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1. Introduction 

The planar fixed-radius near neighbor problem 
can be stated as follows: Preprocess a set P of N 
points in the plane so that all points of P lying 
within some fixed radius r of a new point can be 
listed effectively. 

This problem has many practical applications 
in domains as varied as molecular graphics, statis- 
tics, air traffic control or data transmission [3]. 
Although a great deal of work has been done on 

the subject, the intricacy of the L, (Euclidean) 
metric has often led to consider the L, (Manhat- 
tan) or L, metrics instead (where the locus of 
points within a fixed distance of a given point 
becomes a square), or to introduce simplifying 
assumptions on the density of points (e.g., sparsity 
conditions) [3]. In [ 11, however, Bentley and Maurer 
do examine the worst-case performance of our 
searching problem in the Euclidean metric. and 

they develop a locus method which is optimal for 
that criterion. More precisely, for any query point 
M, the A points of the set P less than r away from 
M can be reported in A + log N time. Unfor- 
tunately, the preprocessing involved becomes 
rapidly prohibitive as N grows, since the time P(N) 
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required to organize the data into their structure 
and the size S(N) of this structure are both O(N’). 
It was, however, conjectured in [l] that clever use 
of an efficient planar point location algorithm 
could lead to a significant cut-down in the pre- 
processing work. Recall that the planar point loca- 
tion problem is that of, given a connected planar 
straight-line graph and a query point M, determin- 

ing which region (face) of the graph contains M. 
Several fast algorithms for planar point location 

are available in the literature [4,6,7,8,11], but be- 
cause of its applicability to non-straight-line 
graphs, we will choose Preparata’s algorithm [ 1 l] 
as the basis for our investigation. His method rests 
on a clever partitioning of the edges of the subdivi- 
sion into O(log N) segments, and exploits the par- 
tial ordering among edges to construct a balanced 
search tree yielding logarithmic query time. The 
reason why, in both [l] and [ll], it is suggested 
that the efficiency of a point location procedure 
might have great incidence on its fixed-radius 
neighbor counterpart can be easily seen. The N 
circles of radius r centered at the points of P 
subdivide the plane into regions which have the 
following property: To the question, “which are 

the points of P less than r away from M?“, two 
points give the same answer if and only if they lie 
in the same region. In consequence, it appears that 
in order to report the neighbors of M, it is suffi- 
cient to locate M in the subdivision, provided that 
each region gives access to a list of the circles 
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which contain it. Indeed, it is easy to see that if M 
lies in region f, point T of P is a neighbor of M if 
and only if f lies in the circle of radius r centered 
at T. This paper develops this argument, and 
shows how Preparata’s method along with efficient 
range-search procedures [2,5,9] can be combined 
to produce an algorithm for the fixed-radius prob- 
lem with the following features: 

(1) Query time: Q(N) = O(A + log N). 
(2) Preprocessing time: P(N) = O(N’ log N). 
(3) Storuge requirement: S(N) = 0(N2 log N). 
Before proceeding, we should observe that the 

major difficulty is that there may be as many as 
Q(N’) regions in the subdivision, each of them 
corresponding to a list of Q(N) circles (i.e.. Q(N) 
neighbors). Therefore an explicit representation of 
all possible answers may, alone, require Q(N’) 
space, and must be avoided. 

2. Setting up the data structure 

Given N points M,, . , M,, we apply a stan- 
dard technique [12] to construct the planar graph 
G formed by the circles of radius r centered at 
these points. To obtain an adjacency list represen- 
tation of G, we may first lay down the edges of the 
graph by taking each circle C in turn, and comput- 
ing its intersections with the N - 1 other circles 
(details on this operation are given in Appendix 
A). This produces at most 2N - 2 points, which 
after being sorted around C give exactly the edges 
contributed by the circle. Note that, in order to 
avoid having edges without endpoints (e.g., iso- 
lated circles), we may put a dummy vertex at the 
top and the bottom of each circle. This will also 
add the following property to the graph: 

(i) All edges are curves which are single-valued 
in the Y-coordinate. 

Another minor difficulty to solve is the ambigu- 
ity in the edge representation, if no provision is 
made for telling on which side of the circle the 
actual segment between two vertices A, B lies. One 
possible remedy is to represent the edge by the 
ordered pair (A, B), such that if C is the center of 
the circle that contributes the edge, the points A. 
B, C occur in clockwise order (see Fig. 1). 
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Fig. 1. Representing edges. 

Next we can easily compute the adjacencies of 

the graph by first duplicating every edge, i.e.. for 
every pair (A. B), adding the pair (B, A), then 
sorting the resulting list with respect to the first 
element of each pair. The order between points 
can be that of their abscissa. and in case of ties. 
that of their ordinate. It is easy to see that in its 
final state, the list contains, grouped together. all 
the edges adjacent to each vertex. We may then 
label the vertices, and we will have the complete 
adjacency lists of G. Since the graph has O(N’) 
edges, this operation requires 0(N2 log N) time 
and O(N’) space. 

Actually, the planar location algorithm which 

we will use later on. relies on a ciouhl~- 

connected-edge-list (DCEL) representation of G, 
whereby each edge (A, B) is represented by a 
6-field node 

[A. B, f,A, f,, v/,. vR]. 

f, (resp. f4) is the name of the region adjacent to 
AB which lies (resp. does not lie) in the circle 
supporting the edge (A, B), and v, (resp. v,~ ) is a 
pointer to the edge which follows AB counter- 
clockwise around A (resp. B) (see Fig. 2). 

Details about this representation as well as a 
linear algorithm for converting an adjacency list 
representation into a DCEL can be found in [IO]. 
The final requirement to be fully able to apply 
Preparata’s point location algorithm is: 
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[A, B. ‘2, f,, f,, v/,, vB] in turn, if f, has not been 
assigned an outgoing edge already, set an edge 
from f, to f,, and label the edge with the name of 
the circle supporting A, B (see Fig. 3). 

Fig. 2. The DCEL representation of a graph. 

(ii) The discrimination of a point with any of 
the curves in the graph can be done in 
constant time. 

This is trivially satisfied in the case of circles. 
Note that an efficient way of determining the 
position of a point M with respect to a circle 
passing through A, B involves keeping the center 
C of the circle along with the edge (A, B), now 
having 7-field nodes, 

[A, B, C, f,, f,, v,, v,], 

in the DCEL. With this added information, a 
simple evaluation of the distance CM is sufficient 
to determine the position of M with respect to the 

circle. 
We can now set up the search tree for G 

described in [ 111, which requires O(N’ log N) time 
and space and we will be in a position to locate an 
arbitrary point M in O(log N) time. Next we need 
some mechanism to allow us to report the circles 
overlapping the region where M lies. We have 
already ruled out the solution which consists of 
having a pointer from each region to the list of its 
overlapping circles, because of its excessive cost. 
Instead. we introduce a new structure H. 

3. Towards a better search structure 

H is an acyclic directed graph whose vertices 
are the faces of G and whose edges are labeled and 
defined algorithmically as follows: for each node 

Note that the graph H is well-defined, yet not 
uniquely defined. It is clear that the adjacency lists 
for H can be set up in time linear in the number of 
7-tuples, i.e., O(N’). A closer examination of the 
regions f, lead to single out a particular type of 
shape called holly, which lies at the very basis of 
the algorithm developed later on. 

Definition. A face fi is a ho@ if all its bordering 
edges are concave (see Fig. 4). 

Note that the outside, unbounded face, f,, is 
always a holly. Expressed in terms of the graph H, 
a holly is simple a vertex with incoming edges 
only. Our first observation is that all the vertices 
of H have exactly one outgoing edge, except for 
the hollies, which have none. As a result, there is a 
unique path emanating from every vertex. If we 
follow this path, we may notice that we never enter 
any circle, and we leave only those circles indi- 
cated by the labels of the edges on the path. 

Therefore, each face visited can never be re-entered 
later on, since this would entail re-entering a circle 

f cl 

73% 
I i f, CC,) f, f3 -Fe f4 2 f5 

Fig. 3. The graph H 
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Fig. 4. An example of a hol!~,. 

we previously left. As a result, H is acyclic. and 
any path leads to a holly. 

It follows that in order to determine all the 
circles containing a point M. we may first locate 
the face of G that contains M, then follow the 
path in H from this face. listing the circles indi- 
cated as labels of the edges traversed along the 
way. This enumeration corresponds to listing the 
circles which we are leaving. At the end of the 
traversal (i.e., in a holly), the last circles which 
remain to be listed are exactly all those containing 
the holly. Note that if the holly is the unbounded 
face f,, we are finished. 

contain h can be reported in O(B + log N) time. 
Indeed, we are reduced to a one-dimensional 
range-query problem, and several efficient algo- 
rithms are at our disposal. The problem is, in its 

form of interest to us. that of reporting the B 
segments containing a query point M, given a set 
of N collinear segments. Partly because of its 
relevance for VLSI design rule checking. this prob- 
lem has been given considerable attention recently. 
and several algorithms have been produced, giving 
an optimal O(B + log N) query time. with some 
preprocessing work entailing between O(N) and 
O(N log N) time and space costs [2.5.9]. 

However alluring, we must resist the temptation 
of having a list of all the circles containing each 
holly. for we may have a prohibitive O(N’) num- 
ber of hollies (see Appendix A). Instead, we ob- 
serve that since all circles have same radius, any 
circle which contains a holly must intersect every 

circle adjacent to the holly. To make this necessary 
condition useful, however, we must make it suffi- 

cient. 

To make the analogy complete, we must choose 
an origin 0,. on each circle 1‘. corresponding to a 0 
polar angle. In this manner, each point on the 
circle can be defined uniquely by its polar angle. 
measured between 0 and 2~. A I-interval which 
does not contain the origin is then mapped to a 
single angular interval. Otherwise, we simply break 
up the P-interval into two parts. with the origin 0, 
as the common endpoint. 

Let T be any circle adjacent to our bounded 
holly h, with v, one endpoint of the common arc. 
If a is a circle intersecting I. we can define its 
r-interd as the portion of the boundary of I 
which lies inside A. Thus it appears that a circle 
contains h if and only if its T-interval is non-empty 
and contains v, (see Fig. 5). 

We are now in a position to apply any of the 
known range-query algorithms mentioned above. 
and report all the containing circles that had not 
been yet listed. The overhead for setting up which- 
ever range-query data structure is chosen amounts 
at worst to O(N log N) for each circle: there- 
fore. the entire preprocessing remains within 
O(N’ log N), which proves our earlier claim. 

4. Conclusions 

With this observation in hand, it becomes possi- The algorithm which we have presented is a 

ble to preprocess T so that the B circles which good illustration of how the combined use of 

Fig. 5. Characteriring the inclusion of a holly in a circle. 
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powerful tools for seemingly unrelated problems 
can often be fruitful. Three methods for central 
problems of computational geometry - locus. 
range-query, planar point location ~ are instru- 
mental in the working of the algorithm, and to a 
large extent, its efficiency owes to theirs. Exten- 
sions of the algorithm include the possibility of 
passing the radius as a parameter, choosing other, 
non-Euclidean metrics, supporting insertion and 
deletion of points, and of course, generalizing to 
higher dimensions. 

Appendix A 

A.I 
Fig. 6. Intersecting two circles 

One point which we have so far left aside 
concerns the complexity of the arithmetic compu- 
tations involved in the algorithm. Since we do not 
have to evaluate distances per se, but simply com- 
pare them, we do not need square roots and the 
four operations + , - , x , + seem sufficient. They 

are so, indeed, if we do not account for the task of 
intersecting circles, required at the beginning of 
the algorithm. For this. we can show that two 
invocations of the square root operation per in- 
tersection calculation are actually sufficient. 

In the following, the pair (r,, I-~) will respec- 
tively denote the X- and Y-coordinates of a point 
R. Let A, B be the centers of two intersecting 
circles of radius r, with C. D denoting the two 
intersection points (see Fig. 6). Let !J be the seg- 
ment AB’s mid-point and 6 be the length of AB. 

Defining a new orthonormal system of coordi- 
nates, 

with QX’ in the direction of AB, we can easily 
express the old coordinates (m,, mz) of a point M 
in terms of its new coordinates (m;, m;): 

In consequence, we may express the points C, 
D in terms of their new coordinates, which in- 
volves the use of the second square root operation 

announced above: 

c’ 
I 

= d’ = 0 
I ’ 

c; = d; = &- q’r2 - as2 . 

A.2 

We justify here the use of sophisticated range- 
query structures by displaying an arrangement of 
points which gives fJ(N’) hollies (see Fig. 7). It is 
therefore prohibitive simply to set up a list of 
containing circles for each holly. 

Fig. 7. A quadratic number of hollies. 
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