
Information Processing Letters 16 (1983) 193-198

North-Holland Publishing Company

13 May 1983

AN IMPROVED ALGORITHM FOR THE FIXED-RADIUS NEIGHBOR PROBLEM *

Bernard CHAZELLE

Communicated by Michael A. Harrison

Received 10 February 1982

Revised 2 November 1982

Kqwords: Computational geometry. multidimensional searching. planar point location, planar graphs

1. Introduction

The planar fixed-radius near neighbor problem
can be stated as follows: Preprocess a set P of N
points in the plane so that all points of P lying
within some fixed radius r of a new point can be
listed effectively.

This problem has many practical applications
in domains as varied as molecular graphics, statis-
tics, air traffic control or data transmission [3].
Although a great deal of work has been done on

the subject, the intricacy of the L, (Euclidean)
metric has often led to consider the L, (Manhat-
tan) or L, metrics instead (where the locus of
points within a fixed distance of a given point
becomes a square), or to introduce simplifying
assumptions on the density of points (e.g., sparsity
conditions) [3]. In [11, however, Bentley and Maurer
do examine the worst-case performance of our
searching problem in the Euclidean metric. and

they develop a locus method which is optimal for
that criterion. More precisely, for any query point
M, the A points of the set P less than r away from
M can be reported in A + log N time. Unfor-
tunately, the preprocessing involved becomes
rapidly prohibitive as N grows, since the time P(N)

* This research was sponsored by the defense Advanced Re-
search Projects Agency (DOD), ARPA Order No. 3597,

monitored by the Air Force Avionics Laboratory under

Contract F33615-82-K-1539.

0020-0190/83/$03.00 0 1983 North-Holland

required to organize the data into their structure
and the size S(N) of this structure are both O(N’).
It was, however, conjectured in [l] that clever use
of an efficient planar point location algorithm
could lead to a significant cut-down in the pre-
processing work. Recall that the planar point loca-
tion problem is that of, given a connected planar
straight-line graph and a query point M, determin-

ing which region (face) of the graph contains M.
Several fast algorithms for planar point location

are available in the literature [4,6,7,8,11], but be-
cause of its applicability to non-straight-line
graphs, we will choose Preparata’s algorithm [1 l]
as the basis for our investigation. His method rests
on a clever partitioning of the edges of the subdivi-
sion into O(log N) segments, and exploits the par-
tial ordering among edges to construct a balanced
search tree yielding logarithmic query time. The
reason why, in both [l] and [ll], it is suggested
that the efficiency of a point location procedure
might have great incidence on its fixed-radius
neighbor counterpart can be easily seen. The N
circles of radius r centered at the points of P
subdivide the plane into regions which have the
following property: To the question, “which are

the points of P less than r away from M?“, two
points give the same answer if and only if they lie
in the same region. In consequence, it appears that
in order to report the neighbors of M, it is suffi-
cient to locate M in the subdivision, provided that
each region gives access to a list of the circles

193

Volume 16, Number 4 INFORMATION PROCESSING LETTERS I.? May 19x3

which contain it. Indeed, it is easy to see that if M
lies in region f, point T of P is a neighbor of M if
and only if f lies in the circle of radius r centered
at T. This paper develops this argument, and
shows how Preparata’s method along with efficient
range-search procedures [2,5,9] can be combined
to produce an algorithm for the fixed-radius prob-
lem with the following features:

(1) Query time: Q(N) = O(A + log N).
(2) Preprocessing time: P(N) = O(N’ log N).
(3) Storuge requirement: S(N) = 0(N2 log N).
Before proceeding, we should observe that the

major difficulty is that there may be as many as
Q(N’) regions in the subdivision, each of them
corresponding to a list of Q(N) circles (i.e.. Q(N)
neighbors). Therefore an explicit representation of
all possible answers may, alone, require Q(N’)
space, and must be avoided.

2. Setting up the data structure

Given N points M,, . , M,, we apply a stan-
dard technique [12] to construct the planar graph
G formed by the circles of radius r centered at
these points. To obtain an adjacency list represen-
tation of G, we may first lay down the edges of the
graph by taking each circle C in turn, and comput-
ing its intersections with the N - 1 other circles
(details on this operation are given in Appendix
A). This produces at most 2N - 2 points, which
after being sorted around C give exactly the edges
contributed by the circle. Note that, in order to
avoid having edges without endpoints (e.g., iso-
lated circles), we may put a dummy vertex at the
top and the bottom of each circle. This will also
add the following property to the graph:

(i) All edges are curves which are single-valued
in the Y-coordinate.

Another minor difficulty to solve is the ambigu-
ity in the edge representation, if no provision is
made for telling on which side of the circle the
actual segment between two vertices A, B lies. One
possible remedy is to represent the edge by the
ordered pair (A, B), such that if C is the center of
the circle that contributes the edge, the points A.
B, C occur in clockwise order (see Fig. 1).

194

Fig. 1. Representing edges.

Next we can easily compute the adjacencies of

the graph by first duplicating every edge, i.e.. for
every pair (A. B), adding the pair (B, A), then
sorting the resulting list with respect to the first
element of each pair. The order between points
can be that of their abscissa. and in case of ties.
that of their ordinate. It is easy to see that in its
final state, the list contains, grouped together. all
the edges adjacent to each vertex. We may then
label the vertices, and we will have the complete
adjacency lists of G. Since the graph has O(N’)
edges, this operation requires 0(N2 log N) time
and O(N’) space.

Actually, the planar location algorithm which

we will use later on. relies on a ciouhl~-

connected-edge-list (DCEL) representation of G,
whereby each edge (A, B) is represented by a
6-field node

[A. B, f,A, f,, v/,. vR].

f, (resp. f4) is the name of the region adjacent to
AB which lies (resp. does not lie) in the circle
supporting the edge (A, B), and v, (resp. v,~) is a
pointer to the edge which follows AB counter-
clockwise around A (resp. B) (see Fig. 2).

Details about this representation as well as a
linear algorithm for converting an adjacency list
representation into a DCEL can be found in [IO].
The final requirement to be fully able to apply
Preparata’s point location algorithm is:

Volume 16, Number 4 INFORMATION PROCESSING LETTERS 13 May 1983

[A, B. ‘2, f,, f,, v/,, vB] in turn, if f, has not been
assigned an outgoing edge already, set an edge
from f, to f,, and label the edge with the name of
the circle supporting A, B (see Fig. 3).

Fig. 2. The DCEL representation of a graph.

(ii) The discrimination of a point with any of
the curves in the graph can be done in
constant time.

This is trivially satisfied in the case of circles.
Note that an efficient way of determining the
position of a point M with respect to a circle
passing through A, B involves keeping the center
C of the circle along with the edge (A, B), now
having 7-field nodes,

[A, B, C, f,, f,, v,, v,],

in the DCEL. With this added information, a
simple evaluation of the distance CM is sufficient
to determine the position of M with respect to the

circle.
We can now set up the search tree for G

described in [111, which requires O(N’ log N) time
and space and we will be in a position to locate an
arbitrary point M in O(log N) time. Next we need
some mechanism to allow us to report the circles
overlapping the region where M lies. We have
already ruled out the solution which consists of
having a pointer from each region to the list of its
overlapping circles, because of its excessive cost.
Instead. we introduce a new structure H.

3. Towards a better search structure

H is an acyclic directed graph whose vertices
are the faces of G and whose edges are labeled and
defined algorithmically as follows: for each node

Note that the graph H is well-defined, yet not
uniquely defined. It is clear that the adjacency lists
for H can be set up in time linear in the number of
7-tuples, i.e., O(N’). A closer examination of the
regions f, lead to single out a particular type of
shape called holly, which lies at the very basis of
the algorithm developed later on.

Definition. A face fi is a ho@ if all its bordering
edges are concave (see Fig. 4).

Note that the outside, unbounded face, f,, is
always a holly. Expressed in terms of the graph H,
a holly is simple a vertex with incoming edges
only. Our first observation is that all the vertices
of H have exactly one outgoing edge, except for
the hollies, which have none. As a result, there is a
unique path emanating from every vertex. If we
follow this path, we may notice that we never enter
any circle, and we leave only those circles indi-
cated by the labels of the edges on the path.

Therefore, each face visited can never be re-entered
later on, since this would entail re-entering a circle

f cl

73%
I i f, CC,) f, f3 -Fe f4 2 f5

Fig. 3. The graph H

195

Volume 16. Number 4 INFORMATION PROCESSING LETTERS 1:; Mav 19x3

Fig. 4. An example of a hol!~,.

we previously left. As a result, H is acyclic. and
any path leads to a holly.

It follows that in order to determine all the
circles containing a point M. we may first locate
the face of G that contains M, then follow the
path in H from this face. listing the circles indi-
cated as labels of the edges traversed along the
way. This enumeration corresponds to listing the
circles which we are leaving. At the end of the
traversal (i.e., in a holly), the last circles which
remain to be listed are exactly all those containing
the holly. Note that if the holly is the unbounded
face f,, we are finished.

contain h can be reported in O(B + log N) time.
Indeed, we are reduced to a one-dimensional
range-query problem, and several efficient algo-
rithms are at our disposal. The problem is, in its

form of interest to us. that of reporting the B
segments containing a query point M, given a set
of N collinear segments. Partly because of its
relevance for VLSI design rule checking. this prob-
lem has been given considerable attention recently.
and several algorithms have been produced, giving
an optimal O(B + log N) query time. with some
preprocessing work entailing between O(N) and
O(N log N) time and space costs [2.5.9].

However alluring, we must resist the temptation
of having a list of all the circles containing each
holly. for we may have a prohibitive O(N’) num-
ber of hollies (see Appendix A). Instead, we ob-
serve that since all circles have same radius, any
circle which contains a holly must intersect every

circle adjacent to the holly. To make this necessary
condition useful, however, we must make it suffi-

cient.

To make the analogy complete, we must choose
an origin 0,. on each circle 1‘. corresponding to a 0
polar angle. In this manner, each point on the
circle can be defined uniquely by its polar angle.
measured between 0 and 2~. A I-interval which
does not contain the origin is then mapped to a
single angular interval. Otherwise, we simply break
up the P-interval into two parts. with the origin 0,
as the common endpoint.

Let T be any circle adjacent to our bounded
holly h, with v, one endpoint of the common arc.
If a is a circle intersecting I. we can define its
r-interd as the portion of the boundary of I
which lies inside A. Thus it appears that a circle
contains h if and only if its T-interval is non-empty
and contains v, (see Fig. 5).

We are now in a position to apply any of the
known range-query algorithms mentioned above.
and report all the containing circles that had not
been yet listed. The overhead for setting up which-
ever range-query data structure is chosen amounts
at worst to O(N log N) for each circle: there-
fore. the entire preprocessing remains within
O(N’ log N), which proves our earlier claim.

4. Conclusions

With this observation in hand, it becomes possi- The algorithm which we have presented is a

ble to preprocess T so that the B circles which good illustration of how the combined use of

Fig. 5. Characteriring the inclusion of a holly in a circle.

Volume 16, Number 4 INFORMATION PROCESSING LETTERS 13 May 1983

powerful tools for seemingly unrelated problems
can often be fruitful. Three methods for central
problems of computational geometry - locus.
range-query, planar point location ~ are instru-
mental in the working of the algorithm, and to a
large extent, its efficiency owes to theirs. Exten-
sions of the algorithm include the possibility of
passing the radius as a parameter, choosing other,
non-Euclidean metrics, supporting insertion and
deletion of points, and of course, generalizing to
higher dimensions.

Appendix A

A.I
Fig. 6. Intersecting two circles

One point which we have so far left aside
concerns the complexity of the arithmetic compu-
tations involved in the algorithm. Since we do not
have to evaluate distances per se, but simply com-
pare them, we do not need square roots and the
four operations + , - , x , + seem sufficient. They

are so, indeed, if we do not account for the task of
intersecting circles, required at the beginning of
the algorithm. For this. we can show that two
invocations of the square root operation per in-
tersection calculation are actually sufficient.

In the following, the pair (r,, I-~) will respec-
tively denote the X- and Y-coordinates of a point
R. Let A, B be the centers of two intersecting
circles of radius r, with C. D denoting the two
intersection points (see Fig. 6). Let !J be the seg-
ment AB’s mid-point and 6 be the length of AB.

Defining a new orthonormal system of coordi-
nates,

with QX’ in the direction of AB, we can easily
express the old coordinates (m,, mz) of a point M
in terms of its new coordinates (m;, m;):

In consequence, we may express the points C,
D in terms of their new coordinates, which in-
volves the use of the second square root operation

announced above:

c’
I

= d’ = 0
I ’

c; = d; = &- q’r2 - as2 .

A.2

We justify here the use of sophisticated range-
query structures by displaying an arrangement of
points which gives fJ(N’) hollies (see Fig. 7). It is
therefore prohibitive simply to set up a list of
containing circles for each holly.

Fig. 7. A quadratic number of hollies.

197

Volume 16. Number 4 INFORMATION PROCESSING LETTERS 13 Ma\i 1983

References

[l] J.L. Bentley and H.A. Maurer, A note on Euclidean near

neighbor searching in the plane, Inform. Process. Lett. 8

(1979) 133-136.

[2] J.L. Bentley and T. Ottmann, Algorithms for reporting

and counting geometric intersections. IEEE Trans. Com-

put. C-28 (9) (1979).

[3] J.L. Bentley, D.F. Stanat and E.H. Williams Jr.. The

complexity of finding fixed-radius near neighbours. In-

form. Process. Lett. 6 (1977) 209-212.

[4] D.P. Dobkin and R.J. Lipton, Multidimensional searching

problems, SIAM J. Comput. 5 (2) (1976) 181-186.

[5] H. Edelsbrunner, A time- and space-optimal solution for

the planar all-intersecting-rectangles problem, Tech. Rept..

Technische Universitat Graz. 1980.

[6] D.G. Kirkpatrick. Optimal search in planar subdivisions.

Detailed abstract, University of British Columbia. Canada.

1980.

[7] D.T. Lee and F.P. Preparata, Location of a pomt in a

planar subdivision and its applications. Proc. 8th SIGACT

Symp., Hershey (1976) pp. 231-235.

[8] R.J. Lipton and R.E. TarJan, Applications of a planar

separator theorem, Proc. 18th IEEE FOCS Symp.. Provi-

dence (1977) pp. 162-170.

[9] E.M. McCreight, Efficient algorithms for enumerating in-

tersecting intervals and rectangles. Tech. Rept. Xerox

PARC, CSL-80-9. 1980.

[IO] D.E. Muller and F.P. Preparata. Finding the intersection

of two convex polyhedra, Theoret. Comput. Sci. 7 (1978)

217-236.

[I I] F.P. Preparata, A new approach to planar locatlon, SIAM

.I. Comput. 19 (3) (1981).

[12] A.A.G. Requicha, Representations for rigld sollda: The-

ory. methods and systems, ACM Comput. Surveys 12 (4)
(1980) 437-464.

198

