k is the number of tracks with their required minimum mutation count and positive Z scores, Zi corresponds to the Z score

associated with track i, ci is a weight indicating the ‘‘confidence’’ of track i, and rij is the correlation between tracks i and j (i.e.,

rij = covðSi;SjÞ=sisj). In order to consider each type of functionality data equally, we assign per-track confidences ci such that the

four functional track groups (i.e., interaction, domain, conservation, and natural variation; Figures 1A and S1) each contribute a

quarter of the overall confidence. Within the interaction and domain track groups, where there may be 2+ tracks per group, confi-

dence weights are assigned proportionally to
ffiffiffiffiffi
m

p
, wherem is the total number of mutations to fall into positively-weighted positions

in the track. Finally, we assign a single score per gene by taking the maximum combined score achieved by any of its corresponding

protein isoforms.

QUANTIFICATION AND STATISTICAL ANALYSIS

Cancer Mutation Data Preparation
We downloaded all open-access TCGA somatic exome mutation data and RNA-seq expression data from NCI’s Genomic Data

Commons on July 15, 2017 (Fan et al., 2016; Grossman et al., 2016). We convert gene expression values (FPKM) to transcripts

per million (TPM) and exclude mutations from genes that were expressed at <0.1 TPM in the corresponding tumor sample. For

the 765 samples with missing expression data, we exclude mutations from genes that were expressed at <0.1 TPM on average

across other tumor samples of the same tissue type. These steps resulted in a filtered set of 1,141,609 missense, 442,070 silent,

and 94,813 nonsense mutations across 18,613 genes from 33 cancer types (Figure S3); note that we consider the unfiltered (by

expression) set of 1,473,729missense, 578,407 silent and 118,921 nonsense mutations across 19,550 genes when running alternate

methods and when running PertInInt to compare to alternate methods. We combine COAD and READ cancer types into the COAD-

READ group, and GBM and LGG cancer types into the GBMLGG group for per-cancer performance testing (Figures S8 and S9).

Runtime Analysis
PertInInt, as well as all algorithm variants of PertInInt and all alternate methods, are run as sole processes on single CPUs, eachwith a

2.4–2.7 Ghz processor and 30GB of RAM. Methods are timed using Python’s time package, and the real (i.e., ‘‘wall clock’’) elapsed

time is reported.

Testing Related Driver Detection Methods
We classify alternate cancer driver detection methods based on the mutational patterns they detect; these include whole gene

enrichment, de novo linear clustering, enrichment in linear externally defined regions, de novo three-dimensional (3D) clustering,

or enrichment in 3D externally defined regions (as in Porta-Pardo et al., 2017). We include methods from each of these five groups

that require only mutational and/or structural input from the user and have open-source implementations that run locally on a 64-bit

Linux machine using sample input. We test the whole gene methods DiffMut (Przytycki and Singh, 2017), MutSigCV (Lawrence et al.,

2014), and OncodriveFML (Mularoni et al., 2016); the linear clustering methods Hotspot (Chang et al., 2016), OncodriveClust (Tam-

borero et al., 2013), and NMC (Ye et al., 2010); the linear externally defined regionsmethods ActiveDriver (Reimand and Bader, 2013),

eDriver (Porta-Pardo and Godzik, 2014), and LowMACA (Melloni et al., 2016); the 3D clustering methods GraphPAC (Ryslik et al.,

2014b), iPAC (Ryslik et al., 2013), and SpacePAC (Ryslik et al., 2014a); and the 3D externally defined regions method eDriver3D
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(Porta-Pardo et al., 2015). We note that in addition to overall mutation frequency, MutSigCV also considers linear clustering of mu-

tations within genes and the functional impact of mutations based on evolutionary conservation.

All methods including PertInInt are run on the same mutation datasets before our filtering step of limiting to mutations from

expressed genes. Additional data files required for individual methods are obtained from their most recent online repositories or

otherwise from their original publications. For 3D clustering methods, we select a single structural template for each human protein

wherever possible as suggested (i.e., preferring native over bound form, longer length, higher sequence identity, higher resolution,

and smaller R-value; Berman et al., 2000). We note that because these 3D clustering methods only run on proteins with correspond-

ing structural information, their results may be biased toward known cancer genes (i.e., 55.3% of cancer genes have structural tem-

plates whereas 28.1% of all genes have structural templates). Methods are run with default parameters, except GraphPAC and

SpacePAC, where the significance threshold (a) is set to 1.0 to maximize the number of scored genes returned.

For each method, enrichment for known driver genes on increasingly larger sets of predictions is computed; enrichment is

computed at each gene rank on pan-cancer results and at every tenth gene on per-cancer results to reduce the impact of minor re-

orderings of the relatively small number of known driver genes detected across these datasets. Specifically, we calculate enrichment

as the fraction of known driver genes in the gene set (i.e., the precision) divided by the fraction of known driver genes in the whole

gene set considered; unmutated driver genes with respect to each mutation dataset are excluded entirely. For this evaluation, we

consider the CGC set of known driver genes as a gold standard, as well as alternate positive and negative sets of cancer genes

in turn.

Note that LowMACA, NMC, and all three 3D clustering methods did not finish running without error within 30 days on the pan-

cancer dataset. We were also unable to run and obtain results from NMC on an additional four individual cancer types (UCEC,

SKCM, COADREAD, and LUSC), and thus exclude this method from our evaluation.
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Supplemental Figures

Figure S1: Intuition and data sources behind PertInInt’s four track types. Related to Figure 1.
Graphical description of the sources of (A–C) interaction tracks, (D) domain tracks, (E) conservation
tracks, and (F) natural variation tracks used by PertInInt. (A) Residues within human proteins that contact
ligands can be directly determined from a 3-dimensional structure of that protein in complex with a ligand,
if such a co-complex structure exists (left). These positions are then marked as “interaction residues” in
the corresponding protein sequence (right). (B) Interaction residue information from a template protein
(depicted by I) with a solved co-complex structure can be transferred to a homologous target protein
(depicted by B) in regions with high sequence similarity, as previously described (Ghersi and Singh, 2014).
(C) Steps in the shaded box summarize how the previously published InteracDome database (Kobren and
Singh, 2019) was generated: matches to protein domains—represented as probabilistic sequence
patterns in the form of Hidden Markov Models in Pfam (Finn et al., 2014)—are found in the sequences of
proteins that have solved co-complex structures, and then each position within the domain is assigned a
“binding frequency” value that corresponds to the fraction of times a residue at that position is found to be
in contact with a ligand across co-complex structures. Human protein sequences are scanned for matches
to InteracDome domains, and binding frequency information is transferred from the InteracDome domain
pattern to the human protein sequence at the site of the domain match (bottom right). (D) Human protein
sequences are scanned for matches to any Pfam domain. Each domain match generates a new domain
track, where protein positions within the domain match region get a score of 1 and protein positions
outside get a score of 0. (E) For each human protein, a per-position score reflects that position’s
conservation, computed as previously described (Capra and Singh, 2007) from the corresponding column
in a 100-vertebrate multiple sequence alignment. (F) Human genes are ranked by the number of variants
observed to affect them across a population of healthy individuals and then converted to a background
probability of mutation, as previously described (Przytycki and Singh, 2017), to comprise the natural
variation tracks.



Figure S2: PertInInt’s analytical approach results in >7⇥ speedup over baseline empirical
permutation approach. Related to Figure 1; STAR Methods. As a function of the percent (10–100%) of
all tumor samples randomly selected from the pan-cancer dataset (x-axis), PertInInt’s runtime is compared
to a baseline version that uses 1,000 empirical permutations of mutations to estimate Z -scores for each
track. Shown on the y -axis is the fold speedup in runtime for ten random selections of tumor samples of
each size. The speedup shown is per permutation (i.e., divided by 1,000—the total number of
permutations performed across each track). The solid blue line represents the local polynomial regression
line, with the gray shading showing standard error. Due to the relatively large runtime of the empirical
shuffling procedure, these runtime comparisons use only a single track per protein, conservation.
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Figure S3: Summary of somatic mutation data. Related to Figure 2; Figure 3. Somatic mutation data
obtained from NCI’s Genomic Data Commons Data Portal for 33 cancer types (Fan et al., 2016). The
number of tumor samples with 1+ expressed (TPM � 0.1) genes with at least one missense mutation is
shown in the left plot. The number of genes that are expressed in 1+ tumor samples and have at least one
missense mutation is shown in the right plot.



Figure S4: Covariance-based track integration outperforms naı̈ve track integration. Related to
STAR Methods. The default version of PertInInt (black line) combines per-track Z -scores using an
analytically-computed covariance matrix to account for between-track dependencies. We implemented
versions of PertInInt where per-track Z -scores are combined using mean (red line) and summation (green
line) to generate two new ranked lists of genes on the pan-cancer dataset. Note that these two naı̈ve track
integrations are incorrect because they do not account for the dependencies across tracks. For each
ranked list of genes, we compute enrichment as the ratio between the fraction of gold standard CGC
genes in the top ranked genes (i.e., the precision) and the fraction of CGC genes in the whole set of genes
(i.e., the expected precision given a random ordering of genes). All curves converge to an enrichment of 1
by the end of the ranked list of genes (not shown).



Figure S5: Highly ranked genes are enriched in cancer genes. Related to Figure 4; Table S2. Gold
standard driver gene sets include: 123 genes listed in Kandoth et al., 2013, Table S4 (red), 249 genes
listed in Lawrence et al., 2014, Table S2 (blue), 295 genes listed in Bailey et al., 2018, Table S1 (green), all
358 oncogenes and TSGs listed in Vogelstein et al., 2013, Tables S2A-B, S3A-C, S4 (orange), 428 genes
from UniProtKB (The UniProt Consortium, 2018) annotated with keywords “oncogene” (KW-0553),
“proto-oncogene” (KW-0656) or “tumor suppressor” (KW-0043) (pink), 590 genes from the DISEASES
database (Pletscher-Frankild et al., 2015) with confident (i.e., edge weight > 2.75, where the maximum
possible edge weight is 5) literature-mined associations with “cancer” (DOID:162) (brown), 713 genes
listed in the CGC, version 87 (black), and 324 genes in the CGC with driver statuses due to missense
mutations (purple). Ranked gene lists are obtained by applying PertInInt to pan-cancer nonsynonymous
mutations (shown as solid lines) and to pan-cancer synonymous mutations (shown as dashed lines).
Enrichment for each gold standard set is computed as the ratio between the fraction of gold standard
genes in PertInInt’s top ranked genes (i.e., the precision) and the fraction of gold standard genes in the
whole set of genes (i.e., the expected precision given a random ordering of genes). All curves converge to
an enrichment of 1 by the end of the ranked list of genes (not shown).



Figure S6: Detection of CGC genes from a pan-cancer dataset excluding highly mutated cancers
by PertInInt and alternate methods. Related to Figure 4. Each driver gene detection method was run
on the pan-cancer set of mutations with tumor samples from highly-mutated BLCA, STAD, SKCM, LUAD,
LUSC, and ESCA cancers—where there are more than 100 mutations per tumor sample on
average—excluded. (A) Curves indicate the enrichment for genes in the CGC as we consider an
increasing number of output genes for each driver gene detection method. All methods scored at least
3,000 genes except for Hotspot (orange solid line), which only returned 1,397 genes and whose curve
ends at that point. The gray shaded area highlights the plot to 200 genes, a closeup of which is shown in
the inset. Vertical lines at 10, 50, 100, and 200 ranked genes in the inset correspond to gene set sizes
featured in part (B). (B) Jaccard Indices (JIs) are calculated between the top 10, 50, 100, and 200 genes
output by PertInInt and the corresponding top 10, 50, 100, and 200 genes output by each other method.
Lighter colors indicate lower JIs and less overlap between the gene sets.



Figure S7: Detection of positive and negative driver genes by PertInInt and alternate methods.
Related to Figure 4; Table S2; Figure S5. Each method was run on the pan-cancer set of mutations as
described in STAR Methods. Curves indicate the enrichment for genes in selected positive or negative
cancer driver gene sets as we consider an increasing number of output genes for each driver gene
detection method. The gray shaded areas highlight each plot to 200 genes, closeups of which are shown
in the insets. Positive driver gene sets are described in the caption for Figure S5. Negative driver gene
sets include: 8,893 genes that have been proposed to be unlikely to be implicated in cancer and a filtered
set of 2,839 of these genes listed in Silverbush et al., 2019, Tables S1D and S1C and 10,303 “neutral”
non-driver genes listed in Davoli et al., 2013, Table S2A.



Figure S8: Relative detection of known cancer genes from individual cancer datasets. Related to
Figure 4. (A) Log2-fold change between the area under the enrichment curves for the top 50 genes scored
by alternate methods and the top 50 genes scored by PertInInt across individual cancer types.
“PertInInt*SG” refers to a version of PertInInt where only subgene resolution tracks are included. PertInInt
tends to perform better than the alternate methods, as most of these values are below 0. (B) For each
cancer type, the areas under the enrichment curves computed for the top 10 (or 25, 50, 100, 200, or
1,000) genes ranked by each driver gene detection method are linearly scaled to fall between 0 and 1. For
example, when looking at the top 50 genes ranked by each method when run on SARC mutations, Hotspot
has the relatively smallest area under the enrichment curve and thus gets a scaled value of 0, whereas
PertInInt has the relatively largest area under the enrichment curve and thus gets a scaled value of 1.
Then for each computational method, a box plot of their corresponding values across cancer types is
shown. Jittered data points representing different cancer types are overlaid on boxplots. Horizontal solid
and dashed lines are drawn at the median relative area under the enrichment curve for PertInInt and
PertInInt*SG respectively in each plot. Methods are labeled as in (A).



Figure S9: Distinct cancer-relevant genes are highly ranked in individual cancer datasets. Related
to Figure S8. Each entry corresponds to a gene–cancer pair and is colored by the PertInInt score of that
gene (genes listed along the x-axis) when run on data from the corresponding cancer type individually
(cancer types listed along the y-axis). All PertInInt scores �20 are recorded as 20 for visualization
purposes. Genes that are not in the CGC are bolded in the x-axis. (A) Top 50 genes ranked by PertInInt
when run on the pan-cancer dataset. (B) Genes that are ranked within the top four by PertInInt when run
on individual per-cancer datasets, but are not found in the top 50 genes when PertInInt is run on the
pan-cancer dataset.



Figure S10: PertInInt’s power increases with more tumor samples. Related to STAR Methods. As a
function of the percent (10–100%) of all tumor samples randomly selected from the pan-cancer dataset
(x-axis), we show the area under the enrichment curve for the top 200 genes scored by PertInInt when run
on each tumor sample subset, normalized by the area under the enrichment curve for PertInInt’s top 200
predictions when using all tumor samples (y -axis). Ten random selections of samples are analyzed at
each sample size. The solid black line represents the local polynomial regression line of these normalized
areas under the enrichment curve with respect to the sample size. PertInInt’s ability to recapitulate cancer
genes increases with sample size.

Figure S11: Precomputation enables >16⇥ speedup over basic analytical approach. Related to
Figure 1; Figure S2; STAR Methods. As a function of the percent (10–100%) of all tumor samples
randomly selected from the pan-cancer dataset (x-axis), PertInInt’s runtime is compared to a baseline
version that does not use precomputed expectation and variance estimates to compute Z -scores for each
track. Shown on the y -axis is the fold speedup in runtime for ten random selections of samples of each
size. The solid blue line represents the local polynomial regression line, with the grey shading showing
standard error. These runtime comparisons use only a single track per protein, conservation, as in
Figure S2.
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