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Inertial Hegselmann-Krause Systems
Bernard Chazelle and Chu Wang

Abstract—We derive an energy bound for inertial
Hegselmann-Krause (HK) systems, which are a variant of
the classic HK model that allows agents to change weights
as they please at each step. We use the bound to prove
the convergence of HK systems with static agents, which
settles a widely believed conjecture. This paper also intro-
duces anchored HK systems and show their equivalence to
the symmetric heterogeneous model.

Index Terms—Hegselmann-Krause (HK), model organ-
ism.

I. INTRODUCTION

THE Hegselmann-Krause model of multiagent consensus
has emerged as a “model organism” for opinion dynamics

[1]. In an HK system, a collection of n agents, each one repre-
sented by a point in Rd , evolves by applying the following rule
at discrete times: move each agent to the mass center of all the
agents within unit distance. It has been shown that the system
always freezes eventually [2]–[6]. While the model has been the
subject of numerous studies [7]–[12] and much is known about
its convergence rate, its heterogeneous variant remains a mystery
[13]–[17]. In that model, each agent can choose its own radius
of confidence. In the HK model with static (sometimes called
closed-minded) agents, all of the agents have radius either 1 or
0. While extensive simulations pointed to the convergence of
that system [12], [14], [18], [17], a proof remained elusive. This
shortcoming was widely held in the opinion-dynamics com-
munity as a glaring demonstration of our weak grasp of these
deceptively simple distributed systems. (The open status of the
closed-minded case was described by a leading researcher in the
field as one of the outstanding gaps in our understanding of opin-
ion dynamics [19].) This paper resolves this issue by settling the
conjecture in the affirmative: HK systems with closed-minded
agents always converge. Our proof entails making the problem
a special case of a much broader class of dynamical systems,
the inertial HK systems (more on which below).
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The relaxation time of the original HK model has been shown
to be nO (n) in any fixed dimension [2], a bound later improved
to a polynomial bound in both n and d [20]. For the particular
case d = 1, a bound of O(n5) was established in [21], which
was lowered to O(n4) in [22] and then to O(n3) in [20]. The
model can be generalized in various ways, its ultimate expres-
sion being the grand unified model of influence systems [23], in
which each agent gets to pick its neighbors by following its own
distinct, arbitrary criteria. Oddly, even the most seemingly in-
nocuous modifications of the original HK model have stumped
researchers in the field. This is the case of HK systems with
closed-minded agents, where any agent’s radius of confidence
is either 0 or 1. To prove that these systems always converge, we
introduce the more general inertial HK systems and establish a
bound on their kinetic 2-energy. We also introduce the anchored
variant of HK systems and prove that it is equivalent to the sym-
metric heterogeneous model. This fairly surprising result sheds
new light on the convergence properties of these systems.

A. Inertial HK Systems

Instead of being required to move to the mass center of its
neighbors at each step, each agent of an inertial HK system may
move toward it by any fraction of length; setting this fraction
to zero makes the agent closed-minded, which means that it
remains frozen in place. Formally, the system consists of n
agents represented by points x1(t), . . . , xn (t) in Rd at time
t = 0, 1, 2, etc. Two agents i and j are said to be neighbors if they
are within unit distance: ‖xi(t)− xj (t)‖2 ≤ 1. The neighbors of
i form a set Ni(t); these sets form an undirected communication
network Gt with a self-loop at each of the n nodes. The dynamics
of the system is specified by

xi(t + 1) = (1− λ)xi(t) +
λ

|Ni |
∑

j∈Ni

xj (t), (1)

where λ ∈ [0, 1] is called the inertia; whenever the time is clearly
understood from the context, we omit the argument t from Ni(t)
to alleviate the notation. Likewise, for convenience, we write λ

instead of the more accurate λi(t): indeed, not only the inertias
λ need not have the same value for all the agents, but they
can be reset to a different value with each application of (1).
In this way, we can select any agent to be closed-minded by
setting their inertia to 0. We can also retrieve the original HK
model by turning all the inertias to 1. In its full generality, an
inertial HK system is not necessarily deterministic: indeed, the
numbers λ can be set ahead of time or they can be assigned
probabilistically or adversarially at each time step. We tackle
the issue of convergence by turning our attention to their kinetic
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s-energy. The concept was introduced in [2] as a generating
function for studying averaging processes in dynamic networks.
It is defined as follows:

K(s) =
∑

t≥0

n∑

i=1

‖xi(t + 1)− xi(t)‖s2 .

We provide an upper bound for the case s = 2.
Theorem 1.1: The kinetic s-energy of an n-agent inertial

HK-system whose inertias are uniformly bounded from above
by λ0 satisfies K(2) ≤ λ0n

2/4. The upper bound λ0 can be any
real number in [0, 1].

We use this result to establish the convergence of HK sys-
tems with closed-minded agents. Note that the convergence is
asymptotic: the system may never freeze into a complete stop.
This is even true for n = 2, where a single closed-minded agent
can pull the other one toward itself forever. Indeed, if the mo-
bile agent is initialized close enough to the closed-minded one,
it will eventually converge to it by halving its distance at each
step. The network Gt becomes fixed in this case. In general, it
changes with time, however. Interestingly, fixed-point attraction
does not automatically imply the convergence of the communi-
cation network, so we address this issue separately.

Theorem 1.2: An HK system with any number of closed-
minded agents converges asymptotically to a fixed-point attrac-
tor. The communication network converges for all initial con-
ditions if d = 1 and for all initial conditions outside a set of
measure zero if d > 1.

The specific meaning of this last clause is that, in dimension
two and higher, as long as we perturb the closed-minded agents
by an arbitrarily small amount at the beginning, the communica-
tion network Gt will settle to a fixed graph in finite time almost
surely. The perturbation is likely an unnecessary artifact of the
proof and it would be nice to settle this point. The main open
problem, however, is to derive an effective upper bound on the
relaxation time.

B. Anchored HK Systems

The original HK system fixes the same radius for each pair
of agents. By contrast, in a symmetric heterogeneous HK sys-
tem, each pair (i, j) is given its own threshold radius rij ,
so that agents i and j are neighbors at time t whenever
‖xi(t)− xj (t)‖2 ≤ rij . We require rij = rji and rii ≥ 0 (the
latter to create self-loops). Note that rij = 0 means that i and j
are neighbors only when their positions coincide, while rij < 0
implies that i and j are never joined together.

As one might expect, heterogeneity adds considerable diffi-
culty to the analysis. We show that, by lifting the system into
higher dimension, we can go back to the original assumption
that all radii are the same. To formalize this somewhat unex-
pected result, we define an anchored HK system as consisting
of n agents, each one represented by a vector zk = (xk (t), yk ).
The vector is a combination of a mobile part xk (t) ∈ Rd and a
static part yk ∈ Rd ′ ; the dimensions d and d′ are the same for
all the agents. Two agents i and j are neighbors if and only if
‖zi(t)− zj (t)‖2 ≤ r, where r is a fixed positive constant. At
each step, the mobile part of an agent moves to the mass center

of all its neighbors while its anchored part remains fixed. (Note
that the averaging is done one coordinate at a time, so the static
coordinates affect only the neighborhood relationships and do
not participate in the averaging itself.)

Anchored HK systems capture a notion of partial closed-
mindedness: agents are closed-minded in some coordinates but
open-minded in others. Both mobile and anchored parts, on the
other hand, affect the communication network. Surprisingly, an-
chored and symmetric heterogeneous systems are conjugate: in
other words, there exists a bijection between them that respects
their dynamics and establishes the equivalence of the two sys-
tems. Specifically, we prove the following:

Theorem 1.3: Given any anchored HK system zk (t) =
(xk (t), yk ) in Rd ×Rd ′ , there exists a conjugate symmetric
heterogeneous HK system x′k (t) in Rd . Conversely, a symmet-
ric heterogeneous HK system of n agents in Rd is conjugate
to an anchored HK system zk (t) = (xk (t), yk ) with agents in
Rd ×Rn−1 . In both cases, the conjugacy is formed by the trivial
correspondence: xk (t) = x′k (t) for any k and t. Both anchored
and symmetric heterogeneous HK systems converge asymptoti-
cally to a fixed-point attractor. If there is no pair of agents (i, j)
such that ‖yi − yj‖2 = r in an anchored HK system or such
that rij = 0 in a symmetric heterogeneous HK system, then the
communication network converges to a fixed graph.

While the convergence of symmetric heterogeneous HK
systems can be inferred directly from known results, the
convergence of the communication networks requires special
treatment, however. An interesting corollary of these results
is the convergence of HK systems embedded within a social
network [24]–[26]. Imagine that the existence of an edge
between two agents i, j is a function not only of their relative
distance but also of a predetermined, fixed relationship. By
setting rij < 0, we can enforce the absence of an edge. In
this way we can restrict the HK action to the edges of a fixed,
arbitrary social network, and still assert convergence.

II. THE CONVERGENCE OF INERTIAL HK SYSTEMS

The purpose of this section is to prove Theorem 1.1. The proof
is algorithmic: it is a message-passing protocol that simulates
the update of a distributed Lyapunov function. It follows a line
of reasoning borrowed from the field of amortized analysis, a
subject of theoretical computer science. Algorithmic proofs for
dynamical systems have been used before [2], but our approach
is quite different from previous incarnations. The basic idea is
to assign a certain quantity with each agent and update them
at each step according to fixed rules. Because the quantities
in question are nonnegative and subject to conservation con-
straints, it is natural to think of them as amounts of money and
the rules governing their updates as a trading mechanism. Of
course, the metaphor is used only for explanatory purposes. The
mathematical reality is that each agent holds a certain positive
number that can go up and down with time but whose sum can
never increase. To maintain this last property, agents modify
their associated number via exchanges: if one increases it by a
certain amount, some other agent must decrease it by the same
amount so as to keep the sum constant. The point of all this is
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that agents can also decrease their number by a certain quan-
tity of interest: for example, their displacement. In this way, the
total displacement of all the agents can never exceed the initial
sum of the agents’ numbers. This informal explanation high-
lights the benefits of using the language of “money,” “trade,”
and “spending” while keeping the discussion mathematically
rigorous.

Here are the details. We assign each agent i a certain amount
of money, Ci(0), at the beginning (t = 0) and specify a pro-
tocol for spending and exchanging it with other agents as time
progresses. If we knew ahead of time the total contribution of
agent i to the kinetic 2-energy, we could simply set Ci(0) to
that amount and let the agent “pay” for its contribution from its
own pocket. This information is not available, however, so we
take an initial guess and set up an exchange protocol so that no
agent runs out of money. By giving money to their neighbors in
a judicious manner, we show how each agent remains in a posi-
tion to pay for its share of the 2-energy at each step. Our initial
guess is

Ci(0) =
n∑

j=1

min
{
‖xi(0)− xj (0)‖22 , 1

}
.

To specify the exchange protocol, we first simplify the notation
as follows:

⎧
⎪⎨

⎪⎩

Δi = xi(t + 1)− xi(t)
dij = xi(t)− xj (t)
d′ij = xi(t + 1)− xj (t + 1).

The two rules below are applied to every agent i at any time step
t ≥ 0:

1) For every neighbor of j at time t (which includes i itself),
agent i spends ‖Δi + Δj‖22 units of money and gives to
agent j an amount equal to 2(dij −Δj )T Δj .

2) If agent j becomes a new neighbor of i at time t + 1
or, conversely, ceases to be one, then agent i spends an
amount of money equal to |‖d′ij‖22 − 1|.

Let Ci(t) be the amount of money held by agent i at time
t, and let N in

i (resp. Nout
i ) denote the set of agents that are

neighbors of i at time t + 1 (resp. t) but not at time t (resp.
t + 1). Using the symmetry of the neighbor relation, we express
the cash flow at time t by

Ci(t + 1)− Ci(t)

= 2
∑

j∈Ni

(dji −Δi)T Δi − 2
∑

j∈Ni

(dij −Δj )T Δj

−
∑

j∈Ni

‖Δi + Δj‖22 −
∑

j∈N i n
i ∪N o u t

i

|‖d′ij‖22 − 1|.

Since (dji −Δi)T Δi − (dij −Δj )T Δj = dT
ij (Δi −Δj )−

2dT
ijΔi + ‖Δj‖22 − ‖Δi‖22 and, by (1), λ

∑
j∈Ni

dij =

−|Ni |Δi , we have

Ci(t + 1)− Ci(t)

=
∑

j∈Ni

{
2dT

ij (Δi −Δj ) + ‖Δi −Δj‖22 − 4dT
ijΔi

}

− 4|Ni |‖Δi‖22 −
∑

j∈N in
i ∪N o u t

i

|‖d′ij‖22 − 1|

=
∑

j∈Ni

{
2dT

ij (Δi −Δj ) + ‖Δi −Δj‖22
}

+ 4
(
λ−1 − 1

)|Ni |‖Δi‖22 −
∑

j∈N in
i ∪N o u t

i

|‖d′ij‖22 − 1|.

Note that λ = 0 implies that Δi = 0, so in that case it is under-
stood that (λ−1 − 1)|Ni |‖Δi‖22 = 0 in the identity above. Since
d′ij = dij + Δi −Δj , the first summand in the last equality
above is equal to ‖d′ij‖22 − ‖dij‖22 ; therefore

Ci(t + 1)− Ci(t)

=
∑

j∈Ni

{
‖d′ij‖22 − ‖dij‖22

}
−

∑

j∈N in
i ∪N o u t

i

|‖d′ij‖22 − 1|

+ 4
(
λ−1 − 1

)|Ni |‖Δi‖22 .
Fix any j (1 ≤ j ≤ n) and consider the difference Dj :=
min

{ ‖d′ij‖22 , 1
}−min

{ ‖dij‖22 , 1
}

. If i and j are not neigh-
bors at time t or t + 1, then Dj = 0. If they are neighbors at times
t and t + 1, then Dj = ‖d′ij‖22 − ‖dij‖22 . If they are neighbors
at time t but not t + 1 (ie, j ∈ Nout

i ), then Dj = 1− ‖dij‖22 ,
which can be rewritten as ‖d′ij‖22 − ‖dij‖22 − |‖d′ij‖22 − 1|. Fi-
nally, if they are neighbors at time t + 1 but not t (ie,
j ∈ N in

i ), then Dj = ‖d′ij‖22 − 1, which can be expressed as
−|‖d′ij‖22 − 1|. Since j cannot be both in Ni and N in

i , this im-
plies trivially that

Ci(t + 1)− Ci(t) =
n∑

j=1

Dj + 4
(
λ−1 − 1

)|Ni |‖Δi‖22

=
n∑

j=1

min
{ ‖d′ij‖22 , 1

}−
n∑

j=1

min
{ ‖dij‖22 , 1

}

+ 4
(
λ−1 − 1

)|Ni |‖Δi‖22 .
Since |Ni | > 0 and λ ≤ λ0 , it follows that

Ci(t) ≥
n∑

j=1

min
{ ‖dij‖22 , 1

}

+ 4
(
λ−1

0 − 1
) t−1∑

k=0

‖xi(k + 1)− xi(k)‖22 .

Being its own neighbor, agent i spends at least 4‖Δi‖22 money
at each step. Summing up over all the agents, this amounts to
4K(2). This shows that the initial injection of money allows the
system to spend 4K(2) and still be left with as much as 4

(
λ−1

0 −
1
)
K(2). Theorem 1.1 follows from the fact that the initial in-

jection of money is at most n per agent, which is n2 in total. �
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III. HK SYSTEMS WITH CLOSED-MINDED AGENTS

This section proves Theorem 1.2. The bound on the kinetic
2-energy shows that the system eventually slows down to a
crawl but it falls short of proving convergence. Indeed, an agent
moving along a circle by 1/t at time t contributes finitely to
the kinetic 2-energy yet travels an infinite distance. We prove
that HK systems with closed-minded agents always converge
asymptotically. We treat the one-dimensional separately for two
reasons: the proof is entirely self-contained and the convergence
of the communication network does not require perturbation. In
dimension two and higher, we prove that the agents always
converge to a fixed position: the system has a fixed-point attrac-
tor. We show how a tiny random perturbation ensures that the
network eventually settles on a fixed graph.

A. The One-Dimensional Case

We begin with the one-dimensional case, which is particularly
simple. By Theorem 1.1, we can choose a small enough ε > 0
and an integer tε large enough so that no agent moves by a
distance of more than ε at any time t ≥ tε . Fix t > tε and let xi

(resp. Ni) denote the position (resp. neighbors) of agent i at time
t; we use primes and double primes to indicate the equivalent
quantities for time t + 1 and t + 2. The symmetric difference
between Ni and N ′i , if nonempty, is the disjoint union of a set Li

of agents located at xi − 1±O(ε) at times t and t + 1 and a set
Ri at locations xi + 1±O(ε). For each subset, we distinguish
between the agents of Ni not in N ′i and vice-versa, which gives
the disjoint partitions Li = Lin

i ∪ Lout
i and Ri = Rin

i ∪Rout
i .

The locations x′i and x′′i of agent i at times t + 1 and t + 2 are
given by

{
|Ni |x′i = (

∑
j∈Ni ∩N ′

i
xj ) + (

∑
j∈Lo u t

i ∪Ro u t
i

xj )
|N ′i |x′′i = (

∑
j∈Ni ∩N ′

i
x′j ) + (

∑
j∈L i n

i ∪R i n
i

x′j ).

All x′k and x′′k are of the form xk ±O(ε), so subtracting the two
identities shows that

(|N ′i | − |Ni |)xi = (|Lin
i | − |Lout

i |)(xi − 1)

+ (|Rin
i | − |Rout

i |)(xi + 1)±O(εn).

Since the dynamics is translation-invariant, we can assume that
xi = 0. Setting ε small enough, the integrality of the set cardi-
nalities implies that the net flow of neighbors on the left of agent
i is the same as it is on the right:

|Lout
i | − |Lin

i | = |Rout
i | − |Rin

i |. (2)

Among all the agents undergoing a change of neighbors between
times t and t + 1, pick the one that ends up the furthest to the
right at time t + 1, choosing the one of largest index i to break
ties. We distinguish between two cases:

1) x′i ≥ xi : No agent of Rout
i can be closed-minded; nor

can it be mobile since, ranks being preserved, it would
provide an agent undergoing a change of neighbors and
landing to the right of i at time t + 1, in contradiction
with the definition of i. It follows that Rout

i is empty,
which in turn implies that Lin

i is not, since by our choice
of i not all four terms in (2) can be zero. Since agent i

is not moving left, neither is any agent j of Lin
i . Its set

Nj of neighbors changes between time t and t + 1 and
Rout

j is empty. To see why the latter is true, we first note
that Nj cannot lose any closed-minded agent to the right.
Also, since any mobile agent in Rout

j is to the left of i at
time t, it stays to the left of it by conservation of ranks;
hence the agent remains a neighbor of j, a contradiction.
The argument so far uses the rightmost status of agent i
only to assert that Rout

i is empty. This means we are back
to square one and we can proceed inductively, eventually
reaching a contradiction.

2) x′i < xi : The key observation is that our previous argu-
ment never uses time directionality, so we can exchange
the role of t and t + 1, which implies that now x′i > xi .
Note that the superscripts in and out must be swapped.
While we chose i as the mobile agent landing furthest
to the right, by symmetry we must now choose the one
starting the furthest to the right: of course, since mobile
agents can never cross this make no difference.

We conclude that each agent is now endowed with a fixed set
of neighbors, so the dynamics is specified by the powers of a
fixed stochastic matrix with positive diagonal, which are well
known to converge. The system is attracted to a fixed point at
an exponential rate, but of course we have no a priori bound
on the time it takes to fall into that basin of attraction. The
communication network converges.

B. The Higher-Dimensional Case

Generalizing the previous argument to higher dimension fails
on several counts, the most serious one being the loss of any
left-right ordering. We follow a different tack, which begins with
a distinction between two types of agents. An agent is trapped
at time t if there exists a path in the current communication
graph leading to a closed-minded agent; it is said to be free
otherwise. There exists a time to after which the agents fall
into two categories: some of them are never trapped past t0
and are called eternally free; the others are chronically trapped
(ie, trapped an infinite number of times). As we did before, we
pick a parameter ε > 0 (to be specified below) and tε > to large
enough so that no agent moves by a distance of more than ε
at any time t ≥ tε . If two agents ever get to share the same
position, their fates become completely tangled since they can
never again get separated. Since such merges occur fewer than
n times, we can make tε big enough, if necessary, so that all
merges are in the past. To summarize, past tε , the mobile agents
move by increments less than ε, no merging occurs, and the
system consists only of eternally free and chronically trapped
agents.

At any time, the state system is represented by a n-by-d matrix
whose i-th row encode the position of agent i in Rd . The matrix
consists of two parts: x for the mobile agents and y for the
closed-minded ones. A transition of the system is a linear map
of the form x← Ax + By, where each row of the nonnegative
matrix (A |B) sums up to 1.

Lemma 3.1: Past tε , no agent can move while free.
Proof: Fix t ≥ tε and consider a connected component C of

the graph induced by the free agents. If z denotes its position
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matrix at time t and k its number of rows, then z′ = Cz, where
primes refer to time t + 1 and C is a k-by-k stochastic matrix
for a random walk in the undirected graph C. Because the graph
is connected, the eigenvalue 1 of C is simple, so the null space
of I − C, and hence of (I − C)T (I − C), is spanned by 1. By
Courant-Fischer, therefore, any vector u normal to 1 satisfies
‖(I − C)u‖2 ≥ σ‖u‖2 , where σ is the smallest positive singular
value of I − C. If we define z̄ = z − 1

k 11T z, it immediately
follows that

σ‖z̄‖2 ≤ ‖(I − C)z̄‖2 = ‖(I − C)z‖2 = ‖z − z′‖2 ≤ ε
√

n.

Setting ε < 1
2 σ/
√

n ensures that any two of the k agents are
within unit distance. It follows that C is the complete graph
and C = 1

k 11T . Since the agents can no longer merge, the only
option left is for all k of them to be already merged at time t,
hence unable to move. �

The lemma implies that eternally free agents can never move
again past tε . Indeed, it shows that an eternally free agent can
only move if it is joined to a trapped one, which, by definition, it
cannot be. Since eternal freedom keeps the agents from playing
any role after time tε , we might as well assume that all the mobile
agents in the system are chronically trapped. This means that,
at all instants, either an agent is trapped (ie, joined to a closed-
minded agent via a path) or it is isolated, meaning that the other
agents are either merged with it or at distance greater than one.
An agent cannot move while isolated.

The position matrix z of the k trapped agents at time t ≥ tε
satisfies the relation z′ = Tz + Uy, where primes denote time
t + 1 and the k-by-n matrix (T |U) has each row summing up
to 1. Being trapped implies that U is not the null matrix. In fact,
viewed as a Markov chain, the trapped agents correspond to
transient states, which means that Tk tends to the null matrix as
k goes to infinity. This shows that T cannot have 1 as an eigen-
value; therefore I − T is nonsingular. Let μ be a uniform upper
bound on the singular values of all the (so-called fundamental)
matrices (I − T )−1 ; since their number is finite, so is μ. Since
z′ = Tz + Uy and ‖z′ − z‖2 ≤ ε

√
n, the matrix z is very close

to (I − T )−1Uy; specifically,

‖z − (I − T )−1Uy‖F = ‖(I − T )−1(z − z′)‖F
≤ μ‖z − z′‖F ≤ με

√
n. (3)

A matrix of the form (I − T )−1Uy is called an anchor. Since
the set of all possible anchors (for given y) is finite, the minimum
(Frobenius-norm) distance r between any two distinct anchors
is strictly positive. The value of r does not depend on ε, so we
can always lower the value of the latter, if necessary, to ensure
that r > (1 + 2μ)ε

√
n.

By (3) and Lemma 3.1 we know that, at any time t past tε ,
any mobile agent is either stuck in place (if free) or at distance
at most με

√
n away from an anchor. As a result, no agent can

ever change anchors since this would necessitate a one-step
leap of at least r − 2με

√
n > ε

√
n for the positional matrix,

hence the displacement of an agent by a distance of at least ε,
which has been ruled out. Since the argument holds for any ε
small enough, each mobile agent is thus constrained to converge
toward its chosen anchor. This concludes the proof that all agents

converge to a fixed point in Rd . The convergence is asymptotic
and no bound can be inferred directly from our analysis.

The result does not imply that the communication network
should also converge to a fixed graph. The lack of convergence
points to a situation where the agents are still moving in increas-
ingly small increments, yet edges of the network keep switching
forever. This can only occur if at least one pair of anchor points
are at distance 1: by anchor point, we mean the points formed by
any row of an anchor matrix or of y. The key observation is that
all the anchor points are convex combinations of the rows of y,
so an interdistance of 1 is expressed by an equality of the form
‖vT y‖2 = 1. There are only a finite set of such equalities to
consider and each one denotes an algebraic surface of codimen-
sion 1. Any random perturbation of the closed-minded agents
will result in the convergence of the communication network
almost surely. This completes the proof of Theorem 1.2. �

IV. ANCHORED AND SYMMETRIC HETEROGENEOUS

HK SYSTEMS

This section proves Theorem 1.3. We begin with a proof of
the conjugacy between the two types of HK systems.

A. The Bijection Relation

To express an anchored HK system z(t) = (xk (t), yk ) as a
symmetric heterogeneous one is straightforward. We have the
equivalence

‖zi(t)− zj (t)‖22 ≤ r2

⇔ ‖xi(t)− xj (t)‖22 ≤ r2 − ‖yi − yj‖22 . (4)

We define rij =
√

r2 − ‖yi − yj‖22 if the right hand side of (4)
is non-negative, and rij = −1 otherwise. Then the system xk (t)
together with thresholds rij forms a symmetric heterogeneous
HK system. Notice that the equivalence (4) ensures that the
communication graphs of the given anchored HK system and
its corresponding symmetric heterogeneous HK counterpart are
identical.

For the other direction, we need to lift the given symmetric
heterogeneous HK system to an anchored HK version. We need
the following lemma, whose proof can be found in the Appendix.

Lemma 4.1: For any n-by-n symmetric matrix R = (rij )
with no negative terms in the diagonal, there exist r > 0 and
vectors yk ∈ Rn−1(1 ≤ k ≤ n), such that

‖yi − yj‖2 =
√

r2 − r2
ij sign (rij ), (5)

for any i �= j; here sign (x) = 1 if x ≥ 0 and −1 otherwise.
Given a symmetric heterogeneous HK system xk (t), we

choose the anchors yk by appealing to Lemma 4.1. For any
rij ≥ 0, it then follows that

‖xi(t)− xj (t)‖22 ≤ r2
ij

⇔ ‖xi(t)− xj (t)‖22 + ‖yi − yj‖22 ≤ r2 , (6)

and for any rij < 0, and we always have

‖xi(t)− xj (t)‖22 + ‖yi − yj‖22 > r2 , (7)
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for any i �= j, which prevents any edge between i and j. This
means that the dynamics of the symmetric heterogenous HK
system coincides precisely with that of the mobile part of the
lifted anchored system.

Remark: Lemma 4.1 asserts that, given (n− 1)n/2 lengths
dij (i �= j) of the form (r2 − r2

ij sign(rij ))1/2 , we can find n

points yk ∈ Rn−1 such that the pairwise distance ‖yi − yj‖2 =
dij . Notice that, if dij itself is arbitrary, this is not always possi-
ble. For example, in the case n = 3, the problem is equivalent to
finding a triangle in R2 with each side length given. The prob-
lem is solvable if and only if the three lengths satisfy the triangle
inequality. In our case, however, there is an extra parameter r
that we can use. Intuitively, if we choose a large r such that all
the |rij | are relatively small, then the problem of finding yk is
equivalent to finding an almost regular polytope, each edge of
which is roughly of the same length r.

B. Proof of Convergence

The fixed-point attraction of symmetric heterogeneous HK
systems can be inferred directly from known results about in-
finite products of type-symmetric stochastic matrices [2]–[5].
The same holds of anchored systems. In both cases, given any
ε > 0 and any initial condition, the n agents will eventually
reach a ball of radius ε that they will never leave; we call this ε-
convergence. We study the conditions for this to imply that the
corresponding communication networks themselves converge
to a fixed graph. It suffices to consider the case of a symmetric
heterogeneous HK system. Consider a connected component C
of the graph and let z and z′ = Cz denote the corresponding
position matrices at time t and t + 1, where C is the correspond-
ing k-by-k stochastic matrix associated with C. As we did in the
proof of Lemma 3.1 we define σ to be a uniform lower bound
on any positive singular value of I − C for any such matrix C.
Setting

ε =
σ

2
√

n
min
ri j >0

rij

implies that

‖z̄‖2 ≤ 1
σ
‖(I − C)z̄‖2 =

1
σ
‖z − z′‖2

≤
√

nε

σ
≤ 1

2
min
ri j >0

rij ,

where z̄ = z − 1
k 11T z is the projection of z onto the orthogonal

space of 1. It follows that, for any pair (i, j) in C such that rij >
0, there will be an edge between i and j. With the assumption
rij �= 0, the communication graph is now fixed and convergence
proceeds at an exponential rate from that point on. The bijection
result of the previous section shows that the condition rij = 0
corresponds to ‖yi − yj‖2 = r in the case of anchored systems.
This concludes the proof of Theorem 1.3. �

APPENDIX

Our proof of Lemma 4.1 relies on two technical facts. For
convenience, we use bold letters to denote vectors; for example,
uk denotes the k-th coordinate of vector u.

Fact A: There exist n + 1 vectors u(k) ∈ Rn (0 ≤ k ≤ n)
such that ‖u(i) − u(j )‖2 = 1(0 ≤ i < j ≤ n), u(k)

i = 0 for i >

k ≥ 0 and all u
(k)
k exceed 1/

√
2 and decrease as k grows.

Proof: Proceeding by induction, we write u(0) = 0, u(1) =
e1 and u(2) = 1

2 e1 +
√

3
2 e2 , where ei is the unit vector in the

i-th dimension. Assume we already constructed u(k) (0 ≤ k ≤
m < n) such that u

(k)
i = 0 for i > k and u

(k)
k > 1/

√
2. Then

we can write u(k) as

u(k) =
k∑

i=1

u
(k)
i ei , k = 1, 2, . . . ,m.

We define

u(m+1) =
m−1∑

i=1

u
(m )
i ei +

(
u(m )

m − 1

2u
(m )
m

)
em

+

√
1− 1

4
(
u

(m )
m

)2 em+1 .

Since u
(m )
m > 1/

√
2, we have

u
(m+1)
m+1 >

√
1− 1

4(1/
√

2)2
=

1√
2
.

For k = 0, 1, . . . ,m,

‖u(m+1) − u(k)‖22 = ‖u(m ) − u(k)‖22 + u(k)
m /u(m )

m

= (1− δkm) + u(k)
m /u(m )

m = 1.

Notice that, for 0 ≤ k < n,

(
u

(k+1)
k+1

)2 − (
u

(k)
k

)2 =
(

1− 1

4
(
u

(k)
k

)2

)
− (

u
(k)
k

)2

= −
(

u
(k)
k − 1

2u
(k)
k

)2

≤ 0,

which proves the monotonicity claim.
Fact B: For any integer n > 0, there is a positive number γ

depending on n such that, for any tij satisfying |1− tij | ≤ γ and
tij = tji (0 ≤ i < j ≤ n), there exist vectors y(k) ∈ Rn (0 ≤
k ≤ n) such that ‖y(i) − y(j )‖2 = tij , for 0 ≤ i < j ≤ n.

Proof: We make repeated use of the matrix infinity norm.
Recall that if M is a p-by-q matrix, its infinity norm is defined
as the maximum absolute row sum of M :

‖M‖∞ := max
1≤i≤p

q∑

j=1

|mij |.

As one would expect of a matrix norm, the infinity norm is
submultiplicative:

‖MN‖∞ ≤ ‖M‖∞‖N‖∞,

for any p-by-q matrix M and q-by-r matrix N . We define a
constant

α = 5n + max
1≤k≤n

‖C−1
k ‖∞,
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where Ck is the k-by-k matrix whose i-th row consists of the
first k elements of the vector u(i) in Fact A. Note that Ck

is lower-triangular and invertible. Let γ = α−4n . The intuition
of the proof is that the vectors y(k) we are seeking should
be close to the vectors u(k) . We build the desired vectors by
induction. Let y(0) = 0 and y(1) = t01e1 . Then it is obvious
that ‖y(0) − y(1)‖2 = t01 and y(0) and y(1) are close to the
vectors from Fact A:

‖y(0) − u(0)‖∞ = 0 < γ,

‖y(1) − u(1)‖∞ = |t01 − 1| ≤ γ ≤ α4γ.

Suppose y(0) ,y(1) , . . . ,y(k−1) have been specified such that
y

(j )
i = 0 for i > j,

‖y(i) − u(i)‖∞ ≤ α4iγ (0 ≤ i ≤ k − 1), (8)

and

‖y(i) − y(j )‖2 = tij (0 ≤ i < j ≤ k − 1).

We need to show is that there exists a vector y(k) such that
y

(k)
i = 0 for i > k,

‖y(k) − u(k)‖∞ ≤ α4kγ (9)

and

‖y(k) − y(i)‖2 = tik (0 ≤ i ≤ k − 1). (10)

This last relation is equivalent to

i∑

j=1

(
y

(k)
j − y

(i)
j

)2 +
k∑

j=i+1

(
y

(k)
j

)2 = t2ik (11)

for 0 ≤ i ≤ k − 1. By subtracting the equations for 1 ≤ i ≤
k − 1 from the one for i = 0, we get a linear system for ŷ :=
(y(k)

1 , y
(k)
2 , . . . , y

(k)
k−1)

T :

Aŷ = b.

Here the (k − 1)× (k − 1) matrix A is a lower triangular matrix
where Aij = y

(i)
j (i ≥ j) and b is a (k − 1) dimensional column

vector where

bi =
1
2

(
t20k − t2ik +

i∑

j=1

(
y

(i)
j

)2
)
.

We derive similar relations from Fact A:

i∑

j=1

(
u

(k)
j − u

(i)
j

)2 +
k∑

j=i+1

(
u

(k)
j

)2 = 1 (0 ≤ i ≤ k − 1),

(12)
which implies a linear system Cû = d for

û := (u(k)
1 , u

(k)
2 , . . . , u

(k)
k−1)

T ,

where C is shorthand for Ck−1 and di = 1
2

∑i
j=1

(
u

(i)
j

)2
. We

already observed that C is nonsingular; we note that, by (8)
and u

(i)
i > 1/

√
2, the same is true of A. Next, we derive upper

bounds on the length of the vector b and its distance from d. By

|1− tij | ≤ γ and γ < 1/2,

|t20k − t2ik | = |t0k + tik ||t0k − tik | ≤ (2 + 2γ) · 2γ < 6γ.
(13)

By our induction hypothesis (8), the fact that |y(i)
j | ≤ 1 + γ, and

the definition of γ, we have
∣∣∣
(
y

(i)
j

)2 − (
u

(i)
j

)2
∣∣∣ = |y(i)

j + u
(i)
j ||y(i)

j − u
(i)
j |

≤ (2 + α4iγ) · α4iγ

< 3α4(k−1)γ. (14)

Thus, by (13), (14),

‖b− d‖∞ ≤ 3(1 + nα4(k−1)/2)γ. (15)

By inequality (13) and the fact that γ is small enough, we have

‖b‖∞ ≤ 1
2

(
max
1≤i≤k

|t20k − t2ik |+ max
1≤i≤k

‖y(i)‖22
)

<
1
2
(6γ + (1 + γ)2) < 1. (16)

We also claim that

‖A−1 − C−1‖∞ ≤ 2nα4k−2γ. (17)

Here is why. First, notice that (8) implies ‖A− C‖∞ ≤
nα4(k−1)γ. Then based on the definition of α, we have
‖C−1‖∞ < α, and hence

‖C−1(A− C)‖∞ ≤ ‖C−1‖∞‖A− C‖∞ < nα4k−3γ. (18)

The right hand side of the above inequality is smaller than 1/2
based on the definition of γ, which allows us to expand the
matrix inverse [I + C−1(A− C)]−1 as

[I + C−1(A− C)]−1 = I +
∞∑

i=0

(−1)i [C−1(A− C)]i ,

from which it follows that

‖[I + C−1(A− C)]−1‖∞ ≤ 2. (19)

Notice that

A−1 − C−1 = [I + C−1(A− C)]−1C−1(C −A)C−1 ,

then inequality (17) directly follows from inequalities (18) and
(19). By (15), (16), (17) and the fact that ‖C−1‖∞ < α, finally
we have

‖ŷ − û‖∞
= ‖A−1b− C−1d‖∞
= ‖(A−1 − C−1)b + C−1(b− d)‖∞
≤ ‖(A−1 − C−1)‖∞‖b‖∞ + ‖C−1‖∞‖(b− d)‖∞
≤ 2nα4k−2γ + 3(1 + nα4(k−1)/2)αγ < α4k−1γ.

This shows that

|y(k)
j − u

(k)
j | ≤ α4k−1γ (1 ≤ j ≤ k − 1). (20)
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In turn, this implies that
∣∣∣
(
y

(k)
j

)2 − (
u

(k)
j

)2
∣∣∣ = |y(k)

j + u
(k)
j ||y(k)

j − u
(k)
j |

< (2 + α4k−1γ)α4k−1γ < 3α4k−1γ. (21)

It suffices now to set the remaining (nonzero) coordinate of y(k)

yet to be specified, which is y
(k)
k . Recall that it must satisfy

k∑

j=1

(
y

(k)
j

)2 = t20,k

and, by our construction, this single equality suffices to im-
ply all of (10). This implies a unique setting of (positive)
y

(k)
k , so we need only be concerned with (9) and the positivity

of
(
y

(k)
k

)2
. Since |1− t20k | = |1− t0k ||1 + t0k | ≤ γ(2 + γ) <

3γ, inequality (12) for i = 0, combined with (14), establishes
that

∣∣∣
(
y

(k)
k

)2 − (
u

(k)
k

)2
∣∣∣ ≤

k−1∑

i=1

∣∣∣
(
y

(k)
i

)2 − (
u

(k)
i

)2
∣∣∣ + |1− t20k |

≤ 3(1 + nα4k−1)γ.

Since u
(k)
k > 1/

√
2, it follows that

(
y

(k)
k

)2
>

1
2
− 3(1 + nα4k−1)γ > 0.

Furthermore,

|y(k)
k − u

(k)
k | =

∣∣(y(k)
k

)2 − (
u

(k)
k

)2∣∣

y
(k)
k + u

(k)
k

≤ 3
√

2(1 + nα4k−1)γ < α4kγ. (22)

In conjunction with (20), this establishes (9), and completes the
inductive construction. �

It should be noted that Fact B can also be proven via the
implicit function theorem and a perturbation argument based on
Fact A. The benefit of the proof given above is to provide an
explicit construction.

Lemma 4.1: For any n-by-n symmetric matrix R = (rij )
with no negative terms in the diagonal, there exist r > 0 and
vectors yk ∈ Rn−1(1 ≤ k ≤ n), such that

‖yi − yj‖2 =
√

r2 − r2
ij sign (rij ), (23)

for any i �= j; here sign (x) = 1 if x ≥ 0 and −1 otherwise.
Proof: Choose a sufficiently large r such that

max
i,j
|rij | < γr,

where γ is the small positive constant from Fact B. We set tij

to
√

1− r2
ij sign(rij )/r2 and easily verify that |1− tij | ≤ γ.

Fact B guarantees the existence of vectors zk ∈ Rn−1 (1 ≤
k ≤ n) such that ‖zi − zj‖2 = tij . Setting yk = rzk satisfies
the requirements. �
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