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Abstract

We give an optimal deterministic O(n logn)-time algorithm for slope selection. The algorithm borrows from
the optimal solution given in (Cole et al., 1989) but avoids the complicated machinery of the AKS sorting
network and parametric searching. This is achieved by redesigning and refining the O(n log? n)-time algorithm
of Chazelle et al. (1993) with the help of additional approximation tools. ® 1998 Elsevier Science B.V.
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1. Optimal slope selection

The problem is to compute the line defined by two of n given points that has the median slope
among all (g) such lines. Equivalently, the problem can be stated as that of selecting the median-
abscissa vertex of the arrangement A(L) of a set £ of n lines [6]. For generality, we set out to compute
the vertex with rank 7* from left to right, for any given 1 < I* < (Z) This problem is connected
to the problem of sorting X +Y ={z+ vy, z € X, y € Y} [8], and occurs in statistics where the
line of median slope is called the Theil-Sen estimator, and is a robust indicator of the slope of the
regression line through the points [7].

An optimal deterministic solution was given by Cole et al. in [6], but it requires the use of the
AKS sorting network [1] and parametric searching [12], and its analysis is fairly complicated. Sim-
ple randomized algorithms were subsequently designed by Dillencourt et al. [7] and Matousek [11].
An optimal deterministic algorithm was given by Katz and Sharir in [9], building on the simple
O(nlog?n)-time algorithm of Chazelle et al. [4] and using expander graphs plus an approximation
tool from [6]. The solution we give here also optimizes the algorithm of [4], using only elementary
data structures. The exposition is entirely self-contained, besides the construction of e-nets [2,10].
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2. Definitions and notation

The lines in £ are numbered in order of decreasing slopes. To ease the exposition, we suppose that
the lines are algebraically independent, which in particular implies that vertices of their arrangement
are incident upon only two lines and have distinct abscissae. This assumption can be removed easily
by a more precise treatment of degeneracies. (Indeed, it suffices to treat a vertex v = [N as a triplet
(v, N(I), N(I")), where line [ is numbered N ([). Lexicographic order disambiguates between vertices
having the same abscissa.) Any vertical line z = z¢ cuts .A(L) in n points (whose ordinates are called
the intercepts), and the number of vertices on it or to its left is noted v(L, zp). More generally, we
let v(£,S) denote the number of vertices of LA(L) inside any region S. The vertical ordering of the
lines at x = x defines a permutation 7, of the lines, with m_, being the identity. (If x = zy passes
through a vertex, we make the convention that the two meeting lines are in the same order as at
T = xg + €, for infinitesimally small £ > 0.) The number of inversions of this permutation is denoted
I(7s,) and is exactly v(L, o).

For our purposes, an e-net for a set £ of lines is a subset NV such that every segment intersecting
more than £|£] of the lines of £ intersects at least one line of N. Matousek [10] gave an algorithm
that computes e-nets in linear time, if € is a constant. (See also [2,5].) The only subroutine needed by
this algorithm is one that computes the arrangement of a constant number of lines of L.

Borrowing terminology from [6], let us partition a permutation 7 into a collection B of at most
2n/m blocks, each containing at most m lines consecutive in 7; we obtain what is called an m-blocked
permutation 7. If any two lines belonging to different blocks are ordered as in 7, and all inversions
within a block of 75 actually occur in 7, we say that 7g is left-compatible with 7.,. Note that 7,
might contain inversions absent from 7. Because at most (’;) inversions can occur within a block
of size m, we have

I(rg) < I(mg,) < I(mB) + nm. €))
Reversing the order along the z-axis gives the concept of right-compatibility, and we have the converse
I(rg) —nm < I(7g,) < I(7B). )

Therefore, we see that maintaining a blocked partition compatible with a permutation gives a good
estimate on the number of inversions of this permutation: the smaller the blocks, the finer the estimate.
The rank of a vertex (x,y) is rank(z) = I(n;), and the problem is to find the vertex v* of A(L) of
abscissa z* with rank(z*) = I*.

3. Updating blocked permutations

Assume we have an m-blocked permutation 7 left- (respectively right-) compatible with 7, for
some z, and we wish to have an m-blocked permutation 7’ compatible with 7, for a given =’ > z
(respectively 2/ < z) such that |rank(z’) — rank(z)| = O(nm). We modify and simplify a technique
called reblocking that was used in [6]. Let us process the lines of £ in the order given by 7. Before
processing line [, assume we have a linked list of stacks, s1,... , 8¢, €ach of them containing between
[m/2] and m elements. Initially, only s; is in the list, and it is filled with the first m elements of 7.
For each stack s;, we keep two counters: the number size(s;) of elements, and the lowest intercept at
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Fig. 1. The lines numbered 1-11 are 4-blocked in the order of ., and reblocked at z’, with I”” = 7 more intersections

detected. The stacks are described by the lines in order, with low(s;) between brackets. Upon inserting 12 into the list of
stacks, we step down the list to s, adding 7 more intersections. Then s; is split into s| and s, adding 2 more intersections.

x’ of a line of s;, which we denote low(s;). We also keep a global counter I, initially set to 0. This
counter will serve to count the additional inversions between 7 and 7’

To insert a line [ into our linked stacks, we first try to insert it into sg, the last stack in the list. If
the intercept y(I) of [ at 2’ is lower than the lowest intercept of 54, we try to insert [ into s,_1, and
iterate if necessary. Each time we go down the list from s; to s;,_;, we increase I" by size(s;). Should
we reach si, we insert [ there and update low(s;).

If after inserting a line into a stack s;, this stack has m + 1 elements, we need to split it. To do so,
we compute the median y of the intercepts (y({));es, at ¢’ of the lines in this stack, and reinsert the
lines into a new stack s; (respectively s!) according to whether their intercept is smaller than or equal
to (respectively larger than) y. The lines are inserted in the same order as which they have been put
into s;. Each time a line is inserted into s}, I” is incremented by the current size(s;'). Then blocks
Sit1,...,8q are renumbered s;42, . .., Sq+1, and s; (respectively s7/) becomes the new s; (respectively
si+1) if necessary.

When the whole round of insertions finishes, we have a new m-blocked permutation 7’ obtained
by concatenating all the stacks in order, which by construction is compatible with /. If I is the
number of inversions of 7, we claim that the number of inversions of 7’ is I’ = I + I”. Note that
we insert the lines in the order given by . Inside the blocks of =, the lines need not be in the actual
order corresponding to that abscissa; however, all the inversions of 7 have been accounted for in [
(including inversions between two lines of the same block). To start with, we observe that we count
an inversion between [’ and {"” in I” only if y(I') < y(I") at z (which implies that {’ is before "’
in ), and if I’ and " are assigned to different blocks in 7' before or after splitting a stack. In this
case, the intersection is being witnessed: y(I') > low(s) > y(I”) for some stack s. Once two elements
have been inverted, they will remain in the same order in any subsequent reblocking, for this would
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imply y(I') < y(I") at abscissae greater than a’, meaning that [ and !’ have two intersection points,
which is impossible. If two lines are in the same block in 7, however, it follows from the construction
that they are in the same order as in 7. Since we cannot count an intersection twice, I’ corresponds
exactly to the number of additional inversions from 7 to 7/, which establishes our claim.

The subtle point is that the computation of 7’ is done in O(n) time. This can be most easily seen
by the fact that the total insertion time is proportional to the number of times an element steps down
in the list. But doing so adds at least m/2 inversions, and we know that there are at most O(nm)
inversions between 7 and 7. Therefore going down the list cannot happen more than O(n) times. The
time taken by a split is also O(m), and the number of split operations is bounded by the final number
of blocks in 7/, which is O(n/m). Thus we have Lemma 1.

Lemma 1 (Reblocking). Given an m-blocked permutation 7 left- (respectively right-) compatible with
Ty for some x, it is possible to compute in O(n) time an m-blocked permutation 7' left- (respectively
right-) compatible with 7, for any given 2’ > x (respectively x' < x) such that |rank(z') — rank(z)| =
O(nm).

The same reblocking strategy also works for halving the size of the blocks of 7. Simply halve the
size of all the blocks of 7 as we did in splitting a stack in the paragraph above.

Lemma 2 (Halving). Given an m-blocked permutation w left- (respectively right-) compatible with
7y for some x, it is possible to compute in O(n) time an (m/2)-blocked partition which is still left-
(respectively right-) compatible with .

4. The algorithm

We first define a vertical slab (I,r) as the portion {(z,y): | <z < r}. The algorithm maintains an
my-blocked permutation 7(!) which is left-compatible with 7;, and an m,-blocked permutation 7 ()
which is right-compatible with 7. It also maintains the number of inversions I; (respectively I,.) of
7(l) (respectively 7(r)). Finally, it stores a collection 7 of vertical trapezoids covering (I, r), along
with their conflict lists (the set of lines crossing them). By analogy with [3,4], we call 7 a curting
for the slab (I, 7). For accounting purposes, we give a size of 1 to an empty conflict list. In this way,
the total size of the conflict lists becomes an accurate indicator’ of the size of the data structure. The
algorithm proceeds in a logarithmic number of steps, and maintains the four following invariants at
step 7 (for some large enough constant c).

a1 I 4+ 2nmy < I* < I, — 2nm,,.
12) I, —dnm, < I* < I; 4+ 4nmy.
(I3) Any trapezoid of 7 is crossed by at most n/c’ lines.
(I4) The total size of the conflict lists of 7 is at most cn.

Informally, (I1) says that the vertex sought lies comfortably within the slab (I, r), because of Egs. (1)
and (2); (I2) means that the blocked permutations are no finer than needed; (I3) guarantees that the
number of steps will be logarithmic; and (I4) guarantees that the work in a single step is O(n).
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A step of the algorithm can be a slab refinement step, whose purpose is to narrow the slab (I,7),
or a cutting refinement step, which subdivides the trapezoids of 7. Before explaining how they will
be interleaved in the algorithm, let us describe how to perform them.

We halve the slab (I, r) in the same fashion as [4]. A point is said to be critical if (i) it lies in the
interior of (I,7), and either (ii) it is at the intersection of some line and the upper (lower) boundary of
a trapezoid or (iii) it is a vertex of a trapezoid. Intersections along [ and r are not critical points. For
accounting purposes, we include the vertices of (iii) with a multiplicity equal to the number of lines
crossing the incident vertical boundaries. Let V' denote the multiset of all the critical points. From (14),
we know that V' has size O(n). We compute its median abscissa h.

We choose a winning slab between (I, h) and (h, ) in the following fashion: for each side s (either
[ or r), we reblock 7(s) at x = h. We then keep halving m, until (I1), (I2) are restored. Reblocking
and halving are described in the previous section and each takes O(n) time. Potentially, this could be
a very long process (in particular if z* is very near h). To avoid this, we organize the computation as
follows: each side is run in parallel (think of it as having two distinct processors, or as giving the odd
cycles to side [ and the even cycles to side r), and the computation stops when (I1), (I2) are restored
for either side s (but not necessarily both). If s equals /, the winning slab is (h,r), otherwise it is
(1, h). We call this the slab selection process.

Once we know the winning slab w, we discard trapezoids of 7 that don’t intersect w, keep only
the portion inside w of those which intersect the line x = h and update their conflict list, and keep
those entirely contained in 7 as they are. This yields a different cutting 7”. If (I, ) is the winning
slab, we leave m(l) unchanged, and let h replace r, with w(h) being the permutation reblocked from
m(r) at = h and halved as many times as in the slab selection process. We proceed symmetrically if
(h,r) is the winning slab. Observe that (I1)—(I4) are maintained, and that the number of critical points
in the winning slab has been at least halved compared to those in the slab (I,). This concludes the
description of the slab refinement step.

If we kept iterating on this process, we would quickly run out of critical points. So, we repeat the
slab refinement step a constant number of times until the number of all critical points drops below
n/(clogc)?, at which point we compute a (1/(4c))-net of size O(cloge) for each of the conflict
lists [2,5,10], and compute its vertical trapezoidal map inside the relevant trapezoid. Finally, we
increment j by one. Any of the four sides of a new trapezoid is intersected by at most (1/4c)(n/c/)
lines, hence the new cutting satisfies (I3) for the new value 7/ = 7+ 1 of j. Note that the new multiset
of critical points is of size at most ¢;n (for a constant ¢; not depending on ¢ but on the size of the
net). Following [4], we say that an edge of a trapezoid is free if it runs entirely across the slab. We
remove any free edge if doing so does not create trapezoids violating (I3). Since the free edges are
vertically ordered, after removal, there can be at most e such edges, accounting for at most 2¢yn
of the conflict lists elements (for another constant ¢; independent of ¢). In order to maintain (14), we
observe that each element in the conflict list can either be charged to a new critical point (in number
c1m), to an intersection with the two vertical bounding lines (exactly 2n of them), or to a free edge
(in total number cyn). Therefore, taking ¢ > ¢ + 2¢y + 2 ensures that the new cutting satisfies (I4) as
well. This concludes the description of the cutting refinement step.

We organize the sequence of steps as follows: we refine the slab until at least one refinement for
the cutting is needed. This can end in one of two ways: either we find that z* = h because we refined
the blocked permutation 7(h) until it becomes the permutation 7, and I, = I*; or n/c¢’ becomes less
than 1 after refining the cutting. In the latter case, the full arrangement between [ and r is available,



[\

8 H. Bronnimann, B. Chazelle / Computational Geometry 10 (1998) 23-29

First halving.

Third halving.

T

BRVANAIVAY
N7

= ]

-t
—

(@ (b)

Fig. 2. (a) The cutting and blocked permutations for £ at 2 = ! and © = r. No more than four lines cross a trapezoid.
Shadowed are the loci of vertices of rank between I;+2nm; and I; +4nm, (respectively between I. —4nm,. and I.—2nm,.).
Invariants (I1), (I2) guarantee that v* lies in the shadows. (b) During a slab refinement step, we reblock n(l) at z = h.
Displayed is the evolution of the shadows as we repeatedly halve until (by the third halving) v* leaves the shadow, so we
keep the permutation after the second halving as the final blocked permutation.

and its vertices are in number less than cn. We compute rank(!) exactly in O(nlogn) time, and select
the vertex of rank I* —rank(!) in that list. In both cases, the algorithm succeeds in finding the vertex
of rank I*.

5. Running time analysis

As we observed above, the number of critical points is at least halved during a slab refinement step.
Therefore, no more than a constant number of slab refinement steps can occur between two consecutive
cutting refinement steps. The number of cutting refinement steps is O(logn), since at each such step
the maximum size of the conflict lists decreases by a factor of ¢. Thus the total number of refinement
steps is O(logn).

But this number is not necessarily a good indicator of the running time: because we halve repeatedly
in the slab selection process, a slab refinement step could take substantially more than O(n) time.
However, we can show that this is not the case in the amortized sense: let h; be the median of =
the critical points at slab refinement step ¢, and let K; = [rank(h;) — I*[; let 0 < lp < -+ < I,
k = O(logn), be the subsequence of such steps for which the winning slab is (I, h;), and let similarly
0<rp< - <1, ¥ =0(logn), be the subsequence of such steps for which (h;, ) is the winning
slab.

At the beginning of step /;, j < k, we denote the block size of 7(r) by m, ;, and after the
halvings the block size of w(h;) becomes m, ;1. Thus the number of halvings during step I; is
ki, = log(my,;/my,j+1). From (11), (I2) and Eq. (2), we obtain k;; = log(Ky,_,/K);) + O(1). Thus,
the total number of halvings performed on 7 (r) throughout the entire algorithm is

> k=Y (ogk;, —logKy, )+ O(k) =log K;, — log Kj, + O(k) = O(logn),
0K <k 0<j<k
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since K; < (5) for any step 4. Similarly, > o<j<k kr; = O(logn). Therefore the total number of
halvings (on either side) during all slab refinement steps is also O(logn).

Since each reblocking, halving, and cutting refinement step takes O(n) time, the total running time
of the algorithm is O(nlogn) as claimed, and the storage is O(n).

Acknowledgements

We wish to thank Bill Steiger, Jirka MatouSek and two anonymous referees for helpful discussions
and suggestions to improve the presentation of this paper.

References

(1] M. Ajtai, J. Komlés, E. Szemerédi, Sorting in clogn parallel steps, Combinatorica 3 (1983) 1-19.
[2] H. Bronnimann, B. Chazelle, J. Matous$ek, Product range spaces, sensitive sampling, and derandomization,
in: Proc. 34th Annu. IEEE Sympos. Found. Comput. Sci., 1993, pp. 400—409; to appear in SIAM J. Comput.
[3] B. Chazelle, Cutting hyperplanes for divide-and-conquer, Discrete Comput. Geom. 9 (2) (1993) 145-158.
[4] B. Chazelle, H. Edelsbrunner, L. Guibas, M. Sharir, Diameter, width, closest line pair and parametric
searching, Discrete Comput. Geom. 10 (1993) 183-196.
[5] B. Chazelle, J. Matouek, On linear-time deterministic algorithms for optimization problems in fixed
dimension, in: Proc. 4th ACM-SIAM Sympos. Discrete Algorithms, 1993, pp. 281-290.
(6] R. Cole, J. Salowe, W. Steiger, E. Szemerédi, An optimal-time algorithm for slope selection, SIAM 1J.
Comput. 18 (1989) 792-810.
[7]1 M.B. Dillencourt, D.M. Mount, N.S. Netanyahu, A randomized algorithm for slope selection, Internat. J.
Comput. Geom. Appl. 2 (1992) 1-27.
[8] L.H. Harper, T.H. Payne, J.E. Savage, E. Strauss, Sorting X + Y in O(nz) comparisons, Comm. ACM 18
(1975) 347-349.
[9] M.J. Katz, M. Sharir, Optimal slope selection via expanders, Inform. Process. Lett. 47 (1993) 115-122.
[10] J. MatouSek, Approximations and optimal geometric divide-and-conquer, in: Proc. 23rd Annu. ACM
Sympos. Theory Comput., 1991, pp. 505-511; also to appear in J. Comput. Syst. Sci.
[11] J. Matou$ek, Randomized optimal algorithm for slope selection, Inform. Process. Lett. 39 (1991) 183-187.
[12] N. Megiddo, Applying parallel computation algorithms in the design of serial algorithms, J. ACM 30 (1983)
852-865.



