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Lines in Space: Combinatorics and Algorithms!
B. Chazelle,2 H. Edelsbrunner,’ L. J. Guibas,* M. Sharir,’ and J. Stolfi®

Abstract, Qlfestions about lines in space arise frequently as subproblems in three-dimensional computationa|
geometry. In this paper we study a number of fundamental combinatorial and algorithmic problems involyi ;
arrangements of z lines in three-dimensional space. Our main results include: ‘ ving
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for processing it are more difficult to obtain. Straight lines, one of the simplest types
of objects encountered in spatial problems, already present many of these difficulties.
In fact, as we will see below, lines in space are modeled best by nonlinear objects. For
a classical treatment of the geometry of lines in 3-space see the book by Sommerville
[So], or various kinematics texts [BR], [Hu].

In this paper we make contributions to three-dimensional computational geometry
by studying several combinatorial problems involving arrangements of lines in space.
By the arrangement of a given set of lines we mean the partitioning of the space of all
lines introduced by the given lines. We first provide a combinatorial and algorithmic
analysis of what we call an orientation class of a collection of lines in space, i.e., the
topological boundary of the space of lines having a given orientation with all the given
lines. We show how to express the “above/below” relationship of lines in space by
means of the orientation relationship and use this reduction to analyze various problems
concerning the vertical relationship of lines in space. Even though (as is discussed
below) the “natural complexity” of an arrangement of n lines in space is ®(n) (see
[MO]), we are able to solve each of the problems that we consider in nearly quadratic
space, or better. In a companion paper [CEGS1] we then apply these results to several
important practical problems involving polyhedral terrains (i.e., images of piecewise-
linear continuous bivariate real functions) and obtain reasonably efficient solutions.

In order to introduce and summarize our results in more detail here, we review some
basic geometric properties of lines in 3-space. A line requires four real parameters to
specify it, so it is natural to study arrangements of lines in space within an appropriate
parametric 4-space. Unfortunately, any reasonable such representation introduces non-
linear surfaces. For example, in many standard parametrizations the space of all lines
intersecting a given line is a quadric surface in 4-space. To obtain a combinatorial rep-
resentation of an arrangement of n lines in space it is therefore necessary to construct
an arrangement of n quadric surfaces in 4-gpace (in fact, the recent paper [MO] does
provide an implicit construction of such an arrangement; see also [Mc]). This arrange-
ment has complexity O (n*) (as follows, e.g., from a theorem of Milnor and Thom [Mi])
which is usually unacceptable for practical applications; moreover, even if we were to
construct the arrangement, performing point-location (that is, “line-location™) in it is
difficult, These observations indicate why many of the recent works on visibility prob-
lems involving arbitrary collections of lines (or segments, or polyhedra) in space produce
bounds like O (n*) or worse (see [PD], [GCS], [MO], and [Mc)).

Fortunately, there are two lucky breaks that we are able to exploit in this work, which
lead to improved solutions in many applications. The first is that there s an alternative
way to represent lines, using Pliicker coordinates (see, e.g., [St], [BR], and [Hu]; the
original reference is [P1]). These coordinates transform (oriented) lines into either points
or hyperplanes in homogeneous 6-space (more precisely, in oriented projective 5-space)
in such a way that the property of one line /| intersecting another line /5 is transformed into
the property of the Pliicker point of /; lying on the Pliicker hyperplane of Iy (or vice versa).
Thus, at the cost of passing to five dimensions, we can linearize the incidence relationship
between lines. This Pliicker machinery is developed in Section 2. For completeness, we
mention that another representation of lines in 3-space by two points in the plane, based
on the parallel coordinates introduced by Inselberg [I], has also been found useful in
practice,
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In studying arrangements of lines in space, it is more important o analyze the relatiye
orientation of two lines rather than only the incidence between them, as the latter js g
degenerate case of the former. We develop this concept of relative orientation in Section 3
and show how to determine efficiently if a query line is of & particular orientation clagg
with respect to n given lines, We give a method that takes preprocessing and storage
of O(n***) and allows a query time of O(logn). In the process we show that the total
combinatorial description complexity of any particular orientation class is in the worst
case ©(n?). We get this bound by mapping our lines to hyperplanes in oriented projective
5-space using Pliicker coordinates. Our orientation class then corresponds to a convex
polyhedron defined by the intersection of a half-spaces based on these hyperplanes,
Our second lucky break now comes from the Upper Bound Theorem (see, e.g., [Ed)),
stating that the complexity of such a polyhedron is only O(n'**!) = 0(n?) (the same
asymptotic order as in 4-space, which means that passing to five dimensions did not
really cost us anything extra in terms or complexity).

For many applications, however, we need to analyze the property of one line lying
above or below another. In Section 4 we show how, by adding certain auxiliary lines, we
can express “above/below” relationships by means of orientation relationships, Using
this reduction we provide an efficient method for testing if a query line lies above the
n given lines. Specifically, we give an algorithm for preprocessing a collection £ of n
lines in space in O (n***) preprocessing time and storage. Our algorithm builds a data
structure that supports O (log n) queries of the form: given a line /, does it lie above all
the lines of £? If so, which line of £ lies “immediately below" /, i.e., what is the first
line of £ to be hit as / s translated downward? We also demonstrate in Section 5 that
the worst-case combinatorial complexity of the “upper envelope™ of n lines is & (n?)—
the main observation being that such an envelope can be expressed as the union of n
orientation classes of the kind discussed in the previous paragraph,

We also provide in Section 6 a barched version of the algorithm for testing the
“above/below” relationship: Given m blue lines and n red lines. determine whether
all blue lines lie above all red lines (we call this the “towering property”), and, if so,
find for each blue line the red line lying immediately below it (in the above sense). We
achieve this by an algorithm with running time O((m + n)¥***), for any & » (),

The algorithms just mentioned, as well as many others developed in this paper, are
based on the recently introduced technique of #-nets in computational geometry by
Haussler and Welzl, and Clarkson (see [HW], [C11], and [CF). Originally s-nets were
obtained by random sampling. The randomizations employed by the algorithms draw a
small random sample of the data objects, and use it to partition the problem into smaller
subproblems in a uniform manner. Even more recently, various efficient deterministic
techniques for constructing £-nets were obtained by Matousiek and others [Mal ]-[Ma3],
[CF); see also the survey paper by Agarwal [Ag]. Using these methods all the algorithmic
bounds given in this paper can be made to be worst-case bounds. The corresponding ran-
donlnized versions would be easier to implement and probably preferable in any practical
application.

We close the paper with a discussion of line separability by translation in Section 7,
and by describing several open problems about lines in space in Section 8. We hope that

this paper will stimulate further combinatorial and algorithmic work in three-dimensional
line geometry.
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2. Geometric Preliminaries. The main geometric object studied in this paper is a
line in 3-space. Such a line [ can be specified by four real parameters in many ways. For
example, we can take two fixed parallel planes (e.g., z = 0 and z = 1) and specify [ by
its two intersections with these planes. We can therefore represent all lines in 3-space,
except those parallel to the two given planes, as points in four dimensions. However, as
already noted, even simple relationships between lines, such as incidence between a pair
of lines, become nonlinear in 4-space. More specifically, a collection £ = {I;, ..., I,} of
n lines induces a corresponding collection of hypersurfaces S = {s!,...,s"}in4-space,
where ' represents the locus of all lines that intersect, or are parallel to, I; (it is easily
checked that each s’ is a quadratic hypersurface). The arrangement A = A(S) induced
by these hypersurfaces represents the arrangement of the lines in £, in the sense that
each (four-dimensional) cell of A represents an isotopy class of lines in 3-space (i.e.,
any such line in the class can be moved continuously to any other line in the same class
without crossing, or becoming parallel to, any line in £).

This arrangement can be understood in three dimensions as follows. Given three lines
in general position” in 3-space, they define a quadratic ruled surface, called a regulus,
which is the locus of all lines incident with the given three lines. A fourth line will in
general cut this surface in two, or zero, points. Thus four lines in general position will
have either two or zero lines incident with all four of them. These quadruplets of lines
with a common stabber correspond to vertices of the arrangement .A. (In other words, a
line moving within an isotopy class comes to rest when it is in contact with four of the
given arrangement lines—each of them removing one of the four degrees of freedom that
the moving line has. Note that some of these contacts can be at infinity, corresponding
to the moving line becoming parallel to one of the given lines.) Similarly, the edges of
A correspond to the motion of a line while incident with three given lines, in the regulus
fashion described earlier. In the general case each vertex of A4 has eight incident edges.
Higher-dimensional faces of A can be obtained similarly, by letting the common stabber
move away from two, three, or all four of the lines defining a vertex. This shows that
the number of these higher-dimensional faces of A is, in each case, related by at most
a constant factor to the number of vertices of \A. This last statement remains valid even
if the given lines are not in general position, as follows from a standard perturbation
argument, ‘

By the discussion in the preceding paragraph (or by invoking the theorem of Milnor
and Thom [Mi], as mentioned in the Introduction) we can conclude that the combinatorial

~ complexity of the arrangement of n quadratic surfaces in 4-space is O(n*) and this

bound is attainable (see [MO]). In particular, A has O (n?*) vertices, where each such
vertex represents a line that meets four of the lines in £. Unfortunately, it is difficult to
handle such an arrangement of nonlinear hypersurfaces explicitly; tasks such as efficient
calculation and representation of A, processing it for fast point location,® and obtaining
sharp complexity bounds for certain portions of it become quite difficult.

7 We take this to mean that the lines are pairwise nonintersecting and nonparallel, For more lines we add the
condition that no five of our lines can be simultaneously incident with another line (not necessarily of our

collection),
8 An efficient technique for point location among algebraic manifolds was recently givenin [CEGS2]. However,

that method requires € (n%) space.
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We therefore exploit another representation of lines, using Pliicker coordinates and
coefficients (see [St], [BR], and [Hu] for a review of these concepts). Let / be an ori-
ented line, and Jet @, b be two points on ! such that the line is oriented from a to b.
Let [ap, a1, a3, as] and [by, by, ba, b3] be the homogeneous coordinates of a and b, with
ag, by > 0 being the homogenizing weights. (By this we mean that the Cartesian coor-

dinates of a ate (a,/ag, as/ag, aslap)). By definition, the Pliicker coordinates of / are the
six real numbers

mw(l) = [moy, o2, W12, T3, 13, T3],

where 7;; = a;b; — a;b; for 0 <i < j < 3. Similarly, the Pliicker coefficients of / are
w () = (w23, =13, 03, F12, —702, T01),

i.e., the Pliicker coordinates listed in reverse order with two signs flipped. The most
important property of Pliicker coordinates and coefficients is that incidence between
lines is a bilinear predicate. Specifically, /! is incident to /? if and only if their Pliicker
coordinates !, 7% satisfy the relationship

12 |2 ) ) 2 L2
M T 93 — Tga i3 + T3 + ToaT iy — 71375 + W37y = 0.

This formula follows from expanding the four-by-four determinant whose rows are the
coordinates of four distinct points a, b, ¢, d, witha, bon 1! and ¢, d on [2. This determinant
is equal to 0 if and only if the two lines are incident (or parallel). In general, the absolute
value of the quantity in (1) is six times the volume of the tetrahedron abed,’ and its sign
gives the orientation of the tetrahedron abced. As long as 1! is oriented from « to b and
1% from c to d, this sign is independent of the choice of the four points, and defines the
relative orientation of the pair I', 12, which we denote by ' o /2 [St].

It is easily checked that any positive scalar multiple of s (l) is also a valid set of
Pliicker coordinates for the same oriented line I, corresponding to a different choice of
the defining points a and b, or to a positive scaling of their homogeneous coordinates.
Also, any negative multiple of 7 (I) is a representation of I with the opposite orientation.
Therefore, we can regard the Pliicker coordinates 7 (1) as the homogeneous coordinates of
a point projective oriented 5-space P°, which is a double covering of ordinary projective
5-space.'? Dually, we can regard the Pliicker coefficients = (/) as the homogeneous
coefficients of an oriented hyperplane of 3, Equation (1) merely states that line /! is
incident to line /2 if and only if the Pliicker point (/') lies on the Pliicker hyperplane
@ (12). In fact, the relative orientation I' o /2 of the two lines is 1 if w(/!) lies on the
positive side of the hyperplane = (1), and —1 if it lies on the negative side.

We observe that not every point of P is the Pliicker image of some line. It is
well known that the real six-tuple (7;;) is such an image if and only if it satisfies the

? Italso equals the product ab cd D sin e, where D is the distance between /' and /2, and a is the angle between
the two lines.

% The points of P5 can be viewed as the oriented lines through the origin of %, with the geometric structure
induced by the linear subspaces of M; or, equivalently, as the points of the five-dimensional sphere §%, with the

geometric structure induced by its great circles, See [St] for more details on the theory of oriented projective
spaces.
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quadratic equation
) 01T — To2T13 + W12703 = 0,

which states that every line is incident to itself. Thus among the six Pliicker coordinates
fwo are redundant. Equation (2) defines a four-dimensional subset of P3, called the
Pliicker hypersurface 1. Notice that the relative orientation of a line relative to a sixtuplet
of numbers that does not correspond to a point on the Pliicker hypersurface still makes
perfect sense—simply plug the appropriate numbers into (1). It turns out that such
“jmaginary” lines dohave a natural geometric interpretation in 3-space. They are known
as linear complexes and their properties are studied in [FT] and [J].

3. The Orientation of a Line Relative to n Given Lines. We wish to analyze the
set C(L, o) consisting of all lines / in 3-space that have specified orientations o =
(@', 0%, ...,0" relative to n given lines in £ = (4,12, ..., 1M). (We call this set the
orientation class o relative 1o L£.) Translated to Pliicker space, the definition says that
point 7 (!) has to lie on side o' of every hyperplane ar (1), and therefore inside the
convex polytope C(L,0) in P5 that is the intersection of those n half-spaces. The
orientation class C(L, o) is thus the intersection of the polytope C (L, o) and the Pliicker
hypersurface I1. Note that since TT is of degree 2, it can interact in at most “a constant
fashion” with each feature of the polytope C(L, o).

For the purpose of this paper, we consider the polytope C (L, o) to be an adequate
description of the orientation class C(L, o). Computing the class then means computing
all the features of this polytope, i.e., all its faces (of any dimension). The number of
such features is the combinatorial complexity of the class—intersecting with I1 can only
increase this number by a constant factor, By the Upper Bound Theorem (see, e.g., [Ed]),
this complexity is only 0 (137 = 0(n?). It is not difficult to find configurations of
lines £ that attain this bound. Consider the regulus (actually hyperbolic paraboloid)
z = xy and two families of n/2 lines each of the regulus. One family consists of lines
from one of the two rulings of the regulus, and the other of lines from the other ruling.
By perturbing the lines of one family to be slightly off the regulus, we can make this a
nondegenerate arrangement, Itis simple to check that in every elementary square defined
by two successive lines {from one ruling and two successive lines from the other ruling
there corresponds a line incident to all four of the lines defining the square and passing
above all the rest. A more detailed construction of this kind is given in Section 5.

A possible data structure for representing the polytope C (L, o) is its face-incidence
lattice, as described in [Ed]. Seidel’s output-sensitive convex hull algorithm [Se] con-
structs this representation in O (log n) amortized time per face. The more recent optimal
but complex convex hull algorithm of Chazelle [Ch] can also be used to obtain the
polytope C in O(n?) time. As it turns out, in the algorithms to follow we only need to
compute orientation classes for collections £ whose size is bounded by a constant, so
the representation issue does not arise in a significant way.

THEOREM 1. The set of all lines in 3-space that have specified orientations to 1 given
lines has combinatorial complexity ©(n?) in the worst case, and can be calculated in
time O (n?).
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1t was shown by Neil White (see [MO]) that the intersection of the convex polytope
C(L, o) and the Pliicker hypersurface I1 may consist of many connected components. In
other words, an orientation class relative to the fixed lines £ may contain multiple distinct
isotopy classes. We note that the vertices of those isotopy classes are intersections of the
Pliicker hypersurface IT with the edges of the polytope C(L, o). Since IT is a quadratic
hypersurface, there are at most two such intersections per edge, and therefore the total
number of vertices in all those isotopy classes is only O(n?). In other words, there are
at most O (n?) lines that touch four of the lines of £ and have specified orientations with
all the others. A slightly more complicated argument shows that there are at most O (n?)
isotopy classes in one orientation class. We do not know if this bound can be attained.

We now give an efficient algorithm for deciding whether a given query line [ in 3-
space lies in a particular orientation class o relative to a set £ of n fixed lines. We
begin by preprocessing the fixed lines into a tree-like data structure X(L, o), using
a net-based partitioning technique that somewhat resembles those of [CI2] and [CF].
For simplicity, we describe the construction for the class @ = (4, -+, ..., +); the same
construction can be applied to other classes by reversing the orientation of the appropriate
lines of £, Consider the n Pliicker hyperplanes that correspond to the given lines £.
We choose an ¢-net R for simplex range queries among these hyperplanes, with some
fixed size r > 0. We compute the open five-dimensional polytope C(R) = C(R, +")
that is the intersection of their positive half-spaces. Then we decompose C(R) into a
collection K(R) of open k-dimensional simplices, for k < 5, by picking a vertex v of
C(R), recursively triangulating all the faces of C(R) that are not incident to v, and then
taking the convex hull of the point v and each of these simplices. By the Upper Bound
Theorem, C(R) has only O(r?) faces, and X(R) contains only O(r?) simplices. The
time required for these steps is dominated by O (nr*/log®r), the cost of selecting the
net deterministically [Ma3]. Since none of these simplices meets any of the hyperplanes
of R, it follows from the net property (see [HW] and [C11]) that each simplex in K(R)
will meet at most ¢(n/r)logr of the n original hyperplanes, for some constant ¢ > 0
independent of » and n.

We then proceed to discard any simplex of C(R) that lies entirely on the negative side
of some of the n hyperplanes. Each surviving simplex s becomes a child of the root of
our data structure; the subtree rooted at s consists of the O ((n/r)log r) hyperplanes that
intersect s, recursively preprocessed as described above, If all simplices get discarded,
or if the polytope C(R)) was empty to begin with, then the orientation class is empty, and
the problem is trivial: no query line can be positively oriented with respect to all lines in
L. (Note that the converse is not necessarily true.)

The storage and preprocessing time required in this technique obey the recursion

: 4
T = 06" T (2 10gr) + 0 (10”;4. )
-

for some constant C. It is not hard to prove that this solves to 7' (n) = O (n***), for some
positive number ¢ that tends to 0 as r increases. (Note however that increasing r also
increases the constant of proportionality.)

Testing a query line I proceeds as follows. We first test whether any of the O(r?)
simplices at the top level of the tree contains the Pliicker point & (). If so, we search
recursively in the subtree rooted at that simplex. If not, then we know that / is not
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positively oriented relative to £. There are only O (logn) levels to recurse in, so the
worst-case query time is O (logn). Again, the constant of proportionality depends on r
(or, alternatively, on €).

THEOREM 2. Given n lines in space and an orientation class o, we can preprocess
these lines by a procedure whose running time and storage is O (n***), for any e > 0,
so that, given any query line l, we can determine, in O(logn) time, whether l lies in the
orientation class o with respect to the given lines.

We note that a simple modification of this data structure allows us to compute in
O(logn) time the orientation class of a line / relative to n fixed ones, rather than merely
test whether [ is in a predetermined class. The modification consists in computing (and
triangulating) the whole zone of the Pliicker hypersurface IT in the arrangement of the
net hyperplanes R, rather than just the cell C(R, +"). The complexity of this zone is
O(r*log r) in the worst case, by arecent result [APS]. By an analysis similar to that given
above, it follows that there is a structure of size O (n*+*) that can be used to compute
the orientation class of a given line within the above time bound.

4. Testing Whether a Line Lies Above n Given Lines. 'We now consider a particular
case of the general problem discussed in the previous section, which turns out to have
significant applications on its own, We are concerned with the property of one line
lying above or below another. Formally, /! lies above /2 if there is a vertical line that
meets both lines, and its intersection with /! is higher than its intersection with /2, We
assume that neither /! nor /2 is vertical, and the two lines are not parallel. Our previous
nondegeneracy assumptions already exclude concurrent or parallel lines; whenever we
discuss the “above/below” relation, we also exclude vertical lines from consideration,

We can express this notion in terms of the relative orientation of these lines, as follows.
Assume the lines I' and /% have been oriented in an arbitrary way, and consider their
(oriented) perpendicular projections 1, 12’ onto the xy-plane, seen from above. Observe
that I! is above 2 if and only if

the direction of I!” is clockwise to that of /2" and ! ¢ /2 = +1,

or
the direction of I! is counterclockwise to that of 12" and I! ¢ /2 = —1.

Now we introduce the line at infinity A? that is parallel to /> and passes through zenith
point ze = (0, 0,0, 1), the point at positive infinity on the z-axis. We orient the line A?
so that its projection on the xy-plane has the same direction as the projection of 2.1t
is easy to check that the direction of I'" is clockwise of /2’ if and only if I! o A? = —1.
Therefore, we conclude that [! is above /? if and only if

(3) ol =" oA2,

Intuitively, I! passes above !? if and only if /! passes “between” the lines !? and A%,
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Thus, to express the fact that one line lies above another we need to check consistency
between two linear inequalities. This fact complicates the analysis of the above/below
relationship, in particular when many lines are involved.

Now let £ be a collection of n lines in 3-space, and consider the set U (L), the upper
envelope of L, consisting of all lines / that pass above every line of £. We introduce the
auxiliary lines atinfinity A = {A!, A2, ..., A"}, witheach A’ parallel to the corresponding
I and passing through the point z,. Then, according to (3), a line ! is above all lines in
Lif and only if I ¢ Il = —I o A/; that is, if the orientation class of ! relative to the set £
is exactly opposite to its orientation with respect to the set A. _

Therefore, the set /(L) is the union of all orientation classes C(L U A, o - &) where
o - & is a sign sequence of the form (¢!,02,...,0", —0!, ~0?, ..., —o"). Luckily
for us, only n of these classes are nonempty. To see why, we assume that the x and
¥ coordinate axes have been rotated and the lines oriented so that the projection of /!
coincides with the negative y-axis, and all other lines (including the query line /) point
toward increasing x. We assume also that the lines /2, ...,!" are sorted in order of
increasing xy-slope. It is easy to see that if the xy slope of / lies between those of I¥ and
I¥*1, then its orientation class relative to the set A is (—f-"—* ). Therefore, we conclude
that there are only n orientation classes relative to A.

This observation leads to a fast algorithm for deciding whether a query line / passes
above n fixed lines £. For each of the n valid orientation classes o = (=knk ), we
build a data structure X, (£) = (LU A, o} - 5%), as described in Section 3. Then to test
a given query line / we first use binary search to locate its xy-slope among the slopes of
the n given lines. This information determines the orientation class oy of | relative to the
lines in A. Once this has been found, we use the data structure i (L) to test whether |
has the opposite orientation class &y relative to the lines in £.

This straightforward algorithm uses space approximately cubic in n. To reduce the
amount of space, we merge all the n data structures Zk (L) into a single data struc-
ture £*(L) as follows. Assume all lines in £ have been sorted by xy slope and ori-
ented as described above. Let m be a parameter, to be chosen later. Partition £ into m
subsets Ly, ..., L, each subset consisting of approximately n/m consecutive lines in
slope order. Prepare the data structures (L) = (L], (+ +--+)) and (L) =

(LY, (= — - -~ —)) for each prefix set LY = Uisk<j L (1 < j < m) and each suffix
set Lj = Uj<k5m Ly (2 < j < m). The storage and preprocessing time for these steps
amount to O{(mn?*®), for any & > 0. Then recursively build the data structure ©*(L;)
for each subset £; (using the same choice of the parameter m). Therefore T*(L) is a
data structure tree whose degree is m and whose depth will be O (logn/logm). Testing
a query line ! now proceeds as follows. As before, we use binary search to locate the
xy slope of [ between the slopes of two lines /¥ and I*+! of £, (This step has to be
performed only once.) Let £; be the subset containing the line /¥, By construction, the
xy slope of [ is greater than the slopes of all lines in £” and less than the slopes of all
lines in E}? - Then we can test, in O(logn) time, whether I lies above all lines in these

two subsets, using the data structures Ej” and Xj.If I does not lie above all these lines

we stop immediately; otherwise we recursively fest / against £; using the data structure
E*(L;). If we set m = [n"7, for some fixed

' and very small v > 0, the entire procedure
takes time O ((log n)* logm)) = O(logn). The storage and preprocessing time amount

|
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to O (mn?*¢ (log n}/log m), which can also be written as O (n2*%), for a different yet still
arbitrarily small value of & > 0.

We can also provide a modified version of this procedure, having the same complexity
bounds, that can determine, for each query line / lying above all lines of £, which is the
first line of £ that [ will hit when translated vertically downward. The key observation
is that translation of / downward corresponds to motion of (/) along a straight line,
say p([), on the Pliicker hypersurface IT: the coordinates (/) change linearly with the
altitude of /, as follows:

(o1, oz, 12, W03, 13—t W23 — E702),

where t is a parameter denoting the altitude. As/ moves vertically, it will become incident
with another line I’ exactly when p () crosses the plane @ ('), and the crossing point
can be computed in constant time. Moreover, the crossing peint determines the line
o) uniquely, since it corresponds to a unique line in 3-space and the inverse of the
downward translation is a unique upward translation. Note that as ¢ tends to infinity
(which corresponds to lifting the line up by an infinite amount), its Pliicker image tends
to a point of the form [0, 0,0, 0, =g, —mp2]. These limit points constitute a line t in
PS5, and correspond to lines at infinity of 3-space passing through the zenith point.
Recall that at each step in the construction of the data structure T (L) we take anet R of
the hyperplanes @ (') and construct the convex polytope C (R). Instead of decomposing
C(R) into simplices, we divide its interior by a set of hypersurfaces with the property
that no line p(l) crosses one of these hypersurfaces, and the resulting cells still have
constant complexity. Specifically, take a decomposition of the boundary of C(R) into
simplices, and back-project from each such simplex s along the lines p that terminate
at points on s. The collection of these back-projections yields a decomposition of C(R)
into O(r?) cells., We argue that the combinatorial complexity of each cell is a constant
independent of . Indeed, the base of each cell is a four-dimensional simplex, the walls
of the cell are a lifting of the boundary of this simplex along the lines o (/), and the roof
of the cell is some interval on the line . Because of the way these cells are constructed,
to each cell ¢ there corresponds a unique line /(c) of R that is first hit as we translate
downward any line whose Pliicker point lies in ¢. Again, the e-net theory tells us that we
can find a subset of O ((n/r) logr) lines of £ such that the downward translation of any
line I, with 7t (/) in ¢, will not meet any other line of £ until it reaches A. '
Therefore, if we use this modified cell decomposition of C (R) when constructing the
data structure £*(L), then we test a line / for being above the n given lines, we can at
the same time locate the nearest line below [.

THEOREM 3. Given n lines in space, we can preprocess them by a procedure whose
running time and storage is O(n***), for any & > 0, so that, given any query line 1,
we can determine, in O(logn) time, whether | lies above all the given lines, and, if so,
which is the first line of L that | will hit when translated downward.

5. The Complexity of the Upper Envelope of n Lines. In the previous section we
saw that the upper envelope U (L) of a set of n lines in 3-space is the union of n orientation
classes relative to the set £ U A. Each of these classes can be described as polytope of
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Fig. 1. The hyperbolic paraboloid z = xy and its two families of generating lines.

P3 with at most O (n?) features. Therefore, the combinatorial complexity of U(L) is at
most O (n%).

Notice that each of these n selected orientation classes relative to £ U A defines a
single isotopy class. This is so because any two lines p', p2 in this class point in the same
sector defined by the lines of £ down in the xy-plane. Thus we can always continuously
move p' to p? by first lifting it up high enough, then rotating it to align with o2, and then
dropping it down onto p. In particular, this implies that in each of these n orientation
classes, there are at most O (n?) lines that touch four lines of L, and lie above all the
remaining ones. (Each such line is the intersection of the Pliicker hypersurface IT with an
edge of polytope C(L, o); since IT is a quadric, there are at most two such intersections
per edge.) - ‘

We now exhibit a set of n lines that attains this cubic bound. The example consists
of three collections of lines, A, B, and C, of roughly equal size. The lines in sets A
and B are parallel to the xz-plane and to the yz-plane, respectively, and form a grid of
orthogonal generating lines of hyperbolic paraboloid z = x y. See Figure 1, The lines
in set C pass well below the paraboloid and have a steep z slope; their xy projections
form a narrow pencil near the line x + y = O0—see Figure 2. The lines of C are arranged
so that as we walk along their “upper envelope” we visit each of them in a sufficiently
long interval along which we can obtain “tangential views" of the entire portion of the
hyperbolic paraboloid covered by 4 and B. Thus for every triplet of lines a, b, ¢, one
line from each collection, we can find a line lying so that it connects the intersection of
a and b with an appropriate point on ¢, and lies above all other lines. The bound- (n%)
then follows. The technical details of this construction are given below,

To start, we let m = |n/3], A = {a',a% ...,a"), B = (b',b%, ..., "), and C =
{e!, 2, ..., ") where ‘ SO

d = (32 (y =) and (2 = ix),
b= ((x,y,2): (x=j)and (z = jy)},
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Fig. 2. The oriented line groups 4, B, C (solid) and a representative of the oriented lines L(i, j, k, t) (dashed),
viewed from above,

and
k k 5
= |(x,y,z):(y= (;5—-1)x) and (z =nx —n’)}.

Note that the lines in group C all lie on the plane z = nx — n® and are concurrent to the
point (0, 0, —n3) on the z-axis.

We now choose the Pliicker coordinates for each of the lines defined above. We
pick the points [1,0,{,0] and [1, 1,4,] on line a', which gives the Pliicker coordi-
nates [1, 0, —i, i, 0, i]. For line b/, we take the points [1, j, 0,0] and [1, j, 1, j], which
yields [0, 1, j, j, j2, 0. Finally, for line ¢* we choose the points [1,0,0, —n°] and
[15, 1, kin? = 1, n—n], which gives the Pliicker coordinates [1, k/n? = 1,0, n, n%, kn® —
n’].
Now we introduce the line L (i, j, k, #) which passes through the points [1, J, i,ij]
and [1, t, (k/n® — 1)t, nt — n’]. Note that L(i, J, k, t) intersects lines al, b/, and ¢, Its

Pliicker coordinates are

k (k. y
[t*j,(;;——l)t—-z,(%l—z———z-—J)t,nt—-ns—-tj,
‘ . 5 Jk N\, s
jln—= it —n), n'—;ﬁ"{-] it—in’].

In order to show that for proper choices of ¢ the line L(, J, k, 1) lies above all lines
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in AU B U C (except for those it intersects), we compute
e ear — IR s
LG, jk,tyoa" = (i—r) n-—r-}—J——n—z L+ =r)(r—-n),
, . kr . 5 ,
L(, jk,t)yob = (j—r) z—n—~r+;§ t4(J—r)n' = ri),
and
L(i,j,k,t)oa’=(k—-r)(;Jl——-’%—n3)t.

Now sett = (n° — ij)/(n — i + j). For large enough n the projection on the xy-plane
of any L(i, j, k, ) is clockwise of the projection of any line in A or B. The slope of the
projectionof ¢" isa = —1+4r/n? and thatof L(i, j, k, ¢) is B = (i—(=1+kin®)t)/(j —1).
After performing some algebraic computations we find that if n is large enough, then
@ > Bifand only if k < r. In other words, L(i, j, k, t) is clockwise to all ¢ with k <r
and it is counterclockwise to the others. Thus, line L(i, J, k, 1) lies above (or intersects)
all lines in A U B U C if and only if the four inequalities below are satisfied:

(4) L@, j.ktyod

>0 for 1 <r<m,
) LG, j.kt)ob” >0 for 1 <r<m,
(6) LG, j,k,oc” >0 for 1l <r <k,
and
@ LG, j.k,tyoc" >0 fork<r <n—2m.

Itis easy to check that (6) and (7) are always satisfied if n is sufficiently large. To see
that the same is true for (4) and (5) we rewrite the inequalities. Inequality (4) becomes

. om—ij 2 nd—ij \ jk
(J n—:m)(r"l) +(m) ”‘1"2'("—!')20»

while, for inequality (5), we get

nd —ij nS—ij \ kr
it —=) -~ — ) L -j>0
( n_iﬂ.)(r h) (n-—-i-i—j)n?(r N=z0

In both cases the first term dominates the other i
each inequality is satisfied and L@, j,
n lines can be made mutually disjoin
combinatorial complexity of the upper
construction.

f n is sufficiently large. Therefore
k, 1) lies above each of the n lines. Note that the
t by perturbing them a little without making the
envelope any smaller, This completes the detailed

THEOREM 4.  The maximum combinatorial

complexity of the entire upper envelope of
n lines in space is ®(n?). L . , ‘
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6. Testing the Towering Property. In this section ‘we exhibit a reasonably efficient
deterministic algorithm for testing whether n blue lines by, ..., b, in 3-space lie above
m other red lines 71, . .. , rm; this is what we call the “towering property.” Our method
runs in time O ((m +n)*3+¢), forany & > 0, a substantial improvement over the obvious
O(mn) method.

We first consider the case where the xy-slope of every red line is atleast as large as that
of any blue line. In that case if we map the blue lines (oriented so as to have xy-projections
going from left to right) to points Ay, ..., Ay in PS5 via Pliicker coordinates, and the red
lines (similarly oriented) to hyperplanes py, ..., Pm in PS5 via Pliicker coefficients, then
the towering property is equivalent to asserting that all n blue points lie in the convex
polyhedron C obtained by intersecting the appropriate half-spaces bounded by the m red
hyperplanes, as given by (1).

How do we test this latter property? We again use a net-based partitioning method, as
in the previous section. However, first we dispose of some boundary cases. If n > m? (so
there are relatively few red lines), then we compute the upper envelope of the red lines,
as in the preceding section. That is, we compute the intersection C of the appropriate
half-spaces bounded by the red hyperplanes, and preprocess it for point location. Then
we test whether the Pliicker image of every blue line lies in C. All this can be done in
time O (m*** 4+ nlogm). Dually, in the case m = n2, we can solve our problem in time
O (n*** +mlogn) (by mapping the blue lines to hyperplanes and the red lines to points).

Otherwise, we choose a net R of a constant number r of red half-spaces in
O(nr“/log“r) time, compute their intersection, denoted as above by Cr, and obtain
a simplicial cell decomposition of this convex polyhedron into O (r?) simplices. Just as
in Section 4, each simplex o of this decomposition will meet at most c(mfr)logr of
the red hyperplanes, for some absolute constant ¢ > 0. Again as before, it is possible to
choose these simplices so thatif a red hyperplane avoids a simplex ¢, then o is contained
in the half-space of the hyperplane. We now locate the n blue points in these chosen sim-
plices (by an exhaustive method, for example). If all the points do not lie in them, we
have a negative answer to the towering question and we are done. If all goes according
to plan, however, we end up with O (r?)separate towering subproblems, each involving
some blue points together with O ((m/r)logr) red half-spaces. Because a blue point can
lie in only one simplex, the subsets of the blue points belonging to each simplex form a
partition of the set of all blue points.

Let D(m, n) denote the time complexity of testing the towering property for n blue
points and m red hyperplanes in P5. The above divide-and-conquer method gives us the

_following recurrence for D(m, n):

2

D(m,n) = O(m*"® +nlogm), if n=>m?,
2

D(n,n) = O(n*** +mlogn), if m=n

fl

and

D(m,n) ‘= Z D (c (?) logr, n;) + 0 (M) otherwise,
i

log*r

where c is some fixed constant, and the n;’s are O (r?) positive integers summing up to
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n. We easily prove that the worst case occurs when the n;’s are roughly equal. This gives

d 4
D(m,n) < br*D (c (-’"1) logr, 7;‘.) 40 ((m1 :;r)r ) |

for some additional constants b and d. A similar recurrence is solved in [EGS1]. Using
the techniques of that paper, we derive that for any fixed & > 0 we can first choose the
& in the boundary cases n > m? or m > n? above small enough, and then the net size r
large enough so that ‘

D(m,n) = O(m***n¥* 4 (m + n)log(m + n)).

We now return to the general towering problem and relax all assumptions on the
slopes of the projections. Compute the median slope among the projections onto the
xy-plane of all the red and blue lines together. This partitions the red lines into two sets,
Ry and R;, and the blue lines into two sets, By and B, such that each line in R, U B;
projects onto the xy-plane into a line of slope at least as large as that of any projected
line of R U By; furthermore, the sizes of R; U By and R, U B, are roughly equal. Now
we solve the towering problem recursively with respect to R versus B and then for R,
versus B,. If no negative answer has been produced yet, then we may apply the previous
algorithm to the pairs (R,, B;) and (Ry, B;). The correctness of the procedure follows
from the fact that all pairs of red and blue lines are (implicitly) checked.

If T'(m, n) is the expected time of this algorithm, then

T(m,n) =T (m1,n)) + T (my, n3) + O(m¥3Fn?3+5 4 (m + n)log(m + n)),

withm +my = m,ny+ny = n,and m; +n; = my +n,. The solution to this recurrence
relation is maximized if m; = my, = m/2 and n; = n, = n/2. In this case we get

T(m,n) = O(m***n®3** 4 (m 4 n)log*(m + n)).

An additional computation similar to that detailed at the end of the previous section
allows us to determine, within the same bounds, the red line immediately below each
blue line, and thus also, if the towering property holds, the smallest vertical distance
between the two groups of lines. So we conclude with our theorem:

THEOREM 5.  Given n blue lines and m red lines in space, we can test that all the blue
lines pass above all the red lines (the towering property) in time and space
O (m*P+en?3+e 4 (m + n)log(m + n)), for any & > 0. If so, within the same time
bound, we can actually find the first red line below each blue line.

This is upper-bounded by O((m + n)**+¢), a simpler expression to remember (but v

where the coefficient of proportionality depends on ).

7. Separating Lines by Translation. We address here the question of whether it is
always possible to “take apart” a set of lines in 3-space by moving a proper subset of

Lines
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Qp

ay

Q2

Fig. 3. The group A of lines ai, az, and a3.

them to infinity, through a continuous sequence of translations, without ever causing

lines to cross.
More precisely, let £ be a set of pairwise-disjoint lines in 3-space, and let X +v

denote the result of translating a set of lines X by a vector v. We ask whether there are

always a proper partition of £ in two subsets F (fixed) and M (moving), and a continuous

function v(¢) from R to %3 such that v(0) = 0, no line in M + v(t) meets or is parallel

to a line in F forall ¢ > 0, and all lines in M + v(¢) get infinitely far from the origin as

t — 0.
» Here is a counterexample with nine lines, consisting of three

The answer is “no.
groups A, B, C of three Jines each. Group A consists of the lines ag through as joining

the following pairs of points, given in Cartesian coordinates:

ao through (4, —2,+€) and (0,1, —¢)
a; through (0,1, +¢) and (—4,0,—¢
a, through (—4,0, +&) and (4, —2,—¢)
where & is a small number, say 1071%, See Figure 3. The other two groups are obtained
from A through £120° rotation around the (1, 1, 1) axis. See Figure 4. Note that A
“surrounds” one of the other two groups, B, in the sense that all the lines of B pass
through the triangle defined by projecting o through az onto the xy-plane. In the same
way, group B surrounds the third group C, and C surrounds A.
Now suppose the partition'l'e'aves one group—say A—entirely in F and suppose
b; € M. Then the displacement vectors v(¢) are confined to a bi-infinite triangular prism
whose axis is parallel to b; and whose faces are parallel to go through a;. Since these
displac‘ements‘never take b; very far from the origin, the line b; must be in F. However,
if all lines of B are fixed, the same argument shows that C is entirely fixed, and M = @,
a contradiction. We conclude that no group can be entirely in F; and since we can swap
M and F by negating all displacements v(#), the same argument shows that no group
can be entirel lyinM. '
: the M, F partition must split all three groups. We consider group A for a moment.

Note‘ that the z-slope of the lines ap through ay is less than &, and that a;4.| passes only
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Fig. 4. All three groups A, B, and C together—the full counterexample.

2¢ above a; (where indices are computed modulo 3). Therefore, if a;+; is fixed and
a; is moving, the displacement vectors v(t) must lie below a plane of slope close to
¢ that passes 2¢ above the origin of R3. Conversely, if a; is fixed and aj41 is moving,
the displacements v(z) must lie above a similar plane that passes 2& below the origin.
Combining these two arguments, we conclude that if the partition M, F splits group A,
then the displacements v(t) are confined to a narrow wedge whose faces are very close
to the xy-plane. ,

Applying the same argument to the other two groups, we conclude that the displace-
ments v(¢) lie in the intersection of three narrow wedges, each close to the corresponding
coordinate plane. However, this intersection is bounded (its diameter is at most a few

times &), which means M cannot be moved to infinity, a contradiction. We have thus
proved:

THEOREM 6. There is a set of nine mutually disjoint lines in 3-space that cannot be
taken apart by continuously translating a proper subset off to infinity.

8. Open Problems. Although the manifold of all nonoriented lines in 3-space has been
well studied [HP], less seems to be known about the manifold of oriented lines that we
have used in this paper, and which seems to be computationally of significant advantage.
It is known that this manifold is topologically equivalent to the oriented Grassmann
manifold My, (%), which happens to be the same as 52 x §2.1!

In general, it appears that most questions about lines in space are still open. Below
we list some of the most natural ones. ‘ '
!! A geometric proof can be given by associating to every pair of unit vectors u, (placed at the origin of
3-space) the oriented line / that passes through the tip of the vector (4 x v)/(1 + u - v) and has the direction
of the vector u + v. When u = —v the line ! is by definition the line at infinity on the plane normal to v
and oriented relative to v ‘according to the right-hand rule, Tt is easy to check that this mapping is continuous,
onie-td-one, and generates all oriented:lines of&space; : RE I T B EL N O ! :
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A. Isotopy Classes. 'We already mentioned several open problems about isotopy classes.
What is the maximum number of isotopy classes than can be associated with a single
orientation class? We conjecture that this number is O(n?).

B. Many Cells in Line Arrangements. We saw in Section 3 that any single “line” cell
in an arrangement of n lines has combinatorial complexity O (n2). On the other hand, we
know that all O (n*) cells have total combinatorial complexity of only O (n*). So what
about the total combinatorial complexity of m distinct cells? A particularly interesting
case of this would be to determine the total complexity of the “unbounded component”
of the arrangement, that is, of those cells containing lines that can be pulled away to
infinity. Such problems have been extensively studied for arrangements of lines and
segments in the plane, and for arrangements of planes and hyperplanes in three and
higher dimensions [EGS1], [CEGSW], [EGS2]. If we blindly use the result for m cells
in an arrangement of n hyperplanes in five dimensions from [EGS2] we get a very weak
estimate for our problem. The reason is that only those features of the m cells lying on
the Pliicker hypersurface matter for us. It would be interesting to develop such a “many-
faces” theory for arrangements of lines in space. A curious subproblem here is to find a
geometrically intuitive way to partition a line cell into natural subcells, each of constant
description complexity (i.e., t0 triangulate the cell), s0 that the number of such subcells
is proportional to the feature complexity of the original cell.

Related to many-faces problems are questions about incidences. We have been able
to obtain an O (n”*) upper bound on the number of triple intersections of noncoplanar
lines among n given lines in space [CEG*], and very recently this was improved to
0 (n®1410g°"1* n) [Sh2]. A lower bound of £ (n¥2) is easy to construct and 2 natural
open problem is to close this gap.

C. The Complexity of a Surface Upper Envelope. Given a collection of 7 lines in 3-
space, we can consider a surface @(x, y) defined as follows. For each point (x, y) in the
plane the value of the surface @(x, y) is the smallest z with the property that there isa
line through the point (x, , 2) which passes above the n given lines. We know that this
surface consists of a bunch of patches of different reguli joined together. What is the
combinatorial complexity of this surface?

D. k-Sets and Related Concepts for Line Arrangements. We saW that the upper enve-
lope of n lines in space has O (n?) vertices in the consistent orientation case. This means
that there are only O (n?) other lines stabbing four of the given lines and passing above
all the rest. How many lines are there stabbing four of the given lines and passing above
at most k of the given lines? A preliminary calculation using the techniques of [CS] and
[Sh1] suggests that the right answer is O (n*k?). Many more questions about standard
k-sets [Ed] have analogs in this line setting and deserve further study.

E. Order Statistics and Centerlines. Since lines in space can form cycles, they can
have strange order statistics. For example, if all lines form a cycle in the above/below
relation, then each line could be above half of the other lines and below the other half.
We can associate with a line arrangement these counts of how many lines lie above and
below each line; it would be nice to characterize the valid count sequences. We may also
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think of analogs in the line case of the notion of centerpoints for collections of points (in
the plane or space). For example, given a collection of lines in space, does another line
(the “centerline”) always exist such that in all planes passing through the centerline the
intersections of the given lines with that plane are roughly evenly distributed (a constant
fraction lying) in each of the half-planes defined by the centerline? In a somewhat related
vein, Paterson [P] was able to show recently that for any set of n lines in space three
mutually orthogonal planes always exist so that each orthant thus defined is cut by only
n/2 of the lines. ‘

F. Cycles in Line Arrangements. In [CEG™] the following result is presented. Let £
be a given collection of n nonvertical lines in 3-space. Define a diregted graph G whose
vertices are the lines of £ and whose directed edges are of the form /1, if /, lies above ,.
Then we can test, in randomized expected time O (n*3+%), for any & > 0, whether G is
acyclic. Many related open questions remain. For example, how fast can we compute the
strong components of this graph G?If there is a cycle present, then what is the minimum
number of cuts we need to break up our lines so that the resulting collection of segments
is acyclic?

G. Taking Lines Apart. 'We could try to extend Theorem 6 in a number of ways. For
instance, we conjecture that a configuration of lines in 3-space exists that cannot be
taken apart even if we allow the moving subset to go through arbitrary rigid (Buclidean)
motions, or arbitrary affine maps, instead of just translations. We may also study what
happens if we are allowed to partition the lines into three or more independently moving
subsets.
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