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Abstract— We derive an energy bound for inertial
Hegselmann-Krause (HK) systems, which we define as a variant
of the classic HK model in which the agents can change their
weights arbitrarily at each step. We use the bound to prove
the convergence of HK systems with closed-minded agents,
which settles a conjecture of long standing. This paper also
introduces anchored HK systems and show their equivalence to
the symmetric heterogeneous model.

I. INTRODUCTION

The Hegselmann-Krause model of multiagent consensus
has emerged as a “model organism” for opinion dynam-
ics [9]. In an HK system, a collection of n agents, each
one represented by a point in Rd, evolves by applying the
following rule at discrete times: move each agent to the mass
center of all the agents within unit distance. It has been
shown that the system always freezes eventually [6], [10],
[13], [18], [19]. While the model has been the subject of
numerous studies [2], [3], [5], [11], [12], [14] and much is
known about its convergence rate, its heterogeneous variant
remains a mystery [25], [26], [27], [28], [22]. In that model,
each agent can choose its own radius of confidence. In the
HK model with closed-minded agents, all of the agents have
radius either 1 or 0. While extensive simulations have pointed
to the convergence of that system [14], [15], [17], [21], [22],
a proof has remained elusive. This open question has been
described by a leading researcher as one of the outstanding
gaps in our understanding of opinion dynamics [8]. This
paper resolves this issue by settling the conjecture in the
affirmative: HK systems with closed-minded agents always
converge. Our proof entails making the problem a special
case of a much broader class of dynamical systems, the
inertial HK systems (more on which below).

The relaxation time of the original HK model has been
shown to be nO(n) in any fixed dimension [6], a bound later
improved to a polynomial bound in both n and d [1]. For
the particular case d = 1, a bound of O(n5) was established
in [16], which was lowered to O(n4) in [20] and then
to O(n3) in [1]. The model can be generalized in various
ways, its ultimate expression being the grand unified model
of influence systems [7], in which each agent gets to pick
its neighbors by following its own distinct, arbitrary criteria.
Oddly, even the most seemingly innocuous modifications of
the original HK model have stumped researchers in the field.
This is the case of HK systems with closed-minded agents,
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where any agent’s radius of confidence is either 0 or 1.
To prove that these systems always converge, we introduce
the more general inertial HK systems and establish a bound
on their kinetic 2-energy. We also introduce the anchored
variant of HK systems and prove that it is equivalent to
the symmetric heterogeneous model. This fairly surprising
result sheds new light on the convergence properties of these
systems.

A. Inertial HK systems

Instead of being required to move to the mass center of
its neighbors at each step, each agent of an inertial HK
system may move toward it by any fraction of length; setting
this fraction to zero makes the agent closed-minded, which
means that it remains frozen in place. Formally, the system
consists of n agents represented by points x1(t), . . . , xn(t)
in Rd at time t = 0, 1, 2, etc. Two agents i and j are said
to be neighbors if they are within unit distance: ‖xi(t) −
xj(t)‖2 ≤ 1. When the time t is understood, the neighbors of
i form a set we denote by Ni; these sets form an undirected
communication network Gt with a self-loop at each of the
n nodes. The dynamics of the system is specified by

xi(t+ 1) = (1− λ)xi(t) +
λ

|Ni|
∑
j∈Ni

xj(t), (1)

where λ ∈ [0, 1] is called the inertia. Not only λ need not
have the same value for all the agents, but it can be reset to
a different value with each application of (1). In this way,
we can select any agent to be closed-minded by setting their
inertia to 0. We can also retrieve the original HK model by
turning all the inertias to 1. In its full generality, however, an
inertial HK system is not deterministic. We tackle the issue of
convergence by turning our attention to their kinetic s-energy.
The concept was introduced in [6] as a generating function
for studying averaging processes in dynamic networks. It is
defined as follows:

K(s) =
∑
t≥0

n∑
i=1

‖xi(t+ 1)− xi(t)‖s2.

We provide an upper bound for the case s = 2.

THEOREM 1.1: The kinetic s-energy of an n-agent iner-
tial HK-system whose inertias are uniformly bounded from
above by λ0 satisfies K(2) ≤ λ0n2/4.

We use this result to establish the convergence of HK sys-
tems with closed-minded agents. Note that the convergence is
asymptotic. This is even true for n = 2 with a single closed-
minded agent. Indeed, if the mobile agent is initialized close
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enough to the closed-minded one, it will eventually converge
to it by halving its distance at each step. The network
Gt becomes fixed in this case. In general, it changes with
time, however. Interestingly, fixed-point attraction does not
automatically imply the convergence of the communication
network, so we address this issue separately.

THEOREM 1.2: An HK system with any number of
closed-minded agents converges asymptotically to a fixed-
point configuration. The communication network converges
for all initial conditions if d = 1 and for all initial conditions
outside a set of measure zero if d > 1.

The specific meaning of this last clause is that, in dimen-
sion two and higher, as long as we perturb the closed-minded
agents by an arbitrarily small amount at the beginning,
the communication network Gt will settle to a fixed graph
in finite time almost surely. The perturbation is likely an
unnecessary artifact of the proof and it would be nice to settle
this point. The main open problem, however, is to derive an
effective upper bound on the relaxation time.

B. Anchored HK systems

An anchored HK system consists of n agents, each one
represented by a vector zk = (xk(t), yk). The vector is a
combination of a mobile part xk(t) ∈ Rd and a static part
yk ∈ Rd′

; the dimensions d and d′ are the same for all
the agents. Two agents i and j are neighbors if and only if
‖zi(t) − zj(t)‖2 ≤ r, where r is a fixed positive constant.
At each step, the mobile part of an agent moves to the mass
center of all its neighbors while its anchored part remains
fixed. (Note that the averaging is done one coordinate at a
time, so the static coordinates affect only the neighborhood
relationships and do not participate in the averaging itself.)
Anchored HK systems capture a notion of partial closed-
mindedness: agents are closed-minded in some coordinates
but open-minded in others. Both mobile and anchored parts,
on the other hand, affect the communication network.

By contrast, a symmetric heterogeneous HK system con-
sists of n agents, each one represented by a vector xk(t). For
each pair of agents (i, j), a threshold rij specifies that agents
i and j are neighbors at time t whenever ‖xi(t)−xj(t)‖2 ≤
rij . It is required that rij = rji and rii ≥ 0 (the latter to
create self-loops). Note that rij = 0 means that i and j are
neighbors only when their positions coincide, while rij < 0
implies that i and j are never joined together. Surprisingly,
anchored and symmetric heterogeneous systems are conju-
gate: in other words, there exists a bijection between them
that respects their dynamics and establishes the equivalence
of the two systems. Specifically, we prove the following:

THEOREM 1.3: Given any anchored HK system zk(t) =
(xk(t), yk) in Rd × Rd′

, there exists a conjugate symmet-
ric heterogeneous HK system x′k(t) in Rd. Conversely, a
symmetric heterogeneous HK system of n agents in Rd is
conjugate to an anchored HK system zk(t) = (xk(t), yk)
with agents in Rd × Rn−1. In both cases, the conjugacy is
formed by the trivial correspondence: xk(t) = x′k(t) for any
k and t. Both anchored and symmetric heterogeneous HK

systems converge asymptotically to a fixed configuration. If
there is no pair of agents (i, j) such that ‖yi − yj‖2 = r in
an anchored HK system or such that rij = 0 in a symmetric
heterogeneous HK system, then the communication network
converges to a fixed graph.

While the convergence of symmetric heterogeneous HK
systems can be inferred directly from known results, the
convergence of the communication networks requires special
treatment, however. An interesting corollary of these results
is the convergence of HK systems embedded within a social
network [23], [24], [29]. Imagine that the existence of an
edge between two agents i, j is a function not only of
their relative distance but also of a predetermined, fixed
relationship. By setting rij < 0, we can enforce the absence
of an edge. In this way we can restrict the HK action to
the edges of a fixed, arbitrary social network, and still assert
convergence.

II. INERTIAL HK SYSTEMS

The purpose of this section is to prove Theorem 1.1. To
do that, we assign each agent i a certain amount of “money”
Ci(0) at the beginning (t = 0) and specify a protocol
for spending and exchanging it with other agents as time
progresses. If we knew ahead of time the total contribution of
agent i to the kinetic 2-energy, we could simply set Ci(0) to
that amount and let the agent “pay” for its contribution from
its own pocket. This information is not available, however,
so we take an initial guess and set up an exchange protocol
so that no agent runs out of money. By giving money to their
neighbors in a judicious manner, we show how each agent
remains in a position to pay for its share of the 2-energy at
each step. The proof is algorithmic: it is a message-passing
protocol that simulates the update of a distributed Lyapunov
function. Our initial guess is

Ci(0) =

n∑
j=1

min
{
‖xi(0)− xj(0)‖22, 1

}
.

To specify the exchange protocol, we first simplify the
notation as follows:

∆i = xi(t+ 1)− xi(t)
dij = xi(t)− xj(t)
d′ij = xi(t+ 1)− xj(t+ 1).

The two rules below are applied to every agent i at any time
step t ≥ 0:

• For every neighbor of j at time t (which includes i
itself), agent i spends ‖∆i + ∆j‖22 units of money and
gives to agent j an amount equal to 2(dij −∆j)

T ∆j .
• If agent j becomes a new neighbor of i at time t + 1

or, conversely, ceases to be one, then agent i spends
|‖d′ij‖22 − 1|.

Let Ci(t) be the amount of money held by agent i at time
t, and let N in

i (resp. Nout
i ) denote the set of agents that

are neighbors of i at time t + 1 (resp. t) but not at time t
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(resp. t + 1). Using the symmetry of the neighbor relation,
we express the cash flow at time t by

Ci(t+ 1)− Ci(t)

= 2
∑
j∈Ni

(dji −∆i)
T ∆i − 2

∑
j∈Ni

(dij −∆j)
T ∆j

−
∑
j∈Ni

‖∆i + ∆j‖22 −
∑

j∈Nin
i ∪Nout

i

|‖d′ij‖22 − 1|.

Since (dji −∆i)
T ∆i − (dij −∆j)

T ∆j = dTij(∆i −∆j) −
2dTij∆i + ‖∆j‖22 − ‖∆i‖22 and, by (1), λ

∑
j∈Ni

dij =
−|Ni|∆i, we have

Ci(t+ 1)− Ci(t)

=
∑
j∈Ni

{
2dTij(∆i −∆j) + ‖∆i −∆j‖22 − 4dTij∆i

}
− 4|Ni|‖∆i‖22 −

∑
j∈Nin

i ∪Nout
i

|‖d′ij‖22 − 1|

=
∑
j∈Ni

{
2dTij(∆i −∆j) + ‖∆i −∆j‖22

}
+ 4

(
λ−1 − 1

)
|Ni|‖∆i‖22 −

∑
j∈Nin

i ∪Nout
i

|‖d′ij‖22 − 1|.

Note that λ = 0 implies that ∆i = 0, so it is understood
that (λ−1 − 1)|Ni|‖∆i‖22 = 0 in the identity above. Since
d′ij = dij + ∆i −∆j , the first summand in the last equality
above is equal to ‖d′ij‖22 − ‖dij‖22; therefore

Ci(t+ 1)− Ci(t)

=
∑
j∈Ni

{
‖d′ij‖22 − ‖dij‖22

}
−

∑
j∈Nin

i ∪Nout
i

|‖d′ij‖22 − 1|

+ 4
(
λ−1 − 1

)
|Ni|‖∆i‖22

=

n∑
j=1

min
{
‖d′ij‖22, 1

}
−

n∑
j=1

min
{
‖dij‖22, 1

}
+ 4

(
λ−1 − 1

)
|Ni|‖∆i‖22.

Since |Ni| > 0 and λ ≤ λ0, it follows that

Ci(t) ≥
n∑

j=1

min
{
‖dij‖22, 1

}
+ 4

(
λ−10 − 1

) t−1∑
k=0

‖xi(k + 1)− xi(k)‖22.

Being its own neighbor, agent i spends at least 4‖∆i‖22
money at each step. Summing up over all the agents, this
amounts to 4K(2). This shows that the initial injection of
money allows the system to spend 4K(2) and still be left
with 4

(
λ−10 − 1

)
K(2). Theorem 1.1 follows from the fact

that the initial injection of money is at most n2. �

III. HK SYSTEMS WITH CLOSED-MINDED AGENTS

This section proves Theorem 1.2. The bound on the kinetic
2-energy shows that the system eventually slows down to a
crawl but it falls short of proving convergence. Indeed, an

agent moving along a circle by 1/t at time t contributes
finitely to the kinetic 2-energy yet travels an infinite distance.
We prove that HK systems with closed-minded agents always
converge asymptotically. We treat the one-dimensional sepa-
rately for two reasons: the proof is entirely self-contained
and the convergence of the communication network does
not require perturbation. In dimension two and higher, we
prove that the agents always converge to a fixed position:
the system has a fixed-point attractor. We show how a tiny
random perturbation ensures that the network eventually
settles on a fixed graph.

A. The one-dimensional case

We begin with the one-dimensional case, which is particu-
larly simple. By Lemma 1.1, we can choose a small enough
ε > 0 and an integer tε large enough so that no agent moves
by a distance of more than ε at any time t ≥ tε. Fix t > tε
and let xi (resp. Ni) denote the position (resp. neighbors)
of agent i at time t; we use primes and double primes to
indicate the equivalent quantities for time t+1 and t+2. The
symmetric difference between Ni and N ′i , if nonempty, is the
disjoint union of a set Li of agents located at xi− 1±O(ε)
at times t and t+ 1 and a set Ri at locations xi + 1±O(ε).
For each subset, we distinguish between the agents of Ni

not in N ′i and vice-versa, which gives the disjoint partitions
Li = Lin

i ∪Lout
i and Ri = Rin

i ∪Rout
i . The locations x′i and

x′′i of agent i at times t+ 1 and t+ 2 are given by{
|Ni|x′i = (

∑
j∈Ni∩N ′

i
xj ) + (

∑
j∈Lout

i ∪Rout
i

xj )

|N ′i |x′′i = (
∑

j∈Ni∩N ′
i
x′j ) + (

∑
j∈Lin

i ∪Rin
i
x′j ).

All x′k and x′′k are of the form xk±O(ε), so subtracting the
two identities shows that

(|N ′i | − |Ni|)xi = (|Lin
i | − |Lout

i |)(xi − 1)

+ (|Rin
i | − |Rout

i |)(xi + 1)±O(εn).

Since the dynamics is translation-invariant, we can assume
that xi = 0. Setting ε small enough, the integrality of the
set cardinalities implies that the net flow of neighbors on the
left of agent i is the same as it is on the right:

|Lout
i | − |Lin

i | = |Rout
i | − |Rin

i |. (2)

Among all the agents undergoing a change of neighbors
between times t and t + 1, pick the one that ends up the
furthest to the right at time t+1, choosing the one of largest
index i to break ties. We distinguish between two cases:

1) x′i ≥ xi: No agent of Rout
i can be closed-minded; nor

can it be mobile since, ranks being preserved, it would
provide an agent undergoing a change of neighbors and
landing to the right of i at time t+ 1, in contradiction
with the definition of i. It follows that Rout

i is empty,
which in turn implies that Lin

i is not, since by our
choice of i not all four terms in (2) can be zero. Since
agent i is not moving left, neither is any agent j of
Lin
i . Its set Nj of neighbors changes between time t

and t + 1 and Rout
j is empty. To see why the latter
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is true, we first note that Nj cannot lose any closed-
minded agent to the right. Also, since any mobile agent
in Rout

j is to the left of i at time t, it stays to the left
of it by conservation of ranks; hence the agent remains
a neighbor of j, a contradiction. The argument so far
uses the rightmost status of agent i only to assert that
Rout

i is empty. This means we are back to square one
and we can proceed inductively, eventually reaching a
contradiction.

2) x′i < xi: The key observation is that our previous
argument never uses time directionality, so we can
exchange the role of t and t + 1, which implies that
now x′i > xi. Note that the superscripts in and out
must be swapped. While we chose i as the mobile
agent landing furthest to the right, by symmetry we
must now choose the one starting the furthest to the
right: of course, since mobile agents can never cross
this make no difference.

We conclude that each agent is now endowed with a fixed
set of neighbors, so the dynamics is specified by the powers
of a fixed stochastic matrix with positive diagonal, which are
well known to converge. The system is attracted to a fixed
point at an exponential rate, but of course we have no a priori
bound on the time it takes to fall into that basin of attraction.
The communication network converges.

B. The higher-dimensional case

Generalizing the previous argument to higher dimension
fails on several counts, the most serious one being the loss
of any left-right ordering. We follow a different tack, which
begins with a distinction between two types of agents. An
agent is trapped at time t if there exists a path in the current
communication graph leading to a closed-minded agent; it
is said to be free otherwise. There exists a time to after
which the agents fall into two categories: some of them are
never trapped past t0 and are called eternally free; the others
are chronically trapped (ie, trapped an infinite number of
times). As we did before, we pick a parameter ε > 0 (to be
specified below) and tε > to large enough so that no agent
moves by a distance of more than ε at any time t ≥ tε. If
two agents ever get to share the same position, their fates
become completely tangled since they can never again get
separated. Since such merges occur fewer than n times, we
can make tε big enough, if necessary, so that all merges are
in the past. To summarize, past tε, the mobile agents move
by increments less than ε, no merging occurs, and the system
consists only of eternally free and chronically trapped agents.

At any time, the state system is represented by a n-by-d
matrix whose i-th row encode the position of agent i in Rd.
The matrix consists of two parts: x for the mobile agents
and y for the closed-minded ones. A transition of the system
is a linear map of the form x 7→ Ax+By, where each row
of the nonnegative matrix (A |B) sums up to 1.

LEMMA 3.1: Past tε, no agent can move while free.
Proof: Fix t ≥ tε and consider a connected component

C of the graph induced by the free agents. If z denotes its
position matrix at time t and k its number of rows, then

z′ = Cz, where primes refer to time t + 1 and C is a k-
by-k stochastic matrix for a random walk in the undirected
graph C. Because the graph is connected, the eigenvalue 1
of C is simple, so the null space of I − C, and hence of
(I − C)T (I − C), is spanned by 1. By Courant-Fischer,
therefore, any vector u normal to 1 satisfies ‖(I −C)u‖2 ≥
σ‖u‖2, where σ is the smallest positive singular value of
I −C. If we define z̄ = z− 1

k11
T z, it immediately follows

that

σ‖z̄‖2 ≤ ‖(I − C)z̄‖2 = ‖(I − C)z‖2 = ‖z − z′‖2 ≤ ε
√
n.

Setting ε < 1
2σ/
√
n ensures that any two of the k agents are

within unit distance. It follows that C is the complete graph
and C = 1

k11
T . Since the agents can no longer merge, the

only option left is for all k of them to be already merged at
time t, hence unable to move. �

The lemma implies that eternally free agents can never
move again past tε. Indeed, it shows that an eternally free
agent can only move if it is joined to a trapped one, which,
by definition, it cannot be. Since eternal freedom keeps the
agents from playing any role after time tε, we might as
well assume that all the mobile agents in the system are
chronically trapped. This means that, at all instants, either
an agent is trapped (ie, joined to a closed-minded agent via
a path) or it is isolated, meaning that the other agents are
either merged with it or at distance greater than one. An
agent cannot move while isolated.

The position matrix z of the k trapped agents at time
t ≥ tε satisfies the relation z′ = Tz + Uy, where primes
denote time t + 1 and the k-by-n matrix (T |U) has each
row summing up to 1. Being trapped implies that U is not the
null matrix. In fact, viewed as a Markov chain, the trapped
agents correspond to transient states, which means that T k

tends to the null matrix as k goes to infinity. This shows
that T cannot have 1 as an eigenvalue; therefore I − T is
nonsingular. Let µ be a uniform upper bound on the singular
values of all the (so-called fundamental) matrices (I−T )−1;
since their number is finite, so is µ. Since z′ = Tz+Uy and
‖z′−z‖2 ≤ ε

√
n, the matrix z is very close to (I−T )−1Uy;

specifically,

‖z − (I − T )−1Uy‖F = ‖(I − T )−1(z − z′)‖F
≤ µ‖z − z′‖F ≤ µε

√
n. (3)

A matrix of the form (I − T )−1Uy is called an anchor.
Since the set of all possible anchors (for given y) is finite,
the minimum (Frobenius-norm) distance r between any two
distinct anchors is strictly positive. The value of r does not
depend on ε, so we can always lower the value of the latter,
if necessary, to ensure that r > (1 + 2µ)ε

√
n.

By (3) and Lemma 3.1, we know that, at any time t
past tε, any mobile agent is either stuck in place (if free)
or at distance at most µε

√
n away from an anchor. As a

result, no agent can ever change anchors since this would
necessitate a one-step leap of at least r−2µε

√
n > ε

√
n for

the positional matrix, hence the displacement of an agent by
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a distance of at least ε, which has been ruled out. Since the
argument holds for any ε small enough, each mobile agent is
thus constrained to converge toward its chosen anchor. This
concludes the proof that all agents converge to a fixed point
in Rd. The convergence is asymptotic and no bound can be
inferred directly from our analysis.

The result does not imply that the communication network
should also converge to a fixed graph. The lack of conver-
gence points to a situation where the agents are still moving
in increasingly small increments, yet edges of the network
keep switching forever. This can only occur if at least one
pair of anchor points are at distance 1: by anchor point, we
mean the points formed by any row of an anchor matrix or
of y. The key observation is that all the anchor points are
convex combinations of the rows of y, so an interdistance
of 1 is expressed by an equality of the form ‖vT y‖2 = 1.
There are only a finite set of such equalities to consider and
each one denotes an algebraic surface of codimension 1. Any
random perturbation of the closed-minded agents will result
in the convergence of the communication network almost
surely. This completes the proof of Theorem 1.2. �

IV. ANCHORED AND SYMMETRIC HETEROGENEOUS HK
SYSTEMS

This section proves Theorem 1.3. We begin with a proof
of the conjugacy between the two types of HK systems.

A. The bijection relation
To express an anchored HK system z(t) = (xk(t), yk) as

a symmetric heterogeneous one is straightforward. We have
the equivalence

‖zi(t)− zj(t)‖22 ≤ r2

⇔ ‖xi(t)− xj(t)‖22 ≤ r2 − ‖yi − yj‖22. (4)

We define rij =
√
r2 − ‖yi − yj‖22 if the right hand side

of (4) is non-negative, and rij = −1 otherwise. Then the
system xk(t) together with thresholds rij forms a symmetric
heterogeneous HK system. Notice that the equivalence (4)
ensures that the communication graphs of the given anchored
HK system and its corresponding symmetric heterogeneous
HK counterpart are identical.

For the other direction, we need to lift the given symmetric
heterogeneous HK system to an anchored HK version. We
need the following lemma, whose proof can be found in the
full paper [30].

LEMMA 4.1: For any n-by-n symmetric matrix R = (rij)
with no negative terms in the diagonal, there exist r > 0 and
vectors yk ∈ Rn−1 (1 ≤ k ≤ n), such that

‖yi − yj‖2 =
√
r2 − r2ij sign (rij), (5)

for any i 6= j; here sign (x) = 1 if x ≥ 0 and −1 otherwise.
Given a symmetric heterogeneous HK system xk(t), we

choose the anchors yk by appealing to Lemma 4.1. For any
rij ≥ 0, it then follows that

‖xi(t)− xj(t)‖22 ≤ r2ij
⇔ ‖xi(t)− xj(t)‖22 + ‖yi − yj‖22 ≤ r2, (6)

and for any rij < 0, and we always have

‖xi(t)− xj(t)‖22 + ‖yi − yj‖22 > r2, (7)

for any i 6= j, which prevents any edge between i and j. This
means that the dynamics of the symmetric heterogenous HK
system coincides precisely with that of the mobile part of
the lifted anchored system.

Remark: Lemma 4.1 asserts that, given (n − 1)n/2 lengths
dij (i 6= j) of the form (r2 − r2ij sign(rij))

1/2, we can find
n points yk ∈ Rn−1 such that the pairwise distance ‖yi −
yj‖2 = dij . Notice that, if dij itself is arbitrary, this is not
always possible. For example, in the case n = 3, the problem
is equivalent to finding a triangle in R2 with each side length
given. The problem is solvable if and only if the three lengths
satisfy the triangle inequality. In our case, however, there
is an extra parameter r that we can use. Intuitively, if we
choose a large r such that all the |rij | are relatively small,
then the problem of finding yk is equivalent to finding an
almost regular polytope, each edge of which is roughly of
the same length r.

B. Proof of convergence

The fixed-point attraction of symmetric heterogeneous HK
systems can be inferred directly from known results about
infinite products of type-symmetric stochastic matrices [6],
[10], [13], [18]. The same holds of anchored systems. In both
cases, given any ε > 0 and any initial condition, the n agents
will eventually reach a ball of radius ε that they will never
leave; we call this ε-convergence. We study the conditions for
this to imply that the corresponding communication networks
themselves converge to a fixed graph. It suffices to consider
the case of a symmetric heterogeneous HK system. Consider
a connected component C of the graph and let z and z′ =
Cz denote the corresponding position matrices at time t and
t+1, where C is the corresponding k-by-k stochastic matrix
associated with C. As we did in the proof of Lemma 3.1, we
define σ to be a uniform lower bound on any positive singular
value of I − C for any such matrix C. Setting

ε =
σ

2
√
n

min
rij>0

rij

implies that

‖z̄‖2 ≤ 1

σ
‖(I − C)z̄‖2 =

1

σ
‖z − z′‖2

≤
√
nε

σ
≤ 1

2
min
rij>0

rij ,

where z̄ = z − 1
k11

T z is the projection of z onto the
orthogonal space of 1. It follows that, for any pair (i, j)
in C such that rij > 0, there will be an edge between i and
j. With the assumption rij 6= 0, the communication graph
is now fixed and convergence proceeds at an exponential
rate from that point on. The bijection result of the previous
section shows that the condition rij = 0 corresponds to
‖yi − yj‖2 = r in the case of anchored systems. This
concludes the proof of Theorem 1.3. �
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