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Inertial Hegselmann-Krause Systems
Bernard Chazelle and Chu Wang

Abstract�We derive an energy bound for inertial Hegselmann-
Krause (HK) systems, which are a variant of the classic HK model
that allows agents to change weights as they please at each step.
We use the bound to prove the convergence of HK systems
with static agents, which settles a widely believed conjecture.
This paper also introduces anchored HK systems and show their
equivalence to the symmetric heterogeneous model.

I. INTRODUCTION

The Hegselmann-Krause model of multiagent consensus has

emerged as a �model organism� for opinion dynamics [1]. In

an HK system, a collection of n agents, each one represented

by a point in Rd, evolves by applying the following rule at

discrete times: move each agent to the mass center of all the

agents within unit distance. It has been shown that the system

always freezes eventually [2], [3], [4], [5], [6]. While the

model has been the subject of numerous studies [7], [8], [9],

[10], [11], [12] and much is known about its convergence rate,

its heterogeneous variant remains a mystery [13], [14], [15],

[16], [17]. In that model, each agent can choose its own radius

of con�dence. In the HK model with static (sometimes called

closed-minded) agents, all of the agents have radius either 1

or 0. While extensive simulations pointed to the convergence

of that system [12], [14], [18], [17], a proof remained elusive.

This shortcoming was widely held in the opinion-dynamics

community as a glaring demonstration of our weak grasp

of these deceptively simple distributed systems. (The open

status of the closed-minded case was described by a leading

researcher in the �eld as one of the outstanding gaps in our

understanding of opinion dynamics [19].) This paper resolves

this issue by settling the conjecture in the af�rmative: HK

systems with closed-minded agents always converge. Our

proof entails making the problem a special case of a much

broader class of dynamical systems, the inertial HK systems

(more on which below).

The relaxation time of the original HK model has been

shown to be nO(n) in any �xed dimension [2], a bound later

improved to a polynomial bound in both n and d [20]. For

the particular case d = 1, a bound of O(n5) was established

in [21], which was lowered to O(n4) in [22] and then to O(n3)
in [20]. The model can be generalized in various ways, its

ultimate expression being the grand uni�ed model of in�uence

systems [23], in which each agent gets to pick its neighbors

by following its own distinct, arbitrary criteria. Oddly, even
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the most seemingly innocuous modi�cations of the original

HK model have stumped researchers in the �eld. This is the

case of HK systems with closed-minded agents, where any

agent's radius of con�dence is either 0 or 1. To prove that

these systems always converge, we introduce the more general

inertial HK systems and establish a bound on their kinetic 2-

energy. We also introduce the anchored variant of HK systems

and prove that it is equivalent to the symmetric heterogeneous

model. This fairly surprising result sheds new light on the

convergence properties of these systems.

A. Inertial HK systems

Instead of being required to move to the mass center of its

neighbors at each step, each agent of an inertial HK system

may move toward it by any fraction of length; setting this

fraction to zero makes the agent closed-minded, which means

that it remains frozen in place. Formally, the system consists of

n agents represented by points x1(t), . . . , xn(t) in Rd at time

t = 0, 1, 2, etc. Two agents i and j are said to be neighbors

if they are within unit distance: ∥xi(t) − xj(t)∥2 ≤ 1. The
neighbors of i form a set Ni(t); these sets form an undirected

communication network Gt with a self-loop at each of the n
nodes. The dynamics of the system is speci�ed by

xi(t+ 1) = (1− λ)xi(t) +
λ

|Ni|
∑
j∈Ni

xj(t), (1)

where λ ∈ [0, 1] is called the inertia; whenever the time is

clearly understood from the context, we omit the argument t
fromNi(t) to alleviate the notation. Likewise, for convenience,
we write λ instead of the more accurate λi(t): indeed, not only
the inertias λ need not have the same value for all the agents,

but they can be reset to a different value with each application

of (1). In this way, we can select any agent to be closed-minded

by setting their inertia to 0. We can also retrieve the original

HK model by turning all the inertias to 1. In its full generality,

an inertial HK system is not necessarily deterministic: indeed,

the numbers λ can be set ahead of time or they can be

assigned probabilistically or adversarially at each time step.

We tackle the issue of convergence by turning our attention

to their kinetic s-energy. The concept was introduced in [2]

as a generating function for studying averaging processes in

dynamic networks. It is de�ned as follows:

K(s) =
∑
t≥0

n∑
i=1

∥xi(t+ 1)− xi(t)∥s2.

We provide an upper bound for the case s = 2.

THEOREM 1.1: The kinetic s-energy of an n-agent inertial
HK-system whose inertias are uniformly bounded from above
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by λ0 satis�es K(2) ≤ λ0n
2/4. The upper bound λ0 can be

any real number in [0, 1].

We use this result to establish the convergence of HK

systems with closed-minded agents. Note that the convergence

is asymptotic: the system may never freeze into a complete

stop. This is even true for n = 2, where a single closed-minded

agent can pull the other one toward itself forever. Indeed, if the

mobile agent is initialized close enough to the closed-minded

one, it will eventually converge to it by halving its distance

at each step. The network Gt becomes �xed in this case. In

general, it changes with time, however. Interestingly, �xed-

point attraction does not automatically imply the convergence

of the communication network, so we address this issue

separately.

THEOREM 1.2: An HK system with any number of closed-

minded agents converges asymptotically to a �xed-point at-

tractor. The communication network converges for all initial

conditions if d = 1 and for all initial conditions outside a set

of measure zero if d > 1.

The speci�c meaning of this last clause is that, in dimension

two and higher, as long as we perturb the closed-minded

agents by an arbitrarily small amount at the beginning, the

communication network Gt will settle to a �xed graph in �nite

time almost surely. The perturbation is likely an unnecessary

artifact of the proof and it would be nice to settle this point.

The main open problem, however, is to derive an effective

upper bound on the relaxation time.

B. Anchored HK systems

The original HK system �xes the same radius for each

pair of agents. By contrast, in a symmetric heterogeneous

HK system, each pair (i, j) is given its own threshold radius

rij , so that agents i and j are neighbors at time t whenever
∥xi(t) − xj(t)∥2 ≤ rij . We require rij = rji and rii ≥ 0
(the latter to create self-loops). Note that rij = 0 means that i
and j are neighbors only when their positions coincide, while

rij < 0 implies that i and j are never joined together.

As one might expect, heterogeneity adds considerable dif�-

culty to the analysis. We show that, by lifting the system into

higher dimension, we can go back to the original assumption

that all radii are the same. To formalize this somewhat unex-

pected result, we de�ne an anchored HK system as consisting

of n agents, each one represented by a vector zk = (xk(t), yk).
The vector is a combination of a mobile part xk(t) ∈ Rd and a

static part yk ∈ Rd′
; the dimensions d and d′ are the same for

all the agents. Two agents i and j are neighbors if and only

if ∥zi(t) − zj(t)∥2 ≤ r, where r is a �xed positive constant.

At each step, the mobile part of an agent moves to the mass

center of all its neighbors while its anchored part remains

�xed. (Note that the averaging is done one coordinate at a

time, so the static coordinates affect only the neighborhood

relationships and do not participate in the averaging itself.)

Anchored HK systems capture a notion of partial closed-

mindedness: agents are closed-minded in some coordinates but

open-minded in others. Both mobile and anchored parts, on the

other hand, affect the communication network. Surprisingly,

anchored and symmetric heterogeneous systems are conjugate:

in other words, there exists a bijection between them that

respects their dynamics and establishes the equivalence of the

two systems. Speci�cally, we prove the following:

THEOREM 1.3: Given any anchored HK system zk(t) =
(xk(t), yk) in Rd × Rd′

, there exists a conjugate symmetric

heterogeneous HK system x′
k(t) in Rd. Conversely, a symmet-

ric heterogeneous HK system of n agents in Rd is conjugate

to an anchored HK system zk(t) = (xk(t), yk) with agents

in Rd ×Rn−1. In both cases, the conjugacy is formed by the

trivial correspondence: xk(t) = x′
k(t) for any k and t. Both

anchored and symmetric heterogeneous HK systems converge

asymptotically to a �xed-point attractor. If there is no pair of

agents (i, j) such that ∥yi − yj∥2 = r in an anchored HK

system or such that rij = 0 in a symmetric heterogeneous

HK system, then the communication network converges to a

�xed graph.

While the convergence of symmetric heterogeneous HK

systems can be inferred directly from known results, the

convergence of the communication networks requires special

treatment, however. An interesting corollary of these results

is the convergence of HK systems embedded within a social

network [24], [25], [26]. Imagine that the existence of an edge

between two agents i, j is a function not only of their relative

distance but also of a predetermined, �xed relationship. By

setting rij < 0, we can enforce the absence of an edge. In

this way we can restrict the HK action to the edges of a �xed,

arbitrary social network, and still assert convergence.

II. THE CONVERGENCE OF INERTIAL HK SYSTEMS

The purpose of this section is to prove Theorem 1.1.

The proof is algorithmic: it is a message-passing protocol

that simulates the update of a distributed Lyapunov function.

It follows a line of reasoning borrowed from the �eld of

amortized analysis, a subject of theoretical computer science.

Algorithmic proofs for dynamical systems have been used

before [2], but our approach is quite different from previous

incarnations. The basic idea is to assign a certain quantity

with each agent and update them at each step according to

�xed rules. Because the quantities in question are nonnegative

and subject to conservation constraints, it is natural to think

of them as amounts of money and the rules governing their

updates as a trading mechanism. Of course, the metaphor

is used only for explanatory purposes. The mathematical

reality is that each agent holds a certain positive number that

can go up and down with time but whose sum can never

increase. To maintain this last property, agents modify their

associated number via exchanges: if one increases it by a

certain amount, some other agent must decrease it by the

same amount so as to keep the sum constant. The point of

all this is that agents can also decrease their number by a

certain quantity of interest: for example, their displacement.

In this way, the total displacement of all the agents can never

exceed the initial sum of the agents' numbers. This informal

explanation highlights the bene�ts of using the language of

�money,� �trade,� and �spending� while keeping the discussion

mathematically rigorous.
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Here are the details. We assign each agent i a certain

amount of money, Ci(0), at the beginning (t = 0) and

specify a protocol for spending and exchanging it with other

agents as time progresses. If we knew ahead of time the

total contribution of agent i to the kinetic 2-energy, we could

simply set Ci(0) to that amount and let the agent �pay� for

its contribution from its own pocket. This information is not

available, however, so we take an initial guess and set up an

exchange protocol so that no agent runs out of money. By

giving money to their neighbors in a judicious manner, we

show how each agent remains in a position to pay for its share

of the 2-energy at each step. Our initial guess is

Ci(0) =
n∑

j=1

min
{
∥xi(0)− xj(0)∥22, 1

}
.

To specify the exchange protocol, we �rst simplify the notation

as follows: 
∆i = xi(t+ 1)− xi(t)

dij = xi(t)− xj(t)

d′ij = xi(t+ 1)− xj(t+ 1).

The two rules below are applied to every agent i at any time

step t ≥ 0:

• For every neighbor of j at time t (which includes i itself),
agent i spends ∥∆i +∆j∥22 units of money and gives to

agent j an amount equal to 2(dij −∆j)
T∆j .

• If agent j becomes a new neighbor of i at time t + 1
or, conversely, ceases to be one, then agent i spends an

amount of money equal to |∥d′ij∥22 − 1|.
Let Ci(t) be the amount of money held by agent i at time

t, and let N in
i (resp. Nout

i ) denote the set of agents that are

neighbors of i at time t + 1 (resp. t) but not at time t (resp.
t+1). Using the symmetry of the neighbor relation, we express

the cash �ow at time t by

Ci(t+ 1)− Ci(t)

= 2
∑
j∈Ni

(dji −∆i)
T∆i − 2

∑
j∈Ni

(dij −∆j)
T∆j

−
∑
j∈Ni

∥∆i +∆j∥22 −
∑

j∈Nin
i ∪Nout

i

|∥d′ij∥22 − 1|.

Since (dji − ∆i)
T∆i − (dij − ∆j)

T∆j = dTij(∆i − ∆j) −
2dTij∆i+∥∆j∥22−∥∆i∥22 and, by (1), λ

∑
j∈Ni

dij = −|Ni|∆i,

we have

Ci(t+ 1)− Ci(t)

=
∑
j∈Ni

{
2dTij(∆i −∆j) + ∥∆i −∆j∥22 − 4dTij∆i

}
− 4|Ni|∥∆i∥22 −

∑
j∈Nin

i ∪Nout
i

|∥d′ij∥22 − 1|

=
∑
j∈Ni

{
2dTij(∆i −∆j) + ∥∆i −∆j∥22

}
+ 4

(
λ−1 − 1

)
|Ni|∥∆i∥22 −

∑
j∈Nin

i ∪Nout
i

|∥d′ij∥22 − 1|.

Note that λ = 0 implies that ∆i = 0, so in that case it is

understood that (λ−1−1)|Ni|∥∆i∥22 = 0 in the identity above.

Since d′ij = dij + ∆i − ∆j , the �rst summand in the last

equality above is equal to ∥d′ij∥22 − ∥dij∥22; therefore

Ci(t+ 1)− Ci(t)

=
∑
j∈Ni

{
∥d′ij∥22 − ∥dij∥22

}
−

∑
j∈Nin

i ∪Nout
i

|∥d′ij∥22 − 1|

+ 4
(
λ−1 − 1

)
|Ni|∥∆i∥22.

Fix any j (1 ≤ j ≤ n) and consider the difference

Dj := min
{
∥d′ij∥22, 1

}
− min

{
∥dij∥22, 1

}
. If i and j are

not neighbors at time t or t + 1, then Dj = 0. If they are

neighbors at times t and t + 1, then Dj = ∥d′ij∥22 − ∥dij∥22.
If they are neighbors at time t but not t + 1 (ie, j ∈
Nout

i ), then Dj = 1 − ∥dij∥22, which can be rewritten as

∥d′ij∥22 − ∥dij∥22 − |∥d′ij∥22 − 1|. Finally, if they are neighbors

at time t+ 1 but not t (ie, j ∈ N in
i ), then Dj = ∥d′ij∥22 − 1,

which can be expressed as −|∥d′ij∥22 − 1|. Since j cannot be

both in Ni and N in
i , this implies trivially that

Ci(t+ 1)− Ci(t) =
n∑

j=1

Dj + 4
(
λ−1 − 1

)
|Ni|∥∆i∥22

=
n∑

j=1

min
{
∥d′ij∥22, 1

}
−

n∑
j=1

min
{
∥dij∥22, 1

}
+ 4

(
λ−1 − 1

)
|Ni|∥∆i∥22.

Since |Ni| > 0 and λ ≤ λ0, it follows that

Ci(t) ≥
n∑

j=1

min
{
∥dij∥22, 1

}
+ 4

(
λ−1
0 − 1

) t−1∑
k=0

∥xi(k + 1)− xi(k)∥22.

Being its own neighbor, agent i spends at least 4∥∆i∥22 money

at each step. Summing up over all the agents, this amounts to

4K(2). This shows that the initial injection of money allows

the system to spend 4K(2) and still be left with as much as

4
(
λ−1
0 − 1

)
K(2). Theorem 1.1 follows from the fact that the

initial injection of money is at most n per agent, which is n2

in total. �

III. HK SYSTEMS WITH CLOSED-MINDED AGENTS

This section proves Theorem 1.2. The bound on the kinetic

2-energy shows that the system eventually slows down to a

crawl but it falls short of proving convergence. Indeed, an

agent moving along a circle by 1/t at time t contributes �nitely
to the kinetic 2-energy yet travels an in�nite distance. We

prove that HK systems with closed-minded agents always con-

verge asymptotically. We treat the one-dimensional separately

for two reasons: the proof is entirely self-contained and the

convergence of the communication network does not require

perturbation. In dimension two and higher, we prove that the

agents always converge to a �xed position: the system has a

�xed-point attractor. We show how a tiny random perturbation

ensures that the network eventually settles on a �xed graph.
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A. The one-dimensional case

We begin with the one-dimensional case, which is particu-

larly simple. By Theorem 1.1, we can choose a small enough

ε > 0 and an integer tε large enough so that no agent moves

by a distance of more than ε at any time t ≥ tε. Fix t > tε and
let xi (resp. Ni) denote the position (resp. neighbors) of agent

i at time t; we use primes and double primes to indicate the

equivalent quantities for time t+ 1 and t+ 2. The symmetric

difference between Ni and N ′
i , if nonempty, is the disjoint

union of a set Li of agents located at xi − 1±O(ε) at times

t and t+ 1 and a set Ri at locations xi + 1±O(ε). For each
subset, we distinguish between the agents of Ni not in N ′

i and

vice-versa, which gives the disjoint partitions Li = Lin
i ∪Lout

i

and Ri = Rin
i ∪ Rout

i . The locations x′
i and x′′

i of agent i at
times t+ 1 and t+ 2 are given by{

|Ni|x′
i = (

∑
j∈Ni∩N ′

i
xj ) + (

∑
j∈Lout

i ∪Rout
i

xj )

|N ′
i |x′′

i = (
∑

j∈Ni∩N ′
i
x′
j ) + (

∑
j∈Lin

i ∪Rin
i
x′
j ).

All x′
k and x′′

k are of the form xk ± O(ε), so subtracting the

two identities shows that

(|N ′
i | − |Ni|)xi = (|Lin

i | − |Lout
i |)(xi − 1)

+ (|Rin
i | − |Rout

i |)(xi + 1)±O(εn).

Since the dynamics is translation-invariant, we can assume

that xi = 0. Setting ε small enough, the integrality of the set

cardinalities implies that the net �ow of neighbors on the left

of agent i is the same as it is on the right:

|Lout
i | − |Lin

i | = |Rout
i | − |Rin

i |. (2)

Among all the agents undergoing a change of neighbors

between times t and t + 1, pick the one that ends up the

furthest to the right at time t+ 1, choosing the one of largest

index i to break ties. We distinguish between two cases:

1) x′
i ≥ xi: No agent of Rout

i can be closed-minded; nor

can it be mobile since, ranks being preserved, it would

provide an agent undergoing a change of neighbors and

landing to the right of i at time t + 1, in contradiction

with the de�nition of i. It follows that Rout
i is empty,

which in turn implies that Lin
i is not, since by our choice

of i not all four terms in (2) can be zero. Since agent

i is not moving left, neither is any agent j of Lin
i . Its

set Nj of neighbors changes between time t and t + 1
and Rout

j is empty. To see why the latter is true, we �rst

note that Nj cannot lose any closed-minded agent to the

right. Also, since any mobile agent in Rout
j is to the left

of i at time t, it stays to the left of it by conservation

of ranks; hence the agent remains a neighbor of j, a
contradiction. The argument so far uses the rightmost

status of agent i only to assert that Rout
i is empty. This

means we are back to square one and we can proceed

inductively, eventually reaching a contradiction.

2) x′
i < xi: The key observation is that our previous

argument never uses time directionality, so we can

exchange the role of t and t+1, which implies that now

x′
i > xi. Note that the superscripts in and out must be

swapped. While we chose i as the mobile agent landing

furthest to the right, by symmetry we must now choose

the one starting the furthest to the right: of course, since

mobile agents can never cross this make no difference.

We conclude that each agent is now endowed with a �xed

set of neighbors, so the dynamics is speci�ed by the powers

of a �xed stochastic matrix with positive diagonal, which are

well known to converge. The system is attracted to a �xed

point at an exponential rate, but of course we have no a priori

bound on the time it takes to fall into that basin of attraction.

The communication network converges.

B. The higher-dimensional case

Generalizing the previous argument to higher dimension

fails on several counts, the most serious one being the loss

of any left-right ordering. We follow a different tack, which

begins with a distinction between two types of agents. An

agent is trapped at time t if there exists a path in the current

communication graph leading to a closed-minded agent; it is

said to be free otherwise. There exists a time to after which

the agents fall into two categories: some of them are never

trapped past t0 and are called eternally free; the others are

chronically trapped (ie, trapped an in�nite number of times).

As we did before, we pick a parameter ε > 0 (to be speci�ed

below) and tε > to large enough so that no agent moves by a

distance of more than ε at any time t ≥ tε. If two agents ever

get to share the same position, their fates become completely

tangled since they can never again get separated. Since such

merges occur fewer than n times, we can make tε big enough,

if necessary, so that all merges are in the past. To summarize,

past tε, the mobile agents move by increments less than ε, no
merging occurs, and the system consists only of eternally free

and chronically trapped agents.

At any time, the state system is represented by a n-by-d
matrix whose i-th row encode the position of agent i in Rd.

The matrix consists of two parts: x for the mobile agents and

y for the closed-minded ones. A transition of the system is a

linear map of the form x 7→ Ax+By, where each row of the

nonnegative matrix (A |B) sums up to 1.

LEMMA 3.1: Past tε, no agent can move while free.

Proof. Fix t ≥ tε and consider a connected component C of

the graph induced by the free agents. If z denotes its position

matrix at time t and k its number of rows, then z′ = Cz,
where primes refer to time t+1 and C is a k-by-k stochastic

matrix for a random walk in the undirected graph C. Because
the graph is connected, the eigenvalue 1 of C is simple, so the

null space of I−C, and hence of (I−C)T (I−C), is spanned
by 1. By Courant-Fischer, therefore, any vector u normal to

1 satis�es ∥(I − C)u∥2 ≥ σ∥u∥2, where σ is the smallest

positive singular value of I−C. If we de�ne z̄ = z− 1
k11

T z,
it immediately follows that

σ∥z̄∥2 ≤ ∥(I − C)z̄∥2 = ∥(I − C)z∥2 = ∥z − z′∥2 ≤ ε
√
n.

Setting ε < 1
2σ/

√
n ensures that any two of the k agents are

within unit distance. It follows that C is the complete graph

and C = 1
k11

T . Since the agents can no longer merge, the
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only option left is for all k of them to be already merged at

time t, hence unable to move. �
The lemma implies that eternally free agents can never move

again past tε. Indeed, it shows that an eternally free agent can

only move if it is joined to a trapped one, which, by de�nition,

it cannot be. Since eternal freedom keeps the agents from

playing any role after time tε, we might as well assume that all

the mobile agents in the system are chronically trapped. This

means that, at all instants, either an agent is trapped (ie, joined

to a closed-minded agent via a path) or it is isolated, meaning

that the other agents are either merged with it or at distance

greater than one. An agent cannot move while isolated.

The position matrix z of the k trapped agents at time t ≥ tε
satis�es the relation z′ = Tz+Uy, where primes denote time

t+1 and the k-by-n matrix (T |U) has each row summing up

to 1. Being trapped implies that U is not the null matrix. In

fact, viewed as a Markov chain, the trapped agents correspond

to transient states, which means that T k tends to the null

matrix as k goes to in�nity. This shows that T cannot have

1 as an eigenvalue; therefore I − T is nonsingular. Let µ be

a uniform upper bound on the singular values of all the (so-

called fundamental) matrices (I − T )−1; since their number

is �nite, so is µ. Since z′ = Tz + Uy and ∥z′ − z∥2 ≤ ε
√
n,

the matrix z is very close to (I − T )−1Uy; speci�cally,

∥z − (I − T )−1Uy∥F = ∥(I − T )−1(z − z′)∥F
≤ µ∥z − z′∥F ≤ µε

√
n. (3)

A matrix of the form (I − T )−1Uy is called an anchor.

Since the set of all possible anchors (for given y) is �nite,

the minimum (Frobenius-norm) distance r between any two

distinct anchors is strictly positive. The value of r does not

depend on ε, so we can always lower the value of the latter,

if necessary, to ensure that r > (1 + 2µ)ε
√
n.

By (3) and Lemma 3.1, we know that, at any time t past

tε, any mobile agent is either stuck in place (if free) or at

distance at most µε
√
n away from an anchor. As a result, no

agent can ever change anchors since this would necessitate a

one-step leap of at least r− 2µε
√
n > ε

√
n for the positional

matrix, hence the displacement of an agent by a distance of at

least ε, which has been ruled out. Since the argument holds for

any ε small enough, each mobile agent is thus constrained to

converge toward its chosen anchor. This concludes the proof

that all agents converge to a �xed point in Rd. The convergence

is asymptotic and no bound can be inferred directly from our

analysis.

The result does not imply that the communication network

should also converge to a �xed graph. The lack of convergence

points to a situation where the agents are still moving in

increasingly small increments, yet edges of the network keep

switching forever. This can only occur if at least one pair of

anchor points are at distance 1: by anchor point, we mean

the points formed by any row of an anchor matrix or of y.
The key observation is that all the anchor points are convex

combinations of the rows of y, so an interdistance of 1 is

expressed by an equality of the form ∥vT y∥2 = 1. There are

only a �nite set of such equalities to consider and each one

denotes an algebraic surface of codimension 1. Any random

perturbation of the closed-minded agents will result in the

convergence of the communication network almost surely.

This completes the proof of Theorem 1.2. �

IV. ANCHORED AND SYMMETRIC HETEROGENEOUS HK

SYSTEMS

This section proves Theorem 1.3. We begin with a proof of

the conjugacy between the two types of HK systems.

A. The bijection relation

To express an anchored HK system z(t) = (xk(t), yk) as a
symmetric heterogeneous one is straightforward. We have the

equivalence

∥zi(t)− zj(t)∥22 ≤ r2

⇔ ∥xi(t)− xj(t)∥22 ≤ r2 − ∥yi − yj∥22. (4)

We de�ne rij =
√
r2 − ∥yi − yj∥22 if the right hand side

of (4) is non-negative, and rij = −1 otherwise. Then the

system xk(t) together with thresholds rij forms a symmetric

heterogeneous HK system. Notice that the equivalence (4)

ensures that the communication graphs of the given anchored

HK system and its corresponding symmetric heterogeneous

HK counterpart are identical.

For the other direction, we need to lift the given symmetric

heterogeneous HK system to an anchored HK version. We

need the following lemma, whose proof can be found in the

appendix.

LEMMA 4.1: For any n-by-n symmetric matrix R = (rij)
with no negative terms in the diagonal, there exist r > 0 and

vectors yk ∈ Rn−1 (1 ≤ k ≤ n), such that

∥yi − yj∥2 =
√
r2 − r2ij sign (rij), (5)

for any i ̸= j; here sign (x) = 1 if x ≥ 0 and −1 otherwise.

Given a symmetric heterogeneous HK system xk(t), we

choose the anchors yk by appealing to Lemma 4.1. For any

rij ≥ 0, it then follows that

∥xi(t)− xj(t)∥22 ≤ r2ij

⇔ ∥xi(t)− xj(t)∥22 + ∥yi − yj∥22 ≤ r2, (6)

and for any rij < 0, and we always have

∥xi(t)− xj(t)∥22 + ∥yi − yj∥22 > r2, (7)

for any i ̸= j, which prevents any edge between i and j. This
means that the dynamics of the symmetric heterogenous HK

system coincides precisely with that of the mobile part of the

lifted anchored system.

Remark: Lemma 4.1 asserts that, given (n − 1)n/2 lengths

dij (i ̸= j) of the form (r2 − r2ij sign(rij))
1/2, we can �nd n

points yk ∈ Rn−1 such that the pairwise distance ∥yi−yj∥2 =
dij . Notice that, if dij itself is arbitrary, this is not always

possible. For example, in the case n = 3, the problem is

equivalent to �nding a triangle in R2 with each side length

given. The problem is solvable if and only if the three lengths
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satisfy the triangle inequality. In our case, however, there is

an extra parameter r that we can use. Intuitively, if we choose

a large r such that all the |rij | are relatively small, then the

problem of �nding yk is equivalent to �nding an almost regular

polytope, each edge of which is roughly of the same length r.

B. Proof of convergence

The �xed-point attraction of symmetric heterogeneous HK

systems can be inferred directly from known results about

in�nite products of type-symmetric stochastic matrices [2],

[3], [4], [5]. The same holds of anchored systems. In both

cases, given any ε > 0 and any initial condition, the n agents

will eventually reach a ball of radius ε that they will never

leave; we call this ε-convergence. We study the conditions for

this to imply that the corresponding communication networks

themselves converge to a �xed graph. It suf�ces to consider

the case of a symmetric heterogeneous HK system. Consider

a connected component C of the graph and let z and z′ = Cz
denote the corresponding position matrices at time t and

t+ 1, where C is the corresponding k-by-k stochastic matrix

associated with C. As we did in the proof of Lemma 3.1, we

de�ne σ to be a uniform lower bound on any positive singular

value of I − C for any such matrix C. Setting

ε =
σ

2
√
n

min
rij>0

rij

implies that

∥z̄∥2 ≤ 1

σ
∥(I − C)z̄∥2 =

1

σ
∥z − z′∥2

≤
√
nϵ

σ
≤ 1

2
min
rij>0

rij ,

where z̄ = z − 1
k11

T z is the projection of z onto the

orthogonal space of 1. It follows that, for any pair (i, j) in

C such that rij > 0, there will be an edge between i and

j. With the assumption rij ̸= 0, the communication graph

is now �xed and convergence proceeds at an exponential rate

from that point on. The bijection result of the previous section

shows that the condition rij = 0 corresponds to ∥yi−yj∥2 = r
in the case of anchored systems. This concludes the proof of

Theorem 1.3. �

APPENDIX

Our proof of Lemma 4.1 relies on two technical facts.

For convenience, we use bold letters to denote vectors; for

example, uk denotes the k-th coordinate of vector u.

FACT A: There exist n + 1 vectors u(k) ∈ Rn (0 ≤ k ≤ n)

such that ∥u(i) − u(j)∥2 = 1 (0 ≤ i < j ≤ n), u
(k)
i = 0 for

i > k ≥ 0 and all u
(k)
k exceed 1/

√
2 and decrease as k grows.

Proof. Proceeding by induction, we write u(0) = 0, u(1) = e1
and u(2) = 1

2e1 +
√
3
2 e2, where ei is the unit vector in the i-

th dimension. Assume we already constructed u(k) (0 ≤ k ≤
m < n) such that u

(k)
i = 0 for i > k and u

(k)
k > 1/

√
2. Then

we can write u(k) as

u(k) =
k∑

i=1

u
(k)
i ei, k = 1, 2, . . . ,m.

We de�ne

u(m+1) =
m−1∑
i=1

u
(m)
i ei +

(
u(m)
m − 1

2u
(m)
m

)
em

+

√
1− 1

4
(
u
(m)
m

)2 em+1.

Since u
(m)
m > 1/

√
2, we have

u
(m+1)
m+1 >

√
1− 1

4(1/
√
2)2

=
1√
2
.

For k = 0, 1, . . . ,m,

∥u(m+1) − u(k)∥22 = ∥u(m) − u(k)∥22 + u(k)
m /u(m)

m

= (1− δkm) + u(k)
m /u(m)

m = 1.

Notice that, for 0 ≤ k < n,(
u
(k+1)
k+1

)2 − (
u
(k)
k

)2
=

(
1− 1

4
(
u
(k)
k

)2)−
(
u
(k)
k

)2
= −

(
u
(k)
k − 1

2u
(k)
k

)2

≤ 0,

which proves the monotonicity claim.

FACT B: For any integer n > 0, there is a positive number γ
depending on n such that, for any tij satisfying |1− tij | ≤ γ
and tij = tji (0 ≤ i < j ≤ n), there exist vectors y(k) ∈ Rn

(0 ≤ k ≤ n) such that ∥y(i)−y(j)∥2 = tij , for 0 ≤ i < j ≤ n.

Proof. We make repeated use of the matrix in�nity norm.

Recall that if M is a p-by-q matrix, its in�nity norm is de�ned

as the maximum absolute row sum of M :

∥M∥∞ := max
1≤i≤p

q∑
j=1

|mij |.

As one would expect of a matrix norm, the in�nity norm is

submultiplicative:

∥MN∥∞ ≤ ∥M∥∞∥N∥∞,

for any p-by-q matrix M and q-by-r matrix N . We de�ne a

constant

α = 5n+ max
1≤k≤n

∥C−1
k ∥∞,

where Ck is the k-by-k matrix whose i-th row consists of the

�rst k elements of the vector u(i) in Fact A. Note that Ck is

lower-triangular and invertible. Let γ = α−4n. The intuition

of the proof is that the vectors y(k) we are seeking should

be close to the vectors u(k). We build the desired vectors by

induction. Let y(0) = 0 and y(1) = t01e1. Then it is obvious

that ∥y(0) − y(1)∥2 = t01 and y(0) and y(1) are close to the

vectors from Fact A:

∥y(0) − u(0)∥∞ = 0 < γ,

∥y(1) − u(1)∥∞ = |t01 − 1| ≤ γ ≤ α4γ.

Suppose y(0),y(1), . . . ,y(k−1) have been speci�ed such that

y
(j)
i = 0 for i > j,

∥y(i) − u(i)∥∞ ≤ α4iγ (0 ≤ i ≤ k − 1), (8)



0018-9286 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2016.2644266, IEEE
Transactions on Automatic Control

7

and

∥y(i) − y(j)∥2 = tij (0 ≤ i < j ≤ k − 1).

We need to show is that there exists a vector y(k) such that

y
(k)
i = 0 for i > k,

∥y(k) − u(k)∥∞ ≤ α4kγ (9)

and

∥y(k) − y(i)∥2 = tik (0 ≤ i ≤ k − 1). (10)

This last relation is equivalent to

i∑
j=1

(
y
(k)
j − y

(i)
j

)2
+

k∑
j=i+1

(
y
(k)
j

)2
= t2ik (11)

for 0 ≤ i ≤ k − 1. By subtracting the equations for 1 ≤ i ≤
k − 1 from the one for i = 0, we get a linear system for

ŷ := (y
(k)
1 , y

(k)
2 , . . . , y

(k)
k−1)

T :

Aŷ = b.

Here the (k−1)×(k−1) matrix A is a lower triangular matrix

where Aij = y
(i)
j (i ≥ j) and b is a (k−1) dimensional column

vector where

bi =
1

2

(
t20k − t2ik +

i∑
j=1

(
y
(i)
j

)2)
.

We derive similar relations from Fact A:

i∑
j=1

(
u
(k)
j −u

(i)
j

)2
+

k∑
j=i+1

(
u
(k)
j

)2
= 1 (0 ≤ i ≤ k−1), (12)

which implies a linear system Cû = d for

û := (u
(k)
1 , u

(k)
2 , . . . , u

(k)
k−1)

T ,

where C is shorthand for Ck−1 and di =
1
2

∑i
j=1

(
u
(i)
j

)2
. We

already observed that C is nonsingular; we note that, by (8)

and u
(i)
i > 1/

√
2, the same is true of A. Next, we derive upper

bounds on the length of the vector b and its distance from d.
By |1− tij | ≤ γ and γ < 1/2,

|t20k − t2ik| = |t0k + tik||t0k − tik| ≤ (2+2γ) · 2γ < 6γ. (13)

By our induction hypothesis (8), the fact that |y(i)j | ≤ 1 + γ,
and the de�nition of γ, we have∣∣∣(y(i)j

)2 − (
u
(i)
j

)2∣∣∣ = |y(i)j + u
(i)
j ||y(i)j − u

(i)
j |

≤ (2 + α4iγ) · α4iγ

< 3α4(k−1)γ. (14)

Thus, by (13, 14),

∥b− d∥∞ ≤ 3(1 + nα4(k−1)/2)γ. (15)

By inequality (13) and the fact that γ is small enough, we

have

∥b∥∞ ≤ 1

2

(
max
1≤i≤k

|t20k − t2ik|+ max
1≤i≤k

∥y(i)∥22
)

<
1

2
(6γ + (1 + γ)2) < 1. (16)

We also claim that

∥A−1 − C−1∥∞ ≤ 2nα4k−2γ. (17)

Here is why. First, notice that (8) implies ∥A − C∥∞ ≤
nα4(k−1)γ. Then based on the de�nition of α, we have

∥C−1∥∞ < α, and hence

∥C−1(A− C)∥∞ ≤ ∥C−1∥∞∥A− C∥∞ < nα4k−3γ. (18)

The right hand side of the above inequality is smaller than

1/2 based on the de�nition of γ, which allows us to expand

the matrix inverse [I + C−1(A− C)]−1 as

[I + C−1(A− C)]−1 = I +

∞∑
i=0

(−1)i[C−1(A− C)]i,

from which it follows that

∥[I + C−1(A− C)]−1∥∞ ≤ 2. (19)

Notice that

A−1 − C−1 = [I + C−1(A− C)]−1C−1(C −A)C−1,

then inequality (17) directly follows from inequalities (18) and

(19). By (15, 16, 17) and the fact that ∥C−1∥∞ < α, �nally
we have

∥ŷ − û∥∞
= ∥A−1b− C−1d∥∞
= ∥(A−1 − C−1)b+ C−1(b− d)∥∞
≤ ∥(A−1 − C−1)∥∞∥b∥∞ + ∥C−1∥∞∥(b− d)∥∞
≤ 2nα4k−2γ + 3(1 + nα4(k−1)/2)αγ < α4k−1γ.

This shows that

|y(k)j − u
(k)
j | ≤ α4k−1γ (1 ≤ j ≤ k − 1). (20)

In turn, this implies that∣∣∣(y(k)j

)2 − (
u
(k)
j

)2∣∣∣ = |y(k)j + u
(k)
j ||y(k)j − u

(k)
j |

< (2 + α4k−1γ)α4k−1γ < 3α4k−1γ. (21)

It suf�ces now to set the remaining (nonzero) coordinate of

y(k) yet to be speci�ed, which is y
(k)
k . Recall that it must

satisfy
k∑

j=1

(
y
(k)
j

)2
= t20,k

and, by our construction, this single equality suf�ces to imply

all of (10). This implies a unique setting of (positive) y
(k)
k ,

so we need only be concerned with (9) and the positivity of(
y
(k)
k

)2
. Since |1− t20k| = |1− t0k||1+ t0k| ≤ γ(2+ γ) < 3γ,

inequality (12) for i = 0, combined with (14), establishes that∣∣∣(y(k)k

)2 − (
u
(k)
k

)2∣∣∣ ≤
k−1∑
i=1

∣∣∣(y(k)i

)2 − (
u
(k)
i

)2∣∣∣+ |1− t20k|

≤ 3(1 + nα4k−1)γ.

Since u
(k)
k > 1/

√
2, it follows that(

y
(k)
k

)2
>

1

2
− 3(1 + nα4k−1)γ > 0.
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Furthermore,

|y(k)k − u
(k)
k | =

∣∣(y(k)k

)2 − (
u
(k)
k

)2∣∣
y
(k)
k + u

(k)
k

≤ 3
√
2(1 + nα4k−1)γ < α4kγ. (22)

In conjunction with (20), this establishes (9), and completes

the inductive construction. �
It should be noted that Fact B can also be proven via the

implicit function theorem and a perturbation argument based

on Fact A. The bene�t of the proof given above is to provide

an explicit construction.

LEMMA 4.1: For any n-by-n symmetric matrix R = (rij)
with no negative terms in the diagonal, there exist r > 0 and

vectors yk ∈ Rn−1 (1 ≤ k ≤ n), such that

∥yi − yj∥2 =
√

r2 − r2ij sign (rij), (23)

for any i ̸= j; here sign (x) = 1 if x ≥ 0 and −1 otherwise.

Proof. Choose a suf�ciently large r such that

max
i,j

|rij | < γr,

where γ is the small positive constant from Fact B. We set tij

to
√
1− r2ij sign(rij)/r2 and easily verify that |1− tij | ≤ γ.

Fact B guarantees the existence of vectors zk ∈ Rn−1 (1 ≤
k ≤ n) such that ∥zi − zj∥2 = tij . Setting yk = rzk satis�es

the requirements. �
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