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118 00 Praha 1, Czechoslo¨akia; and Free Unï ersity Berlin, Arnimallee 2]6,
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We show that with recently developed derandomization techniques, one can
convert Clarkson’s randomized algorithm for linear programming in fixed dimen-
sion into a linear-time deterministic algorithm. The constant of proportionality is
dO Žd ., which is better than those for previously known algorithms. We show that
the algorithm works in a fairly general abstract setting, which allows us to solve
various other problems, e.g., computing the minimum-volume ellipsoid enclosing a
set of n points and finding the maximum volume ellipsoid in the intersection of n
halfspaces. Q 1996 Academic Press, Inc.

1. INTRODUCTION

We consider the linear programming problem: given a set H of n
halfspaces in Rd and a direction vector c g Rd, find a point x g F H that
minimizes c. x. We restrict ourselves to the case where n is very large
compared to d, and so, the dependency of the running time on n is of
primary interest. For the algorithms we will discuss, the running time will
be linear in n for any fixed d, with a constant of proportionality exponen-
tial in d: It is this dependency on d which we wish to study closely.
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There are known polynomial-time algorithms for linear programming
w xKha80, Kar84 , but the number of arithmetic operations they perform
depends on the bit complexity of the input and grows with the precision of
the numbers describing the input. In contrast, we consider purely combina-
torial algorithms, where the number of arithmetic operations performed
only depends on n, d and not on the precision of the input numbers. A
natural model of computation for these considerations is the real RAM,
where the input data contain arbitrary real numbers and each arithmetic
operation with real numbers is charged unit cost.1

w xMegiddo Meg84 has given the first deterministic algorithm whose
Ž Ž . . Ž . 2 d

running time is of the form O C d n , with C d s 2 . This was improved
Ž . d 2 w x w xto C d s 3 by Dyer Dye86 and Clarkson Cla86 . Recently, a number

of randomized algorithms have been presented for the problem, see
w xDF87, Cla88, Sei91 , with a better dependency on d. Clarkson’s algorithm
w x Ž 2Cla88 has the best expected complexity among those, namely O d n q

d r2qOŽ1. .d log n . Notice that although this is still exponential in d the
exponential term is multiplied only by a log n factor. Recently Kalai
w x w xKal92 and independently Matousek, Sharir, and Welzl MSW92 haveˇ
developed algorithms with a subexponential dependency on both n and d.
In combination with Clarkson’s algorithm, one obtains a randomized

Ž 2algorithm for linear programming with expected running time O d n q
'OŽ d ln d . .e log n . To match these performance bounds with a deterministic

algorithm seems to be difficult at the present time.
However, as was observed by the authors of this paper some time ago

w xand mentioned in Cha91 , one can apply the derandomization technique
w xof Mat91 to the above mentioned Clarkson’s randomized algorithm and

obtain another linear-time deterministic algorithm for linear programming.
We prove here that the constant of proportionality is of the form dOŽd.,
which is far behind the randomized complexity, but significantly better
than the constants for the previously known deterministic algorithms.

Clarkson’s algorithm can be shown to work in a general framework,
Žwhich includes various other geometric optimization problems see below

.for examples . With few extra algorithmic assumptions, our derandomiza-
tion works in this framework as well. For some of these problems,

w xlinear-time deterministic algorithms were given by Dyer Dye92 ; our
approach again brings a better dependency on the dimension. For others,
e.g., finding the maximum volume ellipsoid inscribed into a polyhedron in

d Ž .R given by its n facets , we get the first known efficient deterministic
algorithm. For some of these problems there are much more efficient

1 As for the bit complexity, one can show that the bit size of the number is at most a
constant multiple of the bit size of the input numbers in the algorithms we will consider.
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Žrandomized algorithms known}Clarkson’s algorithm itself applied in this
. w xsetting and a recent subexponential algorithm by Gartner Gar92 .¨ ¨

In this paper we first describe the tools used for derandomization. We
use this opportunity to give a somewhat different and hopefully simpler

w xpresentation of an algorithm from Mat91 , and we will be careful to trace
Ž .the dependence of the constants of d. We also outline a parallel NC

version of the algorithm. Then we give a deterministic variant of Clarkson’s
algorithm, and discuss sample problems where it can be applied.

Ž .Throughout the paper, the O symbol only hides absolute constants,
independent of the dimension d. If dependence of the constant on d is

Ž .allowed, then we write O .d

2. COMPUTING «-APPROXIMATIONS AND «-NETS

w xWe begin by briefly recalling some definitions; we refer to HW87 for
Ž . 2more details. Let S s X, RR be a set system on a set X. If Y is a subset

< � 4 Žof X, we denote by RR the set system R l Y; R g RR the systemY

induced by RR on Y; let us emphasize that although many sets of RR may
intersect Y in the same subset, this intersection only appears once in

< .RR .Y

Ž .Let us say that a subset Y : X is shattered by RR if every possible
< Ysubset of Y is induced by RR; i.e., if RR s 2 . We define theY

Vapnik]Cher̈ onenkis dimension, VC-dimension for short, of the set system
Ž . ŽS s X, RR as the maximum size of a shattered subset of X if there are

shattered subsets of any size, then we say that the VC-dimension is
. Ž . Ž .infinite . Let us define the shatter function p of X, RR as follows: p mRR RR

Ž .is the maximum possible number of sets in a subsystem of X, RR induced
by an m]point subset of X. The shatter function of a set system of

m m mŽ . Ž . Ž . w xVC-dimension d is bounded by q q ??? q Sau72, VC71 , and0 1 d

conversely, if the shatter function is bounded by a fixed polynomial, then
the VC-dimension is bounded by a constant.

Set systems of VC-dimension bounded by a constant occur naturally in
geometry; a typical example is the plane standing for X and the set of all
triangles for RR.

2 In computational geometry literature, set systems in this context are usually called range
spaces, the sets belonging to the set system are called ranges and the elements of the
underlying set are called points. In this paper we will not use this terminology.
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The following two notions will be crucial in our algorithm. Let X be
Ž . Ž .finite, « g 0, 1 . A subset A : X is a «-approximation for X, RR , pro-

vided that

< < < <A l R R
y F «

< < < <A X

Ž .for every set R g RR. A subset S : X is called an «-net for X, RR

< < < <provided that S l R / B for every set R g RR with R r X ) « . In the
sequel, it will be more convenient to write 1rr for « , with r ) 1.

A remarkable property of set systems of VC-dimension at most d is
Ž .that for any r ) 1, they admit a 1rr -approximation whose size only

depends on d and r, not on the size of X ; the quantitative bounds
Ž Ž .. Ž . w xon the size are 1 q o 1 dr log r for 1rr -nets KPW92 , and

Ž 2y2rŽdq1.Ž .2y1rŽdq1.. Ž . w xO r log r for 1rr approximations MWW92 .d
Ž . Ž .These 1rr -nets and 1rr -approximations of small size are quite pow-

erful tools for derandomizing geometric algorithms. It was shown in
w xMat91 that under certain computational assumptions about the set sys-

Ž . Ž .tem X, RR of a bounded VC-dimensional, one can compute small 1rr -
Ž .approximations and 1rr -nets for small r reasonably efficiently, in time

ŽŽ 2 d d . < <. Ž .O r log r X in particular, in linear time for fixed d, r . In thisd
section we give a somewhat simplified exposition of this result, using

w xobservations of MWW92 , and we will estimate the dependence on d
more carefully.

The algorithm will work by a repeated application of the following
‘‘halving lemma.’’ It is based on standard result from discrepancy theory:

Ž . < < < <LEMMA 2.1. Let A, SS be a set system, n s A , m s SS , n e¨en. Then
Ž . < <one can find, in O nm deterministic time, a subset A ; A of size A r2,

Ž .which is an «-approximation for A, SS with

8 ln 4m q 4Ž .
« F .(

n

X � 4Proof. We let SS s SS j A , and we find, following the method nicely
w x � 4described in Spencer’s book Spe87 , a mapping x : A ª y1, q1 , such

X X< Ž . < < <'that x S F D s 2n ln 4 SS for every S g SS . One uses a standardŽ .
probabilistic proof showing that a random mapping x works with probabil-
ity at least 1r2, and then derandomizes it using the method of conditional
probabilities. With some care, the derandomized algorithm can be imple-

Ž . w xmented to run in O nm time; see Mat91 .
X y1Ž . y1Ž .With such a x , we let A be the larger of the sets x 1 , x y1 .

X < X < < X < < X < Ž .Since A g SS , we have A y A R A F D, or A y nr2 F Dr2. We
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X X< <remove A y nr2 arbitrary elements of A , forming a set A with exactly
X< < < < < < < < <nr2 elements. Then for an S g SS , we have 2 A l S y S F 2 A l S

X< < < Ž < < < <.y S q 2 A y A F 2D. Thus

< < < <A l S S 1 2D
< < < <y s 2 A l S y S F ,

< << < A n nA

from which the bound on « follows.

For efficient computation of «-approximation and «-nets, we need that
the set system is given to us in a more ‘‘compact’’ form than by the list of
its sets.

Ž .DEFINITION 2.2. We say that a set system X, RR has a subsystem oracle
Ž . Ž .d Ž .of dimension d if p m s O m and there is an algorithm oracleRR

< Žwhich, given a subset A : X, returns the list of sets in RR each setA
. Ž < <.dq1represented by a list of its members , in O A time.

w xFollowing the basic scheme of Mat91 , we prove the following:

Ž .THEOREM 2.3. Let X, RR be a set system with a subsystem oracle of
Ž .dimension d. For a gï en r ) 1, one can compute a 1rr -approximation of

Ž 2 Ž .. Ž . Ž . Ž Ž ..size O dr log dr for X, RR , as well as a 1rr -net of size O dr log dr
Ž .for X, RR , all in time

3d 2 d d < <O d r log dr X .Ž . Ž .

Proof. The following technical assumption simplifies the presentation
< < pconsiderably: We suppose that n s X is of the form 2 for an integer p.

To remove this assumption is not difficult; we may, for instance, add at
most nr2 ‘‘artificial’’ points belonging to no set of RR to X, compute a
Ž .1r2 r -approximation for this new set system, and check that it will also

Ž .provide a 1rr -approximation for the original system, after the artificial
Ž .points are removed from it; similarly for a 1rr -net.

Ž .We describe the algorithm for 1rr -approximations first. It proceeds by
k Ž .partitioning X into subsets of size 2 each with k chosen suitably and

then performing a sequence of ‘‘halving steps’’ intermixed with ‘‘merging
steps.’’ At the beginning of the ith step, either a merging or a halving one,
we have a current collection AA of disjoint subsets of X. Each set of AA hasi i

Ž .the same number of elements n which will be a power of 2 . At thei
beginning of the 1st step, the union of all sets of AA is X, and after the last1
Ž .K th, say step, AA will consist of a single set, which will be the desiredKq1
Ž . Ž .1rr -approximation for X, RR .

If the ith step is a merging one, we arbitrarily partition AA into pairsi
Ž < < . Ž .AA will always be a power of 2 . For every pair A , A we form thei 1 2
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union A j A , and the collection of all these unions will be AA . Hence,1 2 iq1
the size of the sets is doubled and their number halved by a merging step.

If the ith step is a halving one, we consider every A g AA . We call thei
<subsystem oracle on A, and we obtain the list of all sets in RR ; we haveA

< < < Ž .d Ž < .m s RR s O n . Then we apply Lemma 2.1 on A, RR and weA Ai
< < Ž .compute a set A ; A with A r2 elements, which is an « n -approxima-i

Ž < .tion for A, RR , whereA

8d ln t q O 1Ž .Ž .
« t s . 1Ž . Ž .(

t

� 4Then we set AA s A; A g AA . Thus a halving step preserves the num-iq1
ber of sets and halves their size.

w xElementary observations in Mat91 imply that when the algorithm
Ž .finishes with a single set, this set will be a n-approximation for X, RR ,

Ž .where n is the sum of the « n over all i such that the ith step was ai
halving step.3

It remains to show how to organize the sequence of halving and merging
steps, so that the running time remains small, and so that n , the resulting
error of the approximation, remains below 1rr. First, we keep alternating

Ž . Ž .halving and merging steps d q 1 times, and after these 2 d q 1 steps
Ž . Žending with a merging step we perform one extra merging step see Fig.
.1 . We call this the first round, and the second and further rounds will be

ŽŽ . .exactly the same d q 1 alternations and one extra merging step . We
Žfinish this first phase as soon as there remains only one set in AA thus wei

.cannot perform any more merging steps . Then, in a second phase, we
repeat the halving step, until the size of the single current set A becomes

Ž < <. Ž .so small that the « A given by 1 exceeds 1r8r. Then we finish, and the
Ž .resulting set A will be our 1rr -approximation; we must now prove that

everything works as claimed.
First consider the size of the resulting set A. By the terminating rule, we

Ž < <. < < Ž 2 Ž ..must have « A G 1r8r. From this we calculate A s O dr log dr .
Ž .We observe that with t G 5 say , we have

3
« 2 t F « t . 2Ž . Ž . Ž .

4

Ž .Let us estimate the total error in the approximations, i.e., the « n ’si
summed over all halving steps. The first phase of the algorithms begins

3 The relevant observations can be summarized in the phrases ‘‘an «-approximation for a
Ž .d-approximation is an « q d -approximation’’ and ‘‘an «-approximation for a disjoint union

of two sets of equal cardinality can be obtained as the union of «-approximations of equal
cardinality for both sets.’’
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FIG. 1. Schematic illustration of the algorithm for Theorem 2.3, for d s 1.

k Ž .with sets of size 2 for k to be determined . In the first round one
Ž . Žperforms d q 1 halving steps with sets of this size, contributing d q

. Ž k . Ž 3r2 1r2 yk r2 .1 « 2 s O d k 2 . Then the size of the current sets is doubled
by the extra merging step, and the second round contributes an error of at

Ž . Ž kq1. Ž .most d q 1 « 2 , etc. We may assume n G 5 for all i, so by 2 thei

errors of approximation in the successive rounds form a geometrically
decreasing sequence, and the total error in the first phase is thus
Ž 3r2 1r2 yk r2 . k 3 2 Ž .O d k 2 . Choosing a value of k with 2 s C d r log rd for

large enough absolute constant C, we get that the first phase contributes
an error at most 1r2 r.
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We now consider the second phase. The terminating condition gives that
the error at the last step is at most 1r8r. Each previous step in the second

Ž .phase halved the size of the current set, and using 2 , we get that the
errors in the second phase form a geometrically increasing sequence with
quotient at least 4r3. Thus, the total error in the second phase is at most
Ž . Ž . Ž .1r8r r 1 y 3r4 s 1r2 r, so the final set is indeed a 1rr -approximation

Ž .for X, RR .
Let us analyze the running time. In the first halving step of the

< < kalgorithm, we perform the computation as in Lemma 2.1 on X r2 sets of
k Ž 3 2 Ž ..size 2 s O d r log rd each; the total time needed for this is

Ž .3d 2 d dŽ . < <O d r log rd X . For the first d q 1 halving steps of the first round,
the total number of sets decreases twice by the mergings in between and
the size remains the same, so the running times decrease geometrically
within one round. The extra merging step doubles the sizes of sets entering
the next round, which increases the running time needed for halving for a

dq1 Ž .single set by 2 . However, the d q 2 merging steps in the previous
round have reduced the total number of sets by 2 dq2, so the running time
of the following round is at most half of the time for previous round. This
shows that the total running time is as claimed in Theorem 2.3.

Ž . Ž .To compute a 1rr -net rather than a 1rr -approximation, we first
Ž .compute a 1r2 r -approximation A by the previous algorithm. Then we
Ž . < w xcompute a 1r2 r -net for RR by the greedy algorithm of Johnson Joh74A
w x w xand Lovasz Lov75 . This is discussed in CF90, Mat91 and estimating the´

dependence on d is a trivial calculation, so we omit further details.

Using known techniques, it is relatively straightforward to obtain a
parallel version of the algorithm from Theorem 2.3, which might be of
interest in some applications. We will only state the result for a fixed d:

Ž .THEOREM 2.4. Let X, RR be a set system with a subsystem oracle of
dimension d, for some fixed d, and suppose that the oracle can be imple-

Ž . Ž 2qd .mented in NC. Then one can compute a 1rr -aproximation of size O rd, d

Ž . Ž 1qd . Ž . cand a 1rr -net of size O r for X, RR in parallel, with at most nrd, d

Ž .cX Ž Xprocessors and log n parallel time for any fixed d ) 0 the constants c, c
.depending on d, d and on the implementation of the oracle . In particular, the

Ž .computation can be performed in a polylogarithmic parallel time with O nd, r
processors for e¨ery fixed r.

Proof sketch. By inspecting the proof of Theorem 2.3, we find that
there is only one nontrivial part in parallelizing the algorithm, namely the

Žapplication of the halving lemma at least if we do not care about the
.specific power of the logarithm in the parallel running time . Here we can

w x Žuse the results of Berger and Rompel BR91 or the very similar results of
w x.Motwani et al. MNN89 .
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A particular case of their results gives the following: given a set system
Ž .A, SS as in Lemma 2.1 and a fixed g ) 0, one can compute a coloring

1r2qg� 4 < Ž . < Ž .'x : A ª y1, q1 with x S s O n log m for all S g SS in ag

polylogarithmic parallel time and with a polynomial number of proces-
Žsors depending on g , the dependence being approximately of the form

Ž .1rg .m q n . This coloring is somewhat worse than the random one, but it
is sufficient for our purposes.

Ž .We leave the algorithm for computing 1rr -approximations almost
without change. The only difference is that we use the Berger]Rompel

Žalgorithm for the halving step, and we adjust the parameter k determining
.the size of the sets entering the first halving step suitably. For the error in

yŽ1 r2yg .'Ž . Ž . Ž .the halving step, instead of 1 we get « t s O t ln t . For anyd, g

g - 1r2, the complexity of the first halving step will dominate the com-
plexity of the whole algorithm. The value of g then determines both the

Žsize of the sets entering this first halving step and thus the complexity of
. Ž .the whole algorithm and the size of the resulting 1rr -approximation.

1rŽ1r2yg .Ž .'Both these sizes will be roughly r log r , so the exponent con-
verges to 2 as g ª 0.

Ž . Ž .The 1rr -net is again computed from a 1r2 r -approximation. This
w xtime we can use e.g., the result of Berger et al. BRS89 on parallelizing the

set covering problem, from which our claim follows.

Remark. The most important special case of the above theorem is for a
fixed r. In such a situation, we can produce an NC algorithm with a linear

w xnumber of processors without the machinery of BR91, MNN89 .

If the size of the sets entering each halving step were only polylogarith-
mic in n, we could simply implement the halving lemma sequentially. Note
that the version of the algorithm described in the proof of Theorem 2.3
does not have this property: although the size of the sets is bounded by a
constant both in the first and last halving steps, it increases geometrically
during the first phase and decreases geometrically during the second
phase, reaching a small positive power of n in the middle.

We can modify the first phase, letting the sizes grow more slowly, but in
such a way that the errors of the halving steps still form a convergent
series. Namely, we may use the following rule: the extra merging step
Ž .increasing the size is inserted at the end of the ith round only if
Ž . Ž . Ž . ? @ ?5 log 2 i @ 5f i ) f i y 1 , where f i s 5 log i . Thus the sizes grow as 2 f i .2

Ž Ž .The total error during the first phase is then at most with « t given by
Ž .. Ž . Ž . Ž . Ž . Ž 5 . Ž 5 .1 « n q « n q « n q ??? F « n q « 2 n q « 3 n q ??? s1 2 3 1 1 1
Ž Ž ..Ž 2 2 . Ž Ž ..O « n 1 q 1r2 q 1r3 q ??? s O « n . Thus the total error during1 1

the first phase is still proportional to the error in the first halving step,
only the constant becomes larger. In this way, the sets entering the halving
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step only reach a polylogarithmic size throughout the algorithm, and we
get an NC algorithm for any fixed r.

3. DERANDOMIZING CLARKSON’S ALGORITHM

To simplify our discussion of linear programming, we suppose that

Ž .i the vector c determining the objective function is vertical, that
is, parallel to the x -axis, and we look for the lexicographically smallest 4

d
optimal vertex,

Ž . Žii we look only for nonnegative solutions to avoid dealing with
.unbounded solutions and points at infinity ,

Ž .iii the problem has an admissible nonnegative solution.

Ž .If one wishes to relax these assumptions, note that i is without loss of
Žgenerality we can rotate the coordinate system so that the optimization

.direction becomes vertical ; for unbounded solutions, we can formally add
Ž .‘‘constraints at infinity,’’ which will play the role of nonnegativity in ii ,

wand also nonadmissible problems can be handled easily. See also Cla88,
xSei91 for a similar discussion.

We begin by introducing an abstract framework for optimization prob-
Žw xlems similar to linear programming, due to Sharir and Welzl SW92 , see

w x.also MSW92 . Clarkson’s randomized algorithm for linear programming
can be formulated and analyzed in this framework, and with one extra
axiom, this will also be the case for the derandomized version. Throughout,
we will illustrate the abstract concepts on the specific example of linear
programming.

In the abstract framework, an optimization problem will be a pair
Ž . HH, w , where H is a finite set, and w: 2 ª WW is a function with values in

Ž .a linearly ordered set WW , F . The elements of H will be called the
Ž .constraints, and for a subset G : H, w G will be called the ¨alue of G.

In the linear programming setting, H will be the given set of halfspaces
in Rd, and WW will be the set Rd with the lexicographic ordering. For

Ž . ŽG : H, w G will be the optimal nonnegative solution for G a point in
d.R .

Ž .In general, we define an LP-type problem to be a pair H, w as above,
satisfying the following two axioms:

Ž . Ž . Ž .Axiom 1. Monotonicity For any F : G : H, w F F w G .

Ž . Ž . Ž .Axiom 2. Locality For any F : G : H with w F s w G and any
Ž � 4. Ž . Ž � 4. Ž .h g H, w G j h ) w G implies that w F j h ) w F .

4 Considering x the most significant coordinate and x the least significant coordinate.d 1
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It is easy to check that both axioms hold for linear programming with
the above assumptions. Notice that the second axiom follows from unique-

Ž d.ness of the optimal solution as a point in R and does not require any
general position assumptions concerning the constraints.

Ž X.For an LP-type problem, a basis B is a set of constraints with w B -
Ž . Xw B for all proper subsets B of B. A basis for a subset G of H is a basis

Ž . Ž .B with B : G and w B s w G . So a basis of G is a minimal subset of G
with the same value as G. We say that a constraint h g H ¨iolates a basis

Ž � 4. Ž .B, if w B j h ) w B .
The maximum cardinality of any basis is called the combinatorial dimen-

Ž . Ž .sion of H, w , and it is denoted by dim H, w . In the sequel, D will stand
for the combinatorial dimension of the considered LP-type problem. Note
that the combinatorial dimension is a monotone function: if F : G then

Ž . Ž .dim F, w F dim G, w . Linear programming with d variables has combi-
Žnatorial dimension exactly d since we exclude infeasible linear programs,

where a minimum set of constraints witnessing infeasibility may have
.d q 1 rather than at most d elements .

In order to formulate an algorithm for solving an LP-type problem, we
also need some computational assumptions. Clarkson’s randomized algo-
rithm requires

Ž .Computational assumption 1. Violation test Given a basis B and a
Žconstraint h g H, decide whether h violates B and return an error

.message if the input set B is not a basis .

For linear programming, the violation test as described can be per-
Ž 3.formed in O d time: use Gaussian elimination to find the vertex defined

Ž .by B; then the violation test with h needs O d additional time. One can,
however, organize the algorithm in such a way that the vertex is available

Ž .together with the basis at no extra cost, then a violation test needs O d
time only.

The reader familiar with Clarkson’s algorithm knows that one also needs
Ž 2to solve ‘‘small’’ subproblems directly ones with fewer than about D

.constraints . With the violation test available, one can solve a problem with
n constraints and combinatorial dimension D simply by a brute force

Ž .testing of each at most d-element subset of H a potential basis for
n n DŽŽ . Ž .. Ž .optimality. This needs at most n q ??? q s n.O nrD q 1 viola-D 0

tion tests. For specific applications, however, one may use a more sophisti-
Žcated algorithm for these small subproblems Clarkson suggests using the

simplex algorithm for linear programming, or the subexponential random-
w x .ized algorithms of MSW92, Gar92 can be used for some problems .¨

For a deterministic counterpart of Clarkson’s algorithm, we will need a
Ž .stronger assumption. To every LP-type problem H, w , we associate a set
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Ž . Ž .system H, RR . For every basis B : H, we let V B be the set of con-
Ž .straints of H violating B, and we let RR s RR H, w be the set of all sets of

Ž .the form V B for some basis B.
We will need

Ž .Computational assumption 2. A subsystem oracle for H, RR of dimen-
˜ 5Ž .sion D see Definition 2.2 is available.

We will postpone the discussion of the subsystem oracle for linear
programming to the next section.

˜In general, the dimension D need not be identical to D, the combinato-
rial dimension of the considered LP-type problem. Typically it will be
equal to D or larger. The following example shows that it can be arbitrar-
ily large even for D s 2.

Ž . Ž .EXAMPLE 3.1. There exist quite normal LP-type problems H, w of
Ž .combinatorial dimension 2, for which the associated set system H, RR has

arbitrarily large VC-dimension.

Proof sketch. We let H be a suitable finite collection of convex
w xcontinuous functions from 0, 1 to real numbers, which are nonconstant at

w xevery subinterval of 0, 1 . For G : H, we define

w G s min max g x .Ž . Ž .
w x ggGxg 0, 1

Ž .By compactness and the nonconstancy assumption, for every nonempty G
w xthe minimum exists and it is realized in exactly one point of 0, 1 . It is easy

Žto verify Axioms 1 and 2 and see that the combinatorial dimension is at
.most 2. We leave it to the reader to check that for a suitably chosen H,

Ž .the VC-dimension of H, RR can be arbitrarily large. Figure 2 gives a hint
Žas to how to shatter a 3-element set of constraints f , f , f by RR the1 2 3

black points correspond to minima for certain bases; the functions belong-
.ing to those bases are not shown .

Since the randomized version of Clarkson’s algorithm works with Ax-
w xioms 1 and 2 and Computational assumption 1 only Wel92 , the assump-

tions needed for the randomized version are strictly weaker than we need
for the deterministic case.

˜For simplicity, let us assume D s D in the subsequent algorithm and
analysis. If this is not the case, then the resulting estimate will hold with

˜ ˜� 4max D, D playing the role of D. In applications, we usually have D G D,
˜and the savings in the estimate gained by distinguishing D and D are

negligible.

5 ˜ XŽ .Actually, it suffices to have a subsystem oracle of dimension D for any system H, RR

with RR : RR
X ; this is what we will in fact have in applications.
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FIG. 2. Constructing 3 convex functions which are shattered by RR.

ŽNow we can formulate a deterministic version of Clarkson’s algorithm a
familiarity with the original Clarkson’s algorithm may be helpful for

.understanding it . We formulate it as a recursive procedure DetLp, which
takes a single argument G : H, a set of constraints, and outputs a basis

Žfor G. The procedure works as follows in the description, we use the
< < Ž ..notation n s G , D s dim H, w :

Ž .PROCEDURE. DetLp G
4 Ž .Step 1. If n F n s CD log D C a suitable constant , compute the0

solution directly, by inspecting all possible at most D-element subsets of G
and reporting the smallest one that is not violated by any constraint of H
Žor by using any other algorithm that might be available for the specific

.problem . Otherwise, move on to the next step.
Ž . Ž < . 2Step 2. Compute S, a 1rr -net for G, RR , where r s 4D andG

RR is as defined above, i.e., as the collection of violating sets for the bases
in H.
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Step 3. Set W [ B, G [ G. For i s 1, 2, . . . , perform the next1 1
Ž .step, until a solution is found it will happen for i s D at the latest .

Step 4. Let B be a basis for W j S, computed by a recursive call ofi i
Ž . Ž .DetLp W j S . Let V s V B be the set of all constraints h g Gi i i i

violating B . If V s B, then B is a basis for G and the computationi i i

finishes, otherwise set G s G R V , W [ W j V , increment i andiq1 i i iq1 i i

repeat this step.

Ž w x.Let us first prove correctness following Clarkson Cla88 . For every i
we have G j W s G, so the returned basis indeed defines an optimumi i

for G. The crucial observation is that if V / B, then, for every basis Biq1
for G, V must contain at least one constraint of B R W . Indeed, if it isiq1 i

Ž � 4. Ž .not the case, we have w G R h s w G for every h g V , and by aiq1
Ž . Ž .repeated application of Axiom 2 we find that w G R V s w G . Also,iq1

Ž . Žsince none of the constraints of G R V violates B , w B s w G Riq1 i i
. Ž .V s w G , thus B defines an optimum of G. Since any basis of G hasiq1 i

at most D elements, the algorithm must terminate after at most D
repetitions of Step 4.

Ž .Let us analyze the running time. The fact that S is chosen as a 1rr -net
Ž .for G, RR implies that any basis violated by more than nrr constraints of

G is also violated by a constraint of S. Since no constraint of S is violated
< < < < .by B , it follows that V F nrr, hence W F inrr - nr4D.i iq1 i

Ž .Let T n denote the worst-case running time of the algorithm for n
constraints. For Step 1, we get that the brute force search for solution

Ž .D Ž .3 Dq4Ž .Dq 1requires at most O n rD q 1 n s O D log D violation tests.0 0
We charge every violation test a unit cost; a more refined analysis counting
violation tests separately is straightforward.

w Ž .7D D xStep 2 consumes no more than O D log D n time, by Theorem 2.3.
Then, in each of the at most D recursive calls, we have a subproblem with

< < < < Ž 3 .at most S q W s O D log D q nr4D constraints. If the constant C ini

the definition of n is chosen large enough, we get that this quantity does0
Ž .not exceed nr2 D. The total cost of the violation tests is O Dn , which is

negligible compared to the previously discussed overhead. We thus get the
Ž .following bounds for T n :

3 Dq4 Dq1T n F O D log D for n F n ,Ž . Ž . Ž . 0

7D DT n F O D log D n q DT nr2 D for n ) n .Ž . Ž . Ž . 0

Ž . w Ž .7D D xThis recurrence yields T n F O D log D n.
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We have thus proved the following:

Ž .THEOREM 3.2. Let H, w be an LP-type problem with n constraints of
combinatorial dimension at most D, satisfying Computational assumptions 1

˜ ˜Ž � 4 .and 2, with D F D else, replace D by max D, D below . Then the optimum
Ž . Ž .of H, w can be found deterministically in time at most C D n, where

Ž . Ž .7D DC D s O D log D.

Remark. A reader familiar with Clarkson’s work may know that Clark-
son has proposed another variant of his algorithm, one with smaller size
and ‘‘reweighting’’ of the constaints. We could also derandomize this
variant, but it seems that this brings no improvement, since the main
overhead comes from the deterministic computation of the sample, and
this remains roughly the same for both methods.

4. SAMPLE OF APPLICATIONS

In this section we give few examples of application of Theorem 3.2 to
specific geometric optimization problems. First we finish the discussion of
linear programming.

Linear Programming

It remains to construct the subsystem oracle. A constraint h violates a
basis B iff its bounding hyperplane lies above the vertex x defined by B,
that is, if the bounding hyperplane intersects the open vertical semiline
emanating from x upwards.6 Thus, any set of RR corresponds to a set of
bounding hyperplanes intersecting a certain vertical semiline.

For a set A of constraints, let A be the bounding hyperplanes, and
consider the arrangement of A. Then the semilines with endpoint within

Ž .the same cell and lower-dimensional faces bounding that cell from below
give rise to the same subsets. At this point it is convenient to use the

Ž . Ž .simplifying assumptions i ] iii from Section 3. Since we only look for the
lowest nonnegatï e admissible vertex, it suffices to consider the portion of
the arrangement of A in the nonnegative orthant. Then each cell has at
least one bottommost vertex, which is defined by some k hyperplanes of A
and d y k of the coordinate hyperplanes bounding the nonnegative or-
thant. All such vertices and the sets of hyperplanes lying above them can

3 m mŽ .ŽŽ . Ž .. Ž < <.be inspected, in at most O d q md q ??? q time m s A , andd 0

<each set of RR occurs as the sets of hyperplanes lying above some suchA

6 Constraints with vertical bounding hyperplanes formally require a special treatment; this
is easy to handle.
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vertex. Hence, a subsystem oracle of dimension d is available and we
conclude that:

THEOREM 4.1. The linear programming problem with n constraints in Rd

can be sol̈ ed in d7dqoŽd.n deterministic time.

Extremal Ellipsoids

The smallest enclosing ellipsoid problem is the following: Given an
d Žn-point set P in R , find the smallest volume ellipsoid containing P also

.called minimum spanning ellipsoid, Lowner]John ellipsoid . We have cho-¨
sen this example because there is an extensive literature concerning it, and
it has been considered in several recent papers related to our theme
w xPos84, Wel91, SW92, Dye92 . Here the points of P play the role of the
constraints, and the function w is the volume of the smallest ellipsoid
enclosing a given subset. Axiom 1 is satisfied obviously, Axiom 2 follows
easily from the well-known uniqueness of the Lowner]John ellipsoid¨
w x Ž . ŽDLL57 . The combinatorial dimension is D s d q 3 dr2 this is the

wnumber of degrees of freedom of an ellipsoid, see DLL57, Juh90, Wel91,
x.SW92 .

The violation test in this case is somewhat more problematic. Specifi-
� 4cally, it means the following: Given a set B s b , b , . . . , b of r F D1 2 r

points in Rd and an extra point h, decide whether h is contained in the
unique minimal ellipsoid containing B. The minimum enclosing ellipsoid is

w xdetermined by a system of nonlinear inequalities. Post Pos84 mentions
that explicit formulas for solution can be given for d s 2. However, for a
general dimension, no better algorithm is known to us than to apply
general methods for solving systems of polynomial inequalities.

The set of points x of an ellipsoid EE in Rd can be described by the
inequality

Tx y c Q x y c F 1, 3Ž . Ž . Ž .
where c g Rd is the center of the ellipsoid and Q is a symmetric positive

w xdefinite d = d matrix. Juhnke Juh90 formulates necessary and sufficient
conditions for such an ellipsoid EE to be the smallest enclosing ellipsoid of
B: this is iff Q is symmetric positive definite and there exist real numbers
l G 0, l ) 0, . . . , l ) 0 such that0 1 r

T
b y c Q b y c s 1 j s 1, . . . , rŽ . Ž .j j

r r

l b s l cÝ Ýj j jž /
js1 js1

r
T

l det Q E s l Q b y c b y c .Ž . Ž . Ž .Ý0 j j j
js1
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Ž .E denotes the unit matrix. Then the membership of another point h in
Ž .this ellipsoid is expressed using 3 . Positive definiteness can be enforced

by requiring all the upper left submatrices of Q to be positive. Hence, the
violation test reduces to deciding the solvability of a system of 2 r q D q

Ž2 q d polynomial equalities and inequalities in D q r variables the
.unknowns are the entries of Q, of c, and of the l ’s of maximum degreej

w xd q 1. Renegar Ren92 shows that the solvability of a system of m
inequalities of maximum degree d in D variables can be decided in
Ž .OŽD . 7 OŽD .md time. Hence, a violation test can be performed in D time. It
would be interesting to develop some more efficient methods for determin-

Žing the minimum enclosing ellipsoid for F D points this is also a
.bottleneck for the randomized algorithms .

It remains to discuss the subsystem oracle. Here perhaps the easiest way
Ž w xis to use a ‘‘lifting transform’’ pioneered by Yao and Yao YY85 for

. Ž .problems of this flavor . The left-hand side of the inequality 3 describing
an ellipsoid is quadratic in the x ’s, but we can ‘‘linearize’’ it by mappingi
the problem into a higher dimensional space. Given a point x s
Ž . d Ž . Dx , . . . , x g R , we map it to a point w x in R , given by1 d

w x s x , . . . , x , x 2 , x x , x x , . . . , x x , x 2 , x x , . . . , x 2 .Ž . Ž .1 d 1 1 2 1 3 1 d 2 2 3 d

Ž . Ž .Then the condition x g EE or 3 is equivalent to w x g h, where h s
Ž . Dh Q, c is a certain halfspace in R , determined by Q and c.
For a given A : P, we want to find all sets definable by ellipsoids

determined by bases of P. Being somewhat generous, we include subsets
of A definable by all ellipsoids. In fact, we map A into R D by w, and we

Ž . Dlist the preimages of all subsets of w A definable by halfspaces in R .
Ž < <.DThe number of such subsets is still O A , and we can list them in

Ž < <.Dq 1 ŽO A time using essentially the method discussed above for linear
.programming . Hence, a subsystem oracle of dimension D is available and

we can apply the general result. Let us remark that, strictly speaking, the
algorithm computes only the minimal subset determining the ellipsoid; the
ellipsoid itself is given implicitly as a solution of the above system of
inequalities and equalities.

A problem of a similar flavor is finding the maximum volume ellipsoid
inscribed into the intersection of n given halfspaces in Rd. This ellipsoid is

w xagain unique DLL57 , and the combinatorial dimension is again D. Both
violation test and subsystem oracle can be handled in a similar way as for
the previous problem. We get:

THEOREM 4.2. The minimum ¨olume enclosing ellipsoid for a set of n
points in Rd or the maximum ¨olume ellipsoid inscribed into the intersection

7 This assumes the real RAM model of computation.
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of n halfspaces in Rd can be computed deterministically in DOŽD .n time,
Ž . 7DqoŽD .D s d d q 3 r2. The computation needs D n arithmetic oeprations

plus D3 DqoŽD .n ¨iolation tests.

We believe that the above examples sufficiently illustrate the technique
of applying the general result to specific geometric optimization problems.
In general, problems similar to convex programming involving bounded
degree polynomials should be amenable to such treatment. It would be
interesting to find also nongeometric applications for the Sharir]Welzl
framework and the algorithms.
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