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Abstract Color red and blue the n vertices of a convex polytope P in R
3. Can we

compute the convex hull of each color class in o(n logn) time? What if we have
more than two colors? What if the colors are random? Consider an arbitrary query
halfspace and call the vertices of P inside it blue: can the convex hull of the blue
points be computed in time linear in their number? More generally, can we quickly
compute the blue hull without looking at the whole polytope? This paper considers
several instances of hereditary computation and provides new results for them. In
particular, we resolve an eight-year old open problem by showing how to split a
convex polytope in linear expected time.

Keywords Convex polytope · Halfspace range searching · Hereditary convex hulls

1 Introduction

Given a set of n points in the Euclidean plane and its Voronoi diagram, it was shown
in [13] how to compute the Voronoi diagram of any given subset in linear time.1 The
authors asked whether it is also possible to compute the convex hull of an arbitrary

1All our algorithms are randomized, so the complexity is to be understood in the expected sense. Note that
the expectation is only over the randomness used by the algorithm and that the complexity bounds hold
for every input, except when explicitly stated otherwise.
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subset of the vertices of a convex 3-polytope in linear time. An affirmative answer
would, of course, imply the previous result. This paper proves that it is indeed the
case. We formulate the question in a hereditary setting by assuming that the vertices
of a convex polytope P in R

3 are colored red and blue. The problem is then to “split”
P and compute both monochromatic convex hulls; see Fig. 1. We show how to do this
in linear time, which answers the main open question in [13]. We extend our tech-
niques to an arbitrary number of colors by showing how to compute the convex hulls
of all the color classes in O(n

√
logn ) time. In subsequent work, Kevin Buchin and

the second author improved this bound to O(n(log logn)2) time [6]. Interestingly, we
can do this in linear time for any set of χ colors, as long as the coloring is random; the
result holds for any 1 ≤ χ ≤ n. We also consider the coloring induced by halfspace
range queries: given a query plane, compute the convex hull of the points lying on
one side. We show how to do so in time O(logn + k), where k is the output size; the
data structure requires O(n logn) storage.

Our offline splitting algorithm cannot be output-sensitive, since the output size
is linear. But what if we output only one color class? If the chosen vertices form k

connected components in the skeleton graph of P , we can compute their convex hull
in time O(n log∗ n+k log k), where n now is the size of the subset. Our result has this
intriguing corollary: given a Delaunay triangulation (DT) denoted by T , the DT of
any set S of n vertices and edges in T can be computed in time O(n log∗ n+ k logk),
where k is the number of connected components formed by S within T . We actually
prove a slightly more general result. It is well known that the convex hull of two
convex polytopes can be stitched together in linear time [11]. We consider the case of
k disjoint convex polytopes with a total of n vertices. If the vertices of each polytope
form a connected component in the convex hull of their union, we can compute their
common convex hull in O(n log∗ n + k logk) time. This assumption is motivated by
a lower bound of Ω(n logk) for the general case.

To study the complexity of hereditary computing is part of a broader attempt to un-
derstand what makes what hard. To compute the DT of n points in the plane requires
Ω(n logn) time, but knowing that the points are the vertices of a convex polygon
cuts down the complexity to linear [1, 14]. Given a spanning subgraph of degree at
most d , the DT can be completed in time O(nd log∗ n) [21]. In fact, at the cost of
a more complicated algorithm, it can be done in linear time [17, 27]. Furthermore,
Djidjev and Lingas have proven linearity for any set of points forming a monotone
chain in both x and y directions [22]. This might suggest that the hardness of DT is
really confined to sorting, but the situation is more complicated. Sorting helps to find
Voronoi diagrams in �∞ [15], but ranking the points in any one direction still leaves
us with a Θ(n logn) complexity [22]. If we know the order in x and y direction, the
DT can be found with O(n) comparisons, but no o(n logn) algorithm is known [6].
More generally, the simplicity of a polygon is known to “linearize” many problems
that otherwise exhibit Ω(n logn) lower bounds, e.g., polygon triangulation [2, 10,
33], medial axis [16], or constrained Delaunay triangulation [17, 27]. Our work fits
into that mold.

Hereditary algorithms are nothing new. Given a subset of a simple polygon,
Chan [8] showed how to compute its convex hull in linear time2 and how to trian-

2Here, linear time means linear in the size of the whole structure, not just the subset.
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Fig. 1 Given their joint convex hull, we can find the red and blue hulls in linear time

Fig. 2 General hereditary
trapezoidal decompositions are
hard

gulate it in O(n log∗ n) time. Van Kreveld, Löffler, and Mitchell [28] improved the
latter result by proving that any subset of a given triangulation can in fact be tri-
angulated in linear time. To appreciate the difficulty of obtaining general hereditary
algorithms, let us mention the example of hereditary trapezoidal decompositions [8,
26]. Kirkpatrick, Klawe, and Tarjan [26] gave an algorithm for removing a hole-free
subset of line segments in a trapezoidal decomposition in linear time, where hole-
freeness is a property that is necessary to ensure that the subset does not obscure
too much information. They also give an example that for general hereditary trape-
zoidal decompositions, no improvement is possible (see also [8]). Consider the line
segments in Fig. 2 and their trapezoidal decomposition. Suppose that we would like
to find the trapezoidal decomposition of b1, b2, b3, b4. To achieve this, we essentially
have no choice but to sort their endpoints from scratch, since the long line segments
obscure all information. This means that trapezoidal decompositions, unlike convex
hulls, do not always give away something about their subsets. There are many other
situations in which additional “hereditary” information brings no benefits: if P is a
point set in R

3, sorting P in a bounded number of directions does not help in com-
puting its convex hull [32]; nor does knowing the convex hull of P help in finding its
diameter [25].

Another way to look at our first result, the linear complexity of bicolored convex
hulls, is that the convex hull problem in 3D loses its Ω(n logn)-hardness if it is
embedded in a larger polytope: in other words, computationally speaking, a convex
polytope “gives away” the convex hull of any of its subsets.
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2 Definitions and Notation

Given a finite point set P ⊆ R
3, let convP denote the convex hull of P . We denote

the edges and facets of convP by E[P ] and F [P ]. For a point p ∈ P , let degP p

be the number of edges in E[P ] incident to p, the degree of p (with respect to P ).
Throughout, we will assume that convex hulls are given in a standard planar graph
representation, e.g., a DCEL [4, Chap. 2.2]. Our point sets will usually be in general
convex position (gcp), i.e., every three points in P are linearly independent, and p �∈
conv (P \ p) for every p ∈ P . In particular, convP is simplicial,3 and all the points
in P are vertices of convP .

We use classical geometric random sampling [19, 30]; see Appendix A. For this,
we quickly review the notion of conflict sets. Given a point set P ⊆ R

3, an edge
e ∈ E[P ], and a point p �∈ convP , we say that p can see e in convP or that e is
visible from p if the triangle spanned by e and p intersects convP only in e. All the
planes we consider are oriented, that is, one of the two halfspaces defined by a plane
h is designated the left halfspace of h, h+, and the other one is designated the right
halfspace of h, h−. We use the convention that every supporting plane of convP is
oriented such that P lies in the right halfspace h−. Let Q ⊆ P , f ∈ F [Q], and hf be
the supporting plane for f . A point p ∈ P is in conflict with f if p lies in h+

f . Let
Bf ⊆ P denote the points in conflict with f , and bf the size of Bf . Conversely, for a
point p ∈ P , we let Dp ⊆ F [Q] denote the set of facets in conflict with p, and let dp

be its size. The sets Bf and Dp are the conflict sets of f and p, and bf and dp are
the conflict sizes. By double counting,

∑

f ∈F [Q]
bf =

∑

p∈P

dp. (1)

3 Splitting Polytopes

We are given an n-point set P ⊆ R
3 in general convex position (gcp).4 Let B ⊆ P ,

and let R = P \ B . The points in B are called blue, the points in R are called red.
Given convP , we show how to obtain convB in linear time.

Theorem 3.1 Let P ⊆ R
3 be a set of n points in general convex position, colored red

and blue. Given convP , the convex hull of the blue points can be computed in O(n)

expected time.

An edge of convP is called blue if both of its endpoints are blue, and red if both of
its endpoints are red, otherwise it is bichromatic. Blue, red, and bichromatic facets are
defined similarly. The splitting is performed by a recursive algorithm SplitHull
that receives the convex hull and a two-coloring of P . Please refer to Algorithm 1.

3That is, all facets of convP are triangles.
4See Sect. 2 for basic definitions and notation.



800 Discrete Comput Geom (2011) 45: 796–823

Algorithm 1 Splitting a bichromatic convex hull
SplitHull(convP)

1. If P contains no red points, return convP .
2. If there exists a red point r in P with degP r ≤ d0 (with a suitable constant d0),

then return SplitHull(conv (P \ r)).
3. Take random blue points b ∈ B until (i) degP b ≤ 6, and (ii) there exists a blue

edge e in conv (P \ b) that is visible from b.
4. Call SplitHull(conv (P \ b)) to compute conv (B \ b).
5. Using e as a starting edge, insert b into conv (B \ b) and return convB .

SplitHull can be seen as a generalization of Chew’s algorithm for Voronoi dia-
grams of convex polygons [14], and it is also reminiscent of Dobkin and Kirkpatrick’s
hierarchy [23, 24]. It first tries to delete a red point of small degree. If this is not pos-
sible, it removes blue points until there is a red point of small degree again. Later,
these blue points must be reinserted into the recursively computed blue hull. In order
to do this efficiently, we must be careful about which blue points we delete, so that
we have a landmark from where to start the conflict location. SplitHull is easily
shown to be correct.

Lemma 3.2 SplitHull(convP) computes convB .

Proof The proof is by straightforward induction on |P |. We only comment on Step 5.
Let B− = B \ b and P − = P \ b. If e is a blue edge visible from b in convP −, then
the same holds in convB−: since e has both endpoints in B−, a supporting plane
for e in convP − supports e also in convB−, and since convB− ⊆ convP −, the
triangle spanned by b and e intersects convB− only in e. Thus, we can walk from
e to determine b’s conflict set Db and replace Db by new facets incident to b. This
takes time O(|Db|) [4, Chap. 11.2]. When implementing the algorithm, care must be
taken that the pointer to e obtained in Step 3 is not invalidated by the recursive call in
Step 4. We can easily do it as follows: when deleting a blue edge in Step 4, retain the
corresponding record in memory and reuse it when the edge is recreated in Step 5. �

The bulk of the analysis lies in bounding the running time.

Lemma 3.3 The expected time needed for one invocation of SplitHull is con-
stant, not counting the time for the recursive calls.

Proof We argue that each step takes constant expected time. This clearly holds for
Step 1: just use a counter for the number of red points. Step 2 is also easy: keep a
linked list L for the red points with degree at most d0. During preprocessing, deter-
mine the degrees and initialize L accordingly. When the hull is altered in Steps 2 and
4, update the degrees and L. Since all relevant vertices have bounded degree, this
takes constant time. The most interesting part lies in the analysis of Step 3. We show
that there is a good chance of sampling a point with the required properties.
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Lemma 3.4 Let B̃ be the subset of the blue points b with the following properties:
(i) degP b ≤ 6; and (ii) b is a vertex of a blue facet of convP , or E[P \ b] \ E[P ]
contains at least one blue edge.5 There exists a constant d0 such that if all red points
have degree at least d0, then |B̃| ≥ |P |/5.

Proof Call a blue point pleasant if it satisfies the properties in the lemma, and ghastly
otherwise. By Euler’s formula, a large fraction of blue points has degree at most 6.
If a blue point b is ghastly and has degree at most 6, then either (a) b is incident to
a facet with a red edge, or (b) b’s neighborhood has only bichromatic edges and to
delete b from convP creates no blue edge. We bound the number of points satisfying
(a) and (b) separately and then finish the analysis with a union bound.

In the following, we will assume that d0 is a large enough constant. By general
convex position, we have |E[P ]| = 3n − 6.6 Let B ′ be the set of blue points b with
degP b ≤ 6. Since convP is three-connected [29, Theorem 5.3.3], and since all red
nodes have degree at least d0 ≥ 7, we get

6n − 12 =
∑

p∈B ′
degp +

∑

p∈P \B ′
degp ≥ 3|B ′| + 7(n − |B ′|).

Thus,

|B ′| > n/4. (2)

Similarly,

6n − 12 =
∑

p∈R

degp +
∑

p∈P \R
degp ≥ d0|R| + 3(n − |R|) = (d0 − 3)|R| + 3n,

so |R| < 4n/d0 (for d0 ≥ 12). Let ER denote the set of red edges in convP . Since
every red edge of convP is an edge of convR,

|ER| ≤ |E[R]| = 3|R| − 6 < 12n/d0. (3)

For b ∈ B ′, let Γb be the simple polygon formed by b’s neighbors in convP , and let
C be the set of points b ∈ B ′ such that Γb contains a red edge (this corresponds to
property (a) mentioned at the beginning of the proof). Since an edge is incident to
two facets, for each e ∈ ER , there are at most two points p,q ∈ C such that e is in Γp

and Γq . Hence, by (3),

|C| ≤ 2|ER| < 24n/d0. (4)

Now, let D ⊆ B ′ be the set of points b such that Γb has no monochromatic edge.
For any such b, degP b is even, and red and blue points alternate along Γb . Let Eb =
E[P \ b] \ E[P ]. We say that b creates Eb . Note that Eb contains only diagonals of
Γb . Any edge e is created by at most two points in D: if e is occluded in convP by

5Recall that E[P ],F [P ] denote the edges and facets of convP (see Sect. 2).
6Since all the points are on the hull, Euler’s formula [5, Theorem 7.2.1] yields n − |E[P ]| + |F [P ]| = 2,
and since all facets are triangles, we have 2|[E[P ]| = 3|F [P ]|.
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Fig. 3 (a) The edge e1 is
occluded by exactly one edge
and is created by u and v; (b) the
edge e2 is occluded by two
edges and is created only by w

Fig. 4 Every triangulation of a
two-colored simple polygon
contains at least one
monochromatic diagonal (shown
in dashed)

exactly one edge, it is created by the endpoints of this edge; if e is occluded by two
or more edges, it can only be created by a point incident to all of them; see Fig. 3.
Furthermore, every b ∈ D creates at least one monochromatic edge, since every

triangulation of a two-colored simple polygon contains at least one monochromatic
diagonal;7 see Fig. 4. Let D′ be the set of points in D that do not create a blue edge
(these are the points with property (b)). By the previous discussion and (3),

|D′| ≤ 2|E[R]| < 24n/d0. (5)

To conclude, we observe that all the points in the set B ′ \ (C ∪ D′) are pleasant
and that by (2, 4, 5) it contains at least (1/4 − 48/d0)n > n/5 points, for d0 large
enough. �

By Lemma 3.4 we expect at most five iterations in Step 3, each taking constant
time, since all points under consideration have bounded degree. The same holds for
Step 4 without the recursive call, as degP b ≤ 6. Finally, we use backwards analysis to
handle Step 5. Take B̃ as in Lemma 3.4. Because |B̃| > |B|/5, the average degree of a
point in B̃ is less than 30, by Euler’s formula. Hence, to delete a random point b ∈ B̃

from convB takes constant expected time, and this is exactly the cost of inserting b

into conv (B \ b) [4, Chap. 11.2]. �

Theorem 3.1 follows from Lemmas 3.2 and 3.3, since the number of recursive calls
is O(n).

7Since the dual graph of this triangulation is a tree [4, Sect. 3.1], and every tree contains at least one leaf,
corresponding to a triangle between two adjacent edges.
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Fig. 5 Splitting random colorings: the algorithm (α) computes convS and conflict facets for Ci , (β)
inserts Ci into convS, and (γ ) extracts convCi . The points in Ci are shown as boxes, S as circles

Algorithm 2 Splitting random colorings
RandMultiSplit(convP) (* see Fig. 5 *)

1. Pick a random sample S ⊆ P of size n/χ and compute convS.
2. For each p ∈ P , determine a facet fp ∈ F [S] in conflict with p.
3. For each color i:

(a) Insert all points of Ci into convS.
(b) Extract convCi from conv (Ci ∪ S).

4 Splitting Random Colorings

Now, we extend SplitHull to handle more than two colors: for a point set P ⊆ R
3,

let c : P → {1, . . . , χ} be a coloring of P . For i ∈ {1, . . . , χ}, we let Ci = c−1(i) de-
note the points that are colored i, the ith color class. The coloring c is called random
if each point p is colored uniformly and independently with a color in {1, . . . , χ}.
This section deals with random colorings; and the next one is about arbitrary color-
ings.

Theorem 4.1 Let P ⊆ R
3 be a set of n points in general convex position, and let

c : P → {1, . . . , χ} be a random coloring of P . Given convP , we can compute the
convex hulls convC1, . . . , convCχ in O(n) expected time (the expectation is over the
coloring and the random choices of the algorithm).

The algorithm for Theorem 4.1 is called RandMultiSplit. See Algorithm 2. It
receives the convex hull and a coloring of P as input, and it computes the convex hull
of a random sample S ⊆ P into which the points of each color class are then inserted
separately. As we will see below, this can be done quickly because c is random.
Finally, it uses SplitHull to remove the points from S.

Clearly, the algorithm correctly computes the convCi . We bound the running time
of each step. Using SplitHull, Step 1 requires O(n) time. The analysis of Step 2
needs more work.

Lemma 4.2 Step 2 takes O(n) expected time.
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Fig. 6 Claim 4.3: the facets
F [Q] are shown dashed, F [P ]
solid. Merge ΓP (p) with ΓQ(p)

to determine its conflict facets

Algorithm 3 Determining the conflict facets in a subset
SubsetConflictWalk(convS, convP)

1. Let queue be a queue with the elements in S.
2. While queue �= ∅.

(a) Let p be the next point in queue.
(b) If p �∈ S, insert p into convS, using a previously computed conflict facet fp

for p as a starting point.
(c) For each neighbor q ∈ ΓP (p), find a conflict facet f̃q in conv (S ∪ p), using

Claim 4.3.
(d) Using the f̃q ’s, find conflict facets fq ∈ F [S] for all q ∈ ΓP (p). If q ∈ ΓP (p)

has not been encountered yet, insert it into queue.

Proof For Q ⊆ P and p ∈ Q, let ΓQ(p) denote the neighbors of p in convQ. First,
we show how to compute the conflict facets for points that are neighbors in convP

of a point in Q.

Claim 4.3 Let Q ⊆ P and p ∈ Q. Assume that both convQ and convP are avail-
able. In time O(degQ p + degP p), we can compute a conflict facet fq ∈ F [Q] for
every neighbor q ∈ ΓP (p) of p.

Proof Consider an overlay of convQ and convP , i.e., a central projection of their
vertices and edges onto the unit sphere centered at a point O ∈ convQ. Let q ∈
ΓP (p), and let f ∈ F [Q] be the facet incident to p that is intersected by the line
segment pq in the overlay. Then q is in conflict with f . To see this, let hf be the
plane supporting f . If q did not conflict with f , then q would lie in h−

f , and at least
part of the line segment pq would be strictly inside convQ. But then pq could not
be an edge of convP , as convQ ⊆ convP . Thus, conflict facets for ΓP (p) can be
computed by merging the cyclically ordered lists ΓP (p) and ΓQ(p) with respect to
some overlay of the hulls; see Fig. 6. This takes time O(degQ p + degP p). �

The conflict facets for P can now be found by breadth-first search, using an algo-
rithm called SubsetConflictWalk. Please refer to Algorithm 3. Step 2 of the
algorithm maintains the invariant that a conflict facet fp ∈ F [S] is known for each
p ∈ queue \ S. Using standard techniques, Step 2(b) takes O(dp) time, where dp is



Discrete Comput Geom (2011) 45: 796–823 805

the conflict size of p in convS [4, Chap. 11.2].8 Furthermore, by Claim 4.3, the con-
flict facets of ΓP (p) can be found in O(degS∪p p + degP p) time. Finally, Step 2(d)

takes time O(degP p): every facet f̃ ∈ F [S ∪ p] shares at least one edge e with an
f ∈ F [S], and if q can see e in convS, it conflicts with at least one facet adjacent to e.
Thus, fq can be computed from f̃q in constant time. It follows that the total running
time of SubsetConflictWalk is proportional to

E
[∑

p∈P

(
dp + degS∪p p + degP p

)]
.

Now, since9 degS∪p p � dp for p �∈ S, this is proportional to

E
[∑

p∈S

degS p +
∑

p∈P \S
dp +

∑

p∈P

degP p

]
� E

[
n

χ
+

∑

f ∈F [S]
bf + n

]
,

by (1) in Sect. 2. The lemma follows, since E [∑f ∈F [S] bf ] � n by Lemma A.4(8)
(bf is the conflict size of f ). �

Now we consider Step 3 of RandMultiSplit. Fix a color i, and for each f ∈
F [S], let af = |Ci ∩Bf |. Since the coloring is random, conditioned on bf , the size af

is distributed like a sum of independent Bernoulli random variables with mean bf /χ .
By standard moment bounds [12, Lemma A.1], E c[a2

f ] � (bf /χ)2. By Lemma A.5,
Step 3(a) takes time E S,c[∑f ∈F [S] af logaf ], and by Lemma A.4(8), we get

E S,c

[ ∑

f ∈F [S]
af logaf

]
� E S

[ ∑

f ∈F [S]
E c

[
a2
f

]] � E S

[
1

χ2

∑

f ∈F [S]
b2
f

]

� χn

χ2
= n

χ
.

Using SplitHull in Step 3(b), convCi can now be computed in time O(|Ci | +
n/χ). There are χ colors, so Step 3 takes total time proportional to

∑
i |Ci | + χ ·

(n/χ) � n, and Theorem 4.1 follows.

5 Splitting Arbitrary Colorings

We now consider arbitrary colorings. With SplitHull as a black box, we can easily
split a χ -colored polytope in time O(n logχ). For sufficiently large χ , this can be
improved.

Theorem 5.1 Let P ⊆ R
3 be a set of n points in general convex position, and let

c : P → {1, . . . , χ} be an arbitrary coloring of P . Given convP , we can compute
convC1, . . . , convCχ in O(n

√
logn) expected time.

8dp = 0 if p ∈ S.
9We use the Vinogradov notation f � g for f = O(g) and f � g for f = Ω(g).
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For the random colorings in the previous section, we could exploit the fact that
each color is spread uniformly over the polytope in order to design a simple divide and
conquer algorithm that decomposes each color class into subsets of expected constant
size. This is no longer possible for arbitrary colorings, because now the distribution of
color classes can be highly irregular. Therefore, we need a more sophisticated scheme
to partition the color classes. We begin with a useful sampling lemma.

Lemma 5.2 Let Q ⊆ R
3 be an m-point set in general convex position, and let μ ∈

(0,1) be a constant. There exists an integer α0 such that the following holds: let
α ∈ {α0, . . . ,μm}. Given convQ, in O(m) time we can compute subsets S,R ⊆ Q

and a partition R1, . . . ,Rβ of R such that

1. |S| = α, |R| � m, and maxi |Ri | � m(logα)/α.
2. For each Ri , there exists a facet fi ∈ F [S] such that all points in Ri are in conflict

with fi .
3. Every point in R conflicts with constantly many facets of convS.
4. The conflict sets for two points p ∈ Ri , q ∈ Rj , i �= j , are disjoint and no conflict

facet of p shares an edge with a conflict facet of q .

Furthermore, the convex hulls convS, convR1, . . . , convRβ , conv (Q \ (R ∪ S)) can
be computed in expected O(m) time.

Proof We call a subset S ⊆ Q decent if it has two properties: (i)
∑

f ∈F [S] bf � m;
and (ii) maxf ∈F [S] bf � m(logα)/α, where bf denotes the conflict size of f .

Claim 5.3 A decent subset S ⊆ Q of size α together with convS and the conflict sets
Bf , f ∈ F [S], can be found in expected time O(m).

Proof Let S be a random α-subset of Q. We claim that S is decent with proba-
bility at least 1/2. To see this, we first use Lemma A.4(8) with γ = 1 to obtain
E [∑f ∈F [S] bf ] � m. By Markov’s inequality, it follows that

∑
f ∈F [S] bf � m

with probability at least 3/4. Furthermore, using Lemma A.2 with pn = α and
t = 2 logα, we get10 E [|F≥2 logα|] � (log2 α)/α, and if α0 is large enough, this ex-
pected value is less than 1/4. Hence, by Markov’s inequality, the probability that
there exists a facet with conflict size at least 2m(logα)/α is at most 1/4. So, we have
maxf ∈F [S] bf � m(logα)/α with probability at least 3/4, and the claimed probabil-
ity follows from a union bound.

Furthermore, a decent sample can be verified in O(m) time: by the proof of
Lemma 4.2, we can find the conflict sets Bf and Dp in time O(m + ∑

f ∈F [S] bf ).
Hence, we can run the algorithm of Lemma 4.2 on the sample S. If the number of
steps exceeds cm, for a certain constant c that comes from the proof of Lemma 4.2,
we abort the computation and reject the sample, since it cannot be decent. Otherwise,
we can check in O(m) time that maxf ∈F [S] bf � m(logα)/α, as required. Conse-
quently, since a sample is decent with constant probability, repeated sampling yields
the desired result. �
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Fig. 7 The pruning step:
remove all facets at distance at
most 2λ from a facet with
maximum conflict size. The
points in B ′

f
,B ′

g conflict only
with the darker facets at distance
at most λ = 1

Algorithm 4 Pruning the conflict facets
PruneFS

1. Let F = ∅, and let queue be a priority queue containing the facets in F [S].
2. While queue �= ∅:

(a) Let f be a facet in queue with maximum b′
f , and let Nf = {f ′ ∈ F [S] |

δ(f,f ′) ≤ 2λ} ∩ queue.
(b) Let queue= queue \ Nf and F = F ∪ {f }.

Now let S be a decent sample, and let Bf , f ∈ F [S], denote its conflict sets. By (1)
and Property (i) of a decent sample, we have

∑
p∈Q dp � m, and hence there exists a

constant λ such that the set X = {p ∈ Q | dp > λ} has cardinality at most (1−μ)m/2.
Let R′ = Q \ (S ∪ X), B ′

f = Bf ∩ R′ and b′
f = |B ′

f | for f ∈ F [S]. By definition, all
points in R′ conflict with at most λ facets. We now prune F [S] to obtain a subset F of
facets whose conflict sets constitute the desired partition. For f,g ∈ F [S], let δ(f, g)

denote the BFS-distance between f and g in the dual graph of convS; see Fig. 7.11

The pruning is done by a greedy algorithm PruneFS, which iteratively takes the
facet with the largest conflict size and discards all of its neighbors. For details, see
Algorithm 4. Clearly, PruneFS takes O(m) time. Let f1, . . . , fβ be the facets in
F as computed by PruneFS, and let R1, . . . ,Rβ be the corresponding conflict sets

with respect to R′. Set R = ⋃β

i=1 Ri .

Claim 5.4 We have |R| � m, the Ri constitute a partition of R, and for p ∈ Ri, q ∈
Rj , i �= j , we have Dp ∩ Dq = ∅, and no facet in Dp shares an edge with a facet in
Dq .

Proof To see that |R| � m, note that |Nf | � 1 and b′
f ′ ≤ b′

f for every f ′ ∈ Nf .
Thus, we have b′

f � ∑
f ′∈Nf

b′
f ′ , and therefore

10Note that by choosing α0 large enough, we can ensure that t = 2 logα ≤ α/4 = pn/4.
11More precisely, the BFS-distance (BFS = Breadth First Search) between f and g is the length of a
shortest path between f and g in the graph with vertex set F [S] in which two vertices are adjacent precisely
if the corresponding facets share an edge in convS.
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|R| =
∑

f ∈F
b′
f �

∑

f ∈F

∑

f ′∈Nf

b′
f ′ ≥ |R′| ≥ m − α − (1 − μ)m/2

≥ m − μm − (1 − μ)m/2 = (1 − μ)m/2 � m.

To see that (Ri)1≤i≤β is a partition, consider two sets Ri , Rj with i �= j , and
let fi , fj be the corresponding facets. Any point p ∈ R has |Dp| ≤ λ, and Dp is
connected in the dual graph of convS. By construction, we have δ(fi, fj ) > λ, so
there cannot be a point in conflict with both fi and fj . It follows that Ri ∩ Rj = ∅,
since Ri and Rj are the conflict sets of fi and fj . Similarly, we see that Dp , Dq are
disjoint for p ∈ Ri , q ∈ Rj , and no facet in Dp is adjacent to a facet in Dq , because
δ(fi, fj ) > 2λ and Dp , Dq are connected with size at most λ. �

By now, we have established statements 1–4 of Lemma 5.2. It remains to show
how to find all the convex hulls quickly. First, using SplitHull, we can compute
the hulls convS, conv (R ∪ S), and conv (Q \ (R ∪ S)) in time O(m). It remains to
consider the Ri ’s.

Claim 5.5 For i = 1, . . . , β , the convex hull convRi can be computed in O(|Ri |)
time.

Proof Consider an Ri , and let fi be the corresponding facet in convS. First, note that
the subgraph of conv (R ∪ S) induced by Ri is connected, because Ri = R ∩ h+

fi
. Let

Γ denote the points in (R ∪ S) \ Ri that are adjacent in conv(R ∪ S) to a point in
Ri . We have Γ ⊆ S: if there were two points p ∈ Ri , q ∈ Rj , i �= j , such that pq is
an edge of conv (R ∪ S), then pq would also be an edge of conv (S ∪ {p,q}). This
implies that either Dp ∩ Dq �= ∅ or that there are facets f ′ ∈ Dp , f ′′ ∈ Dq such that
f ′ and f ′′ share an edge. Both are impossible by Claim 5.4.

Next, we claim that |Γ | � 1: if p ∈ Ri is adjacent to a point q ∈ S, then it follows
that pq is also an edge of conv (S ∪ {p}), and hence Dp contains a facet incident to
q . Since |⋃p∈Ri

Dp| � 1 and since each facet is incident to three points, the claim
follows.

Now we compute conv (Ri ∪ Γ ) in O(|Ri |) time as follows: let F1 be the set
of facets in F [R ∪ S] incident to Ri , and let F2 be the set of facets in F [Ri ∪ Γ ]
incident to Ri . We have F1 = F2. Clearly, F1 ⊆ F2 by the definition of Γ and since
Ri ∪ Γ ⊆ R ∪ S. If there were a facet f ∈ F2 \ F1, the halfspace spanned by f

would contain only points in (R ∪ S) \ (Ri ∪ Γ ). However, this would mean that
in conv(R ∪ S) all the vertices of f are adjacent to a point in (R ∪ S) \ (Ri ∪ Γ ),
contradicting the choice of Γ . The facets in F1 can be extracted from conv (R ∪ S)

in time O(|Ri ∪ Γ |), and the convex hull of Ri ∪ Γ can be completed in the same
time, since the remaining facets involve only points in Γ , which has constant size.
Now convRi can be extracted from conv (Ri ∪ Γ ) in linear time, either by using
SplitHull or by naively removing the points in Γ one by one. �

This concludes the proof of Lemma 5.2. �

Now, the splitting is performed by the algorithm MultiSplit. Please refer
to Algorithm 5. For the recursion to work, we need to avoid small color classes.
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Algorithm 5 Splitting arbitrary colorings
MultiSplit(convP)

1. For all colors i with |Ci | ≤ 2
√

logn, find convCi directly. Let K denote the remain-
ing colors, and Q = ⋃

i∈K Ci . Use SplitHull to determine convQ.

2. Use Lemma 5.2 with α = 2
√

logn to obtain S,R ⊆ Q, a partition of R1, . . . ,Rβ of
R, and their convex hulls.

3. Call MultiSplit(conv(Q\ (S ∪R))) to find the hulls conv(Ci ∩ (Q\ (S ∪R))).
4. For j = 1, . . . , β , call MultiSplit(convRj ) to find the hulls conv(Ci ∩ Rj ).
5. For i ∈ K , do

(a) For j = 1, . . . , β , merge conv(Ci ∩ Rj ) into convS. This yields conv(S ∪
(Ci ∩ R)).

(b) Use SplitHull to extract conv(Ci ∩ (S ∪ R)).
(c) Compute the union of conv(Ci ∩ (S ∪ R)) and conv(Ci ∩ (Q \ (S ∪ R))) to

obtain convCi .

Thus, the algorithm first computes the convex hull of every Ci with |Ci | ≤ 2
√

logn

in time O(|Ci | log |Ci |) [4, Chap. 11]. Let K denote the remaining colors, and let
Q = ⋃

i∈K Ci , n1 = |Q|, and n2 = n − n1. For Step 5(a), we can use an algorithm to
combine 3-polytopes separated by a plane [5, Chap. 9.3] to merge each conv(Ci ∩Rj)

with conv(S). For j ∈ {1, . . . , β}, this takes time O(1 + |Ci ∩ Rj |), since all new
edges are incident to constantly many points in S by properties 3 and 4 of Lemma 5.2
and since the conflict sets of the Rj do not interact. By Theorem 3.1, Step 5(b) takes
expected time O(|S| + |Ci ∩ R|), and as Chazelle [11] showed, Step 5(c) needs time
O(|Ci |). Hence, the total expected time for Step 5 is O(|K| · |S|+∑

i∈K |Ci |). Recall

that |Ci | > 2
√

logn for all i ∈ K . Hence, |K| < n/2
√

logn and |K| · |S| < n. Therefore,
the total running time of the algorithm is O(n2

√
logn+n), not counting the recursive

calls. The first term represents the time for the convex hull computation in Step 1, and
the second term counts the remaining steps. We get the following recursion for the
running time:

T (n) ≤ T (|Q \ (S ∪ R)|) +
β∑

j=1

T (|Rj |) + c
(
n2

√
logn + n

)

for some constant c > 0. We know that |R| ≥ γ n1 and max1≤j≤β |Rj | ≤ cn1
√

logn/

2
√

logn, where γ ∈ (0,1], and we reuse c (making it larger if necessary). A simple
induction shows that T (n) � n

√
logn. Recalling that |Q| = n1 and plugging in the

inductive hypothesis T (m) ≤ δm
√

logm for m < n and some constant δ > 0, we get

T (n) ≤ δ(n1 − |R|)√logn + δ|R|
√

logn + log
(
c
√

logn
) − √

logn

+ cn2
√

logn + cn

≤ δ(n1 − |R|)√logn + δ|R|
√

logn − 0.5
√

logn + cn2
√

logn + cn
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for n large enough. Since
√

logn − 0.5
√

logn ≤ √
logn − 1/4, it follows that

T (n) ≤ δ(n1 − |R|)√logn + δ|R|√logn − δ|R|/4 + cn2
√

logn + cn

≤ δn1
√

logn + 2cn2
√

logn + (c − δγ /4)n1,

which is bounded by δn
√

logn for δ large enough. This concludes the induction and
the proof of Theorem 5.1.

6 Points in Halfspaces

The problem in this section is to preprocess a point set to report quickly all the points
contained in a query halfspace. However, not only do we want to find the points,
but also their convex hull. We base our approach on a data structure by Chan [7]
that uses filtering search [9]: first, it obtains a superset of the result with compara-
ble size (the candidate set), and then examines each point individually to find the
result. By storing not only the candidate sets, but also their convex hulls, we obtain
a data structure that reports the convex hull of the points in a query halfspace by
using SplitHull. We also show how to improve the preprocessing time over the
straightforward O(n log2 n).

Theorem 6.1 Let P ⊆ R
3 be an n-point set in general convex position. In O(n logn)

time we can build a randomized data structure of O(n logn) size to answer queries
of the following kind: given an oriented plane h, compute the convex hull of P ∩ h+,
where h+ denotes the left halfspace of h. The expected query time is O(logn + k),
where k = |P ∩ h+| denotes the output size.

The main obstacle in improving the preprocessing time is this: given a sample
S ⊆ P , compute the convex hulls of the conflict sets Bf for f ∈ F [S]. In the last
section, we modified the conflict sets to obtain a simple algorithm for this problem.
This is no longer possible, and we need a more sophisticated approach. Given a plane
h, let G(h) denote the induced subgraph of convP with vertex set P ∩h+ (i.e., G(h)

has vertex set P ∩ h+ and contains all edges of convP with both endpoints in h+).
Here are some simple facts about G(h) (e.g., [11]); see Fig. 8.

Lemma 6.2 Let E be the set of edges in G(h) incident to a facet of convP that in-
tersects h. There exists a closed walk12 L along the edges in E such that L separates
G(h) from the rest of convP . Every edge e ∈ E occurs in L once or twice, depending
on whether e is incident to one or two such facets. It follows that G(h) is connected.
Given G(h), L can be found in time O(|V [G(h)]|).

Proof Consider the intersection A of h and convP (interpreted as a subset of R
3).

The set A is a two-dimensional convex polygon whose edges correspond to the facets

12In our terminology, a walk is an arbitrary sequence of adjacent vertices, whereas a path consists of
distinct vertices (except possibly the first and the last).
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Fig. 8 A lace: h+ corresponds
to the inside of the circle. The
lace L is shown in dashed

of convP that intersect h. Let F = f1, f2, . . . , fk be those facets in counterclockwise
order along A, and let F ′ = f ′

1, f
′
2, . . . , f

′
k ⊆ F be the subsequence of facets that are

incident to an edge in E. Since consecutive facets in F ′ share an incident vertex in
P ∩ h+, the sequence F ′ induces a closed walk L along the edges in E. Every path
from a point in P ∩ h+ to a point in P ∩ h− has to cross a point incident to a facet in
F ′. Hence, L separates G(h) from the rest of convP . Furthermore, every edge in E

appears once in L for each incident facet in F ′. Finally, since consecutive edges in L

are consecutive in the cyclic order of edges around their common endpoint in G(h),
L can be computed in time linear in the size of G(h). �

The walk L is called the lace of G(h); see Fig. 8. Knowing G(h) is enough to
compute conv (P ∩ h+) quickly.

Corollary 6.3 Given convP and G(h), we can compute conv (P ∩ h+) in time
O(|P ∩ h+|).

Proof The idea is to find an intermediate polytope P of complexity O(|P ∩ h+|)
whose vertices contain P ∩ h+. This is done by computing (part of) the intersection
of convP with h+ and adding a few edges to ensure general position; see Fig. 9.
Using SplitHull, we extract conv (P ∩ h+) from P in the desired time.

Let L be the lace of G(h). By Lemma 6.2, L can be found in time O(|P ∩ h+|)
from G(h). Let F = f1, . . . , fk be the sequence of facets in F [P ] that are incident to
L and intersect h, where the ordering is according to L. The sequence F induces in
the plane h a sequence E of line segments whose endpoints are in convex position.
As the order of E corresponds to the convex hull order, we can compute the convex
hull C of E in linear time. Let V [C] and E[C] denote the vertices and edges of C .

We are now ready to construct the convex polytope P . The set of P ’s facets con-
sists of three disjoint parts, F1, F2, and F3: (i) F1 contains the facets of G(h); (ii) for
each line segment e ∈ E, F2 contains a quadrilateral facet spanned by e and its corre-
sponding edge ẽ in L.13 Furthermore, for each e ∈ E[C] \ E, F2 contains a triangular
facet fe spanned by e and the point in P ∩ h+ incident to the edges whose intersec-
tions with h determine e; (iii) let Z be the unbounded prism with base C that extends

13That is, ẽ is the edge incident to the facet whose intersections with h create e.
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Fig. 9 The halfspace range reporting algorithm: The three stages of Corollary 6.3: Given G(h), find an
intermediate polytope that contains the result and split it

Fig. 10 Finding the conflict
facets for an edge. D{p,q} is
darkest, while Dp,Dq are
lighter. Dp is bounded by
dashed line segments, Dq by
dotted line segments

into h−. Pick a point q ∈ Z ∩ convP infinitesimally close to h. F3 contains all facets
spanned by q and an edge in E[C]. It is easily seen that the facets in F1 ∪F2 ∪F3 are in
convex position and bound a convex polytope P with O(|P ∩h+|) vertices. Since all
the facets of P have bounded complexity and since all vertices in V [C] have bounded
degree, we can perform a local perturbation of V [C] to obtain a polytope P ′ in gen-
eral position. Now we compute conv (P ∩ h+) in time O(|V [P ′]|) = O(|P ∩ h+|)
using SplitHull. �

For Corollary 6.3, we need to compute all the graphs G(hf ) for f ∈ F [S] (recall
that hf denotes the plane supporting f in convS).

Lemma 6.4 Let S ⊆ P be a random subset. Then the graphs G(hf ) for f ∈ F [S]
can be computed in O(n) expected time.

Proof By Lemma A.4 the total size of the sets P ∩h+
f and hence the total complexity

of the graphs G(hf ) is O(n). Let e = (p, q) ∈ E[P ], and let De = Dp ∩ Dq be the
facets in conflict with both p and q; see Fig. 10. Note that e ∈ G(hf ) precisely if
f ∈ De. We will compute the sets De for e ∈ E[P ] and then use them to construct
the graphs G(hf ). Let Te denote the graph on vertex set De where two vertices f1, f2

are adjacent if f1, f2 share an edge in convS that is destroyed in conv (S ∪ {p,q}).
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Algorithm 6 Computing the subgraphs
ComputeSubgraphs

1. For every e ∈ E[P ], if fe �= ⊥, use fe to compute De . For each f ∈ De, create
records for the two half edges corresponding to e in G(hf ).

2. For every point p ∈ P , use fp to find Dp . For each f ∈ Dp , create a record pf

corresponding to p in G(hf ). Every facet in Dp has a pointer p which we set to
pf . For each incident edge e of p in cyclic order, iterate through all facets f ∈ De.
Use the pointer p of f to find the record pf corresponding to p in G(hf ) and add
the appropriate half edge to the edge list of pf .

Since Te is connected,14 it suffices to compute one facet fe ∈ De (if it exists). The
remaining facets can be found by traversing Te.

We extend SubsetConflictWalk to find conflict facets of edges by changing
Step 2(d) as follows: when considering a neighbor q ∈ ΓP (p), we not only compute
the conflict facet fq , but also a conflict facet fe for the edge e = {p,q}, if it exists.
To do this, let Γp denote the simple polygon in convS that bounds the conflict region
of p. The facet f̃q ∈ F [S ∪ p] is adjacent to an edge eq on Γp , and q conflicts with
at least one facet in convS incident to eq . Let f1, f2 ∈ F [S] be the facets incident
to eq , where f1 conflicts with p while f2 does not. Now, if q conflicts with f1, we
set fq = fe = f1, otherwise, we set fq = f2 and fe = ⊥.15 This takes constant time,
and therefore the running time of the algorithm remains linear, as in the proof of
Lemma 4.2.

To prove correctness, we claim that if De �= ∅, then f1 ∈ De. Indeed, let T be the
graph on vertex set Dp ∪ Dq , where two vertices g1, g2 of T are adjacent if g1, g2
share an edge in E[S] that is destroyed in conv (S ∪ {p,q}). We have that Te is a
subgraph of T and that T is a tree (by convex position). Observe that eq corresponds
to the edge e∗

q = {f1, f2} of T . Let T1 be the connected component of T \ e∗
q , with

f1 ∈ T1. Note that Dp ⊆ V [T1]. Furthermore, at least one of f1, f2 is in conflict
with q , hence Dq ∩ {f1, f2} �= ∅. Since the induced subgraph of T on vertex set
Dq is connected, it follows that if V [T1] ∩ Dq �= ∅, then Dq contains f1, and hence
f1 ∈ Dp ∩ Dq = De, as desired.

Using the sets De, we can now compute a DCEL representation of the graphs
G(hf ) in O(n) time through careful pointer manipulation (Algorithm 6). �

Proof of Theorem 6.1 We rely on a variant of Chan’s data structure [7] due to
Ramos [31]. The candidate sets are the conflict sets of an appropriate gradation of P .
By Corollary 6.3 and Lemma 6.4, we can find their convex hulls in time O(n logn).
To process a query, we extend the original query algorithm to use SplitHull on
the candidate set after coloring the points in h+ blue.

The details are as follows: take a gradation ∅ = P−1 ⊆ P0 ⊆ · · · ⊆ Plogn = P ,
where Pi−1 is derived from Pi by sampling every point with probability 1/2. We

14We define the empty graph to be connected.
15As is often done in the study of programming languages, we use ⊥ as a symbol for an undefined value.
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compute the convex hulls convPi in time O(n logn). Using Lemma 6.4 and Corol-
lary 6.3, we then find the convex hulls convBf for all the conflict sets Bf , f ∈ F [Pi],
i = 0, . . . , logn. Since this takes O(n) time for each i, the total time is O(n logn).
Now we switch into dual space. For this, we use duality with respect to the unit
paraboloid which turns upper convex hulls into upper envelopes and lower convex
hulls into lower envelopes [30, Chap. 2.4.1]. We compute two data structures, one
for the upper envelope and one for the lower envelope, focusing the discussion on
the lower envelope. For each i = 0, . . . , logn, we find the set of planes Hi dual to
Pi and a canonical triangulation Ti of the lower envelope of Hi (this takes linear
time since we know convPi ). Then we construct a point location structure for the
xy-projection of Ti . Every facet Δ of Ti is incident to at most three points of the
lower envelope of Hi , corresponding to at most three facets f1, f2, f3 of convPi .
Let BΔ = Bf1 ∪ Bf2 ∪ Bf3 . We compute convBΔ in linear time [11] and store it
with Δ. By the properties of canonical triangulations and the arguments given by
Chan [7], the preprocessing phase takes expected time O(n logn) and uses expected
space O(n logn). Then we repeat the process to obtain two independent data struc-
tures D1,D2.

Now suppose that we are given a query plane h. We need to find all the planes in
H below h∗, the point dual to h. Let � be the vertical line through h∗. Perform the fol-
lowing procedure simultaneously on D1 and D2, until one of them yields the answer:
For i = log(n/ logn), log(n/ logn) − 1, . . . ,0, locate the facet Δi of Ti intersected
by � in O(logn) time with the point location structure. Stop when the dual point h∗
lies below the lower envelope of Hi . Now find the planes in H below h∗ by inspect-
ing the conflict set BΔi

and use SplitHull to compute conv (P ∩ h+) in O(|BΔi
|)

time. As was argued by Ramos [31, Sect. 2.2.1], such a query takes expected time
O(logn+|P ∩h+|), as claimed. For completeness, we have included the calculation
in Appendix B. �

7 Union of Hulls

Finally, we consider the issue of output-sensitivity: if we are only interested in the hull
of the blue points, under which circumstances can it be computed quickly without
looking at the whole polytope? For this, we look at the problem DISJUNION, where
the task is the following: given point sets P1, . . . ,Pk ⊆ R

3 and their convex hulls
convP1, . . . , convPk such that convPi ∩ convPj = ∅ for i �= j and such that P =⋃k

i=1 Pi is in convex position, we would like to compute convP . In general, we
cannot do better than to repeatedly merge pairs of the hulls.

Theorem 7.1 Any algorithm that solves DISJUNION requires Ω(|P | log k) compar-
isons.

Proof We use an old lower bound [11, Sect. 4A] and combine it with Seidel’s method
of including the index as a coordinate [32]. We reduce from the list merging problem,
in which k sorted lists of numbers need to be merged into one. We lift the lists onto
the unit paraboloid y = x2, using the z-coordinate to represent the index of the list.
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Fig. 11 An illustration of the
reduction from LISTMERGE to
DISJUNION for the 3 lists
(5,9,12,14), (1,8),
(2,4,6,7,10,13), and (3,11).
The path marked by the bold
edges represents the merged list

Clearly, the lifting and the individual convex hulls, which are pairwise disjoint, can
be found in time O(n). A simple geometric argument now shows that the merged list
can be derived from the convex hull of the union in linear time; see Fig. 11.

More precisely, consider the problem LISTMERGE: given k sorted integer se-
quences L1, . . . ,Lk , compute the sorted list L = ⋃k

i=1 Li . A straightforward count-
ing argument shows that any algorithm for LISTMERGE requires Ω(|L| log k) com-
parisons. We describe a linear time reduction from LISTMERGE to DISJUNION:
let Li = (r1, . . . , rj ). We map Li to a point set Pi ⊆ R

3 by mapping each rz to
p(rz) = (rz, r

2
z , i). All the points lie on the parabolic surface y = x2, and hence

P = ⋃k
i=1 Pi is in convex position. Furthermore, each Pi is contained in the plane

z = i, and hence convPi ∩ convPj = ∅ for i �= j . The convPi can be computed in
linear time, since the lists Li are sorted.

If r , s are consecutive in the sorted list L, then p(r)p(s) is an edge of convP .
To see this, let p̂(r), p̂(s) denote the projections of p(r),p(s) onto the xy-plane,
and let h denote the plane orthogonal to the xy-plane that contains the line segment
p̂(r)p̂(s). By definition, h contains p(r) and p(s), and hence also the line segment
p(r)p(s). Furthermore, all other points of P are on the same side of h. For this,
fix i ∈ {1, . . . , k} and consider the parabola Zi : x �→ (x, x2, i). Clearly, h intersects
Zi in the points (r, r2, i) and (s, s2, i), cutting off the part of Zi between r and s.
Since r and s are consecutive in L, this part contains no points in Pi . It follows that
h supports the line segment p(r)p(s), making it an edge of convP . Consequently,
it takes Ω(|P | log k) time to compute convP , since otherwise we could recover the
sorted list L by examining the O(|P |) edges of convP . �

Intuitively, what makes our lower bound instance hard is the fact that when merging
convPi , we need to switch often between the individual hulls in an unpredictable
way. We can avoid this by imposing additional constraints on the input, and thus
obtain a better result.

Theorem 7.2 Let Q ⊆ R
3 be in general convex position. Let P = ⋃k

i=1 Pi ⊆ Q

with |P | = n such that the Pi are pairwise disjoint and the subgraphs convQ|Pi

are connected. Then, given spanning trees T1, . . . , Tk for convQ|Pi
, we can compute

convP in expected time O(n log∗ n + k logk).

Proof We use Seidel’s tracing technique [33]: pick a subset K ⊆ P that meets each
Ti in exactly one point, and an appropriate gradation S0 ⊆ · · · ⊆ Sβ = P \ K with
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β � log∗ n. Then compute conv (S0 ∪ K) in time O(n + k logk) and successively
each conv (Si ∪ K) in O(n). Here, the bottleneck is to locate the conflict facets for
Si+1 in conv(Si ∪ K). This is done using the spanning trees Ti and an appropriate
variant of SubsetConflictWalk.

We may assume that k < n/2, since otherwise the theorem is easy. Let K ⊆ P

be such that K contains exactly one point of each Pi , and let m = n − k. Let
z = max{k,m/ logm} and choose 1 ≤ α ≤ log∗ m such that m/ log(α−1) m < z ≤
m/ log(α) m, where log(i) m denotes the ith iterated logarithm16 of m. Let β =
log∗ m − α + 1. Compute a gradation of subsets S0 ⊆ · · · ⊆ Sβ = P \ K such that Si

is a random subset of Si+1 with |S0| = z and |Si+1| = |Si | log(α+i) m/ log(α+i+1) m

for 0 ≤ i < β . By induction, it follows that |Si | ≤ m/ log(α+i). For i = 0, . . . , β ,
let S̃i = Si ∪ K . We will show how to compute conv S̃i+1 from conv S̃i in time
O(n) for each i. Furthermore, conv S̃0 can be computed in time O(n + k logk)

with a regular convex hull algorithm, as |S0 ∪ K| = O(n/ logn + k). Hence, it takes
O(n log∗ n + k logk) steps to compute convQ = conv S̃β .

To derive conv S̃i+1 from conv S̃i , we proceed in two steps: first, we determine the
conflict sets Bf for f ∈ F [S̃i]. Below, we will argue that this can be done in linear
time. Then, we use the algorithm from Lemma A.5 to compute conv S̃i+1. This takes
time proportional to

(
|Si+1| + k

|Si+1|
|Si |

)
log

|Si+1|
|Si | ≤ 2|Si+1| log

(
log(α+i) m

log(α+i+1) m

)

� m

log(α+i+1) m
log

(
log(α+i) m

log(α+i+1) m

)
,

since k ≤ |S0| ≤ |Si |. The last term is O(n), as claimed.
It remains to show how to find the conflict sets Bf in time O(n). For each

j = 1, . . . , k, we determine conflict facets for Pj as follows: let rj = Pj ∩ K . We
use a slight modification of SubsetConflictWalk: merge the neighbors of rj
in conv S̃i with the neighbors ΓTj

(rj ) of rj in Tj in order to find a conflict facet fp

for each p ∈ ΓTj
(rj ). Then continue in a BFS-manner along Tj , inserting in turn

each p ∈ ΓTj
(rj ) into conv S̃i , and so on. As in Sect. 4, we see that the total time is

proportional to

∑

p∈S̃i

degS̃i
p +

k∑

j=1

∑

p∈Tj

degTj
p +

∑

p∈P \Si

dp � |S̃i | + |P | +
∑

f ∈F [S̃i ]
bf

� |P | + n − k + k
|Si+1|
|Si | ,

by Lemma A.4. Since k ≤ |Si | and |Si+i | ≤ n, the last term is linear. This finishes the
proof. �

16Defined by log(0) m = m and log(k) m = max{1, log(log(k−1) m)} for k ≥ 1.
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For our original question, this means that we can quickly compute the blue hull
without considering the whole polytope, as long as the number of induced blue com-
ponents is small.

Corollary 7.3 Let P ⊆ R
3 be a finite point set in general convex position, and let B

be a subgraph of convP with n vertices. Then convV [B] can be computed in time
O(n log∗ n + k logk), where k denotes the number of connected components of B .

Proof This follows immediately from Theorem 7.2. Given B , we can find spanning
trees for its components in O(n) time, using, say, depth-first search [20]. �

In particular, we get the following nice fact about Delaunay triangulations, which
provides a Delaunay analogue to an old result by Bar-Yehuda and Chazelle [3].

Corollary 7.4 Let T = (V ,E) be a Delaunay triangulation, and let S ⊆ T be a
set of n vertices and edges of T with k connected components. Then the Delaunay
triangulation of S can be computed in time O(n log∗ n + k logk).

Proof Use Corollary 7.3 and the connection between planar Delaunay triangulations
and three-dimensional convex hulls [4, Chap. 11.4]. �

Appendix A: Clarkson–Shor Toolbox

We review a few tools from geometric random sampling theory [19, 30]. Our pre-
sentation follows Ramos [31]. Let P ⊆ R

3 with |P | = n, and K ⊆ P with |K| = k.
Given a triple u = (p1,p2,p3) ∈ P 3, let hu be the plane spanned by u, oriented such
that the set of vectors {u2 −u1, u3 −u1,p −u1} has positive determinant for p ∈ h+

u .
A point p ∈ P conflicts with u if p lies in h+

u . Let Bu denote the set of all points in
P that conflict with u, and bu = |Bu|.

Lemma A.1 Fix p ∈ (0,1] and t ≥ 1. Let S ⊆ P \ K be a random subset of size
p(n − k), and let S′ ⊆ P \ K be a random subset of size p′(n − k) for p′ = p/t .
Suppose that p′(n−k) ≥ 4. Fix u = (p1,p2,p2) ∈ P 3, and let fu be the facet defined
by u. Then

Pr[fu ∈ F [S ∪ K]] � t3 exp

(
− (t − 1)pbu

t

)
Pr[fu ∈ F [S′ ∪ K]]. (6)

Proof Let σ = Pr[fu ∈ F [S ∪K]] and σ ′ = Pr[fu ∈ F [S′ ∪K]]. Note that fu appears
in F [S ∪ K] precisely if u ⊆ S ∪ K and Bu ∩ (S ∪ K) = ∅. If K ∩ Bu �= ∅, then
σ = σ ′ = 0, and the lemma holds. Thus, we may assume that K and Bu are disjoint.
Let m = n − k, and let du denote 3 − |K ∩ u|, the number of points in u not in K .
Since there are

(
m−bu−du
pm−du

)
ways of choosing a pm-subset from P \ K that avoids all

elements in Bu and contains all the relevant points of u, we have

σ =
(

m − bu − du

pm − du

)/(
m

pm

)
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=
∏pm−du−1

j=0 (m − bu − du − j)
∏pm−du−1

j=0 (pm − du − j)

/ ∏pm−1
j=0 (m − j)

∏pm−1
j=0 (pm − j)

=
du−1∏

j=0

pm − j

m − j

pm−du−1∏

j=0

m − bu − du − j

m − du − j

≤ pdu

pm−du−1∏

j=0

(
1 − bu

m − du − j

)
.

Similarly, we get

σ ′ =
du−1∏

j=0

p′m − j

m − j

p′m−du−1∏

j=0

(
1 − bu

m − du − j

)
,

and since p′m ≥ 4 and j ≤ 2 (in the first product), it follows that

σ ′ ≥
(

p′

2

)du p′m−du−1∏

j=0

(
1 − bu

m − du − j

)
.

Therefore, since p′ = p/t ,

σ

σ ′ ≤ 8

(
p

p′

)du pm−du−1∏

j=p′m−du

(
1 − bu

m − du − j

)
≤ 8t3

(
1 − bu

m

)(t−1)pm/t

≤ 8t3 exp

(
− (t − 1)pbu

t

)
,

as desired. �

The lemma implies a Chernoff-type bound for the conflict size of a random sample.

Lemma A.2 Fix p ∈ (0,1] and let S ⊆ P be a random subset of size pn. Fix t ≥ 1
such that t ≤ pn/4 and let F≥t = {f ∈ F [S] | bf ≥ t/p}. Then

E
[|F≥t |

] � t2e−tpn.

Proof Let S′ ⊆ P be a random subset of size pn/t . Since pn/t ≥ 4, we have

E
[|F≥t |

] =
∑

u∈P 3

bu≥t/p

Pr
[
fu ∈ F [S]]

�
∑

u∈P 3

bu≥t/p

t3 exp

(
− (t − 1)pbu

t

)
Pr

[
fu ∈ F [S′]] (by (6))
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� t3e−tE
[∣∣F [S′]∣∣] � t2e−tpn,

because E [|F [S′]|] � pn/t . �

Next, we want to bound the average conflict size. For this, we first determine the
average for a particular function, from which we then deduce bounds for a large class
of well-behaved functions.

Lemma A.3 Fix p ∈ (0,1] and let S ⊆ P \ K be a random subset of size p(n − k).
Then

E
[ ∑

f ∈F [S∪K]
exp

(
pbf

2

)]
� p(n − k) + k. (7)

Proof We may assume that p(n−k)/2 ≥ 4, because otherwise pbf = O(1) for every
f ∈ F [S ∪K] (as all these f have bf ≤ n− k and conv(S ∪K) has O(p(n− k)+ k)

facets), and the lemma would hold trivially. Let S′ ⊆ P \ K be a random subset of
size p(n − k)/2. We have

E
[ ∑

f ∈F [S∪K]
exp

(
pbf

2

)]
=

∑

u∈P 3

Pr
[
fu ∈ F [S ∪ K]] exp

(
pbu

2

)

�
∑

u∈P 3

Pr
[
fu ∈ F [S′ ∪ K]] (by (6))

= E
[∣∣F [S′ ∪ K]∣∣] � p(n − k) + k.

�

Using this bound, we can show that the sum of every well-behaved function over
the conflict sizes of a random sample gives the value one would expect. This remains
true if a few points from P are always included in the sample.

Lemma A.4 Fix p ∈ (0,1] and let S ⊆ P \ K be a random subset of size p(n − k).
Let g be a function such that g(tn) � etg(n) for all t ≥ 0. Then

E
[ ∑

f ∈F [S∪K]
g(bf )

]
� (

p(n − k) + k
)
g (1/p) .

In particular, choosing k = 0 and g : n �→ nγ for γ ≥ 0, we have

E
[ ∑

f ∈F [S]
b

γ

f

]
� np1−γ , (8)

and choosing g : n �→ n logn, we get

E
[ ∑

f ∈F [S∪K]
bf logbf

]
� (n − k + k/p) log(1/p). (9)
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Proof We have

E
[ ∑

f ∈F [S∪K]
g(bf )

]
= E

[ ∑

f ∈F [S∪K]
g

(
pbf

2
· 2

p

)]

� e2g(1/p)E
[ ∑

f ∈F [S∪K]
exp(pbf /2)

]

� (
p(n − k) + k

)
g (1/p) ,

by (7). �

The following lemma follows from a standard application of the geometric divide-
and-conquer technique [12, 18, 19] and asserts that a convex hull can be computed
faster if a random partial hull and the corresponding conflict information are known.

Lemma A.5 Fix p ∈ (0,1] and let S ⊆ P \ K be a subset of size p(n − k). Suppose
that conv (S ∪ K) and the conflict sets Bf ⊆ P for f ∈ F [S ∪K] are available. Then
we can find convP in expected time

∑
f ∈F [S∪K] bf logbf . In particular, if S is a

random subset, the running time is O((n − k + k/p) log(1/p)).

Proof Let S̃ = S ∪K . Without loss of generality, we assume that conv S̃ contains the
origin. Instead of convP , we compute (P ∗)∩, the intersection of the halfspaces dual
to the points in P . For this, we first obtain (S̃∗)∩, which takes linear time, since conv S̃

is known. The vertices of (S̃∗)∩ correspond to the facets of conv S̃. In particular, each
vertex f of (S̃∗)∩ has a conflict list B∗

f of size bf . We compute a tetrahedralization

T of (S̃∗)∩ as follows: for each facet g of (S̃∗)∩, determine the vertex fg incident
to g with minimum bfg .17 The vertex fg is called the apex of g. Triangulate g by
adding line segments from the apex to all other vertices of g. Finally, extend this
triangulation to a tetrahedralization by lifting it to the origin. This takes linear time.

The conflict set of a simplex s is precisely B∗
s = B∗

f1
∪ B∗

f2
∪ B∗

f3
, where f1, f2,

f3 are the vertices of s other than the origin. Let bs = |Bs |. We determine the in-
tersection of the halfspaces in B∗

s and clip it to s. Then we glue the parts together
to obtain (P ∗)∩ and hence convP . This takes time O(

∑
s∈T bs logbs). Consider a

simplex s ∈ T and let fs, f1, f2 be its vertices other than the origin. Here fs de-
notes the apex of the facet of (S̃∗)∩ that contains a facet of s, and we call fs also
the apex of s. By definition, we have bs = fs + f1 + f2 ≤ 2(f1 + f2), and hence
bs logbs � f1 logf1 + f2 logf2. By general position, every vertex of (S̃∗)∩ has de-
gree 3 and thus appears in only constantly many simplices of T as a nonapex. Hence,∑

s∈T bs logbs � ∑
f ∈F [S̃] bf logbf , as claimed. Now, if S is a random sample, this

sum is proportional to (n − k + k/p) log(1/p), by Corollary A.4(9). �

17We take the lexicographically smallest if there is more than one such vertex.
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Appendix B: Analyzing the Halfspace Range Reporting Structure

We present Ramos’ analysis [31] of a variant of Chan’s data structure [7]. Let Ei

denote the event that i is the largest index for which h∗ lies below the lower envelope
of Hi in either D1 or D2. The expected running time is

logn−log logn∑

i=0

(
(logn − log logn − i) logn + E

[|BΔi
| | Ei

])
Pr[Ei]. (10)

Let k = |P ∩ h+|. Note that E [|BΔi
| | Ei] = O(k + n/2i ), since by standard random

sampling theory the expected size of a conflict list in Ti is O(n/2i ) and the random
choices for the points in P \ (P ∩ h+) are independent of Ei . Thus,

(10) �
log(n/ logn)∑

i=0

((
log

(
n

logn

)
− i

)
logn + k + n

2i

)
Pr[Ei]

� k +
log(n/ logn)∑

i=log(n/k)

((
log

(
n

logn

)
− i

)
logn + n

2i

)
Pr[Ei]

+
log(n/k)−1∑

i=0

((
log

(
n

logn

)
− i

)
logn + n

2i

)
Pr[Ei].

If k < logn, the first sum is zero. Otherwise, we get

log(n/ logn)∑

i=log(n/k)

((
log

(
n

logn

)
− i

)
logn + n

2i

)
Pr[Ei]

≤ (logn) log

(
k

logn

)
+

∑

i≥log(n/k)

n

2i
� k.

To bound the second sum, we observe that Pr[Ei] ≤ (k2i+1/n)2, because if Ei holds,
then Pi+1 in both data structures D1 and D2 must necessarily contain one of the at
most k points in P ∩ h+. We get

log(n/k)−1∑

i=0

((
log

(
n

logn

)
− i

)
logn + n

2i

)
Pr[Ei]

≤ (logn) log

(
k

logn

)
+

log(n/k)−1∑

i=0

((
log

(
n

k

)
− i

)
logn + n

2i

)(
k2i+1

n

)2

� k +
log(n/k)∑

j=1

(
j logn + 2j k

)
2−2(j−1) � logn + k,

as desired.



822 Discrete Comput Geom (2011) 45: 796–823

References

1. Aggarwal, A., Guibas, L.J., Saxe, J., Shor, P.W.: A linear-time algorithm for computing the Voronoi
diagram of a convex polygon. Discrete Comput. Geom. 4(6), 591–604 (1989)

2. Amato, N.M., Goodrich, M.T., Ramos, E.A.: Linear-time triangulation of a simple polygon made
easier via randomization. In: Proc. 16th Annu. ACM Sympos. Comput. Geom. (SoCG), pp. 201–212
(2000)

3. Bar-Yehuda, R., Chazelle, B.: Triangulating disjoint Jordan chains. Int. J. Comput. Geom. Appl. 4(4),
475–481 (1994)

4. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and
Applications, 3rd edn. Springer, Berlin (2008)

5. Boissonnat, J.D., Yvinec, M.: Algorithmic Geometry. Cambridge University Press, New York (1998)
6. Buchin, K., Mulzer, W.: Delaunay triangulations in O(sort(n)) time and more. In: Proc. 50th Annu.

IEEE Sympos. Found. Comput. Sci. (FOCS), pp. 139–148 (2009)
7. Chan, T.M.: Random sampling, halfspace range reporting, and construction of (≤ k)-levels in three

dimensions. SIAM J. Comput. 30(2), 561–575 (2000)
8. Chan, T.M.: Three problems about simple polygons. Comput. Geom. Theory Appl. 35(3), 209–217

(2006)
9. Chazelle, B.: Filtering search: a new approach to query-answering. SIAM J. Comput. 15(3), 703–724

(1986)
10. Chazelle, B.: Triangulating a simple polygon in linear time. Discrete Comput. Geom. 6(5), 485–524

(1991)
11. Chazelle, B.: An optimal algorithm for intersecting three-dimensional convex polyhedra. SIAM J.

Comput. 21(4), 671–696 (1992)
12. Chazelle, B.: The Discrepancy Method: Randomness and Complexity. Cambridge University Press,

New York (2000)
13. Chazelle, B., Devillers, O., Hurtado, F., Mora, M., Sacristán, V., Teillaud, M.: Splitting a Delaunay

triangulation in linear time. Algorithmica 34(1), 39–46 (2002)
14. Chew, L.P.: Building Voronoi diagrams for convex polygons in linear expected time. Tech. Rep. PCS-

TR90-147, Dartmouth College, Computer Science, Hanover, NH (1990)
15. Chew, L.P., Fortune, S.: Sorting helps for Voronoi diagrams. Algorithmica 18(2), 217–228 (1997)
16. Chin, F., Snoeyink, J., Wang, C.A.: Finding the medial axis of a simple polygon in linear time. Discrete

Comput. Geom. 21(3), 405–420 (1999)
17. Chin, F., Wang, C.A.: Finding the constrained Delaunay triangulation and constrained Voronoi dia-

gram of a simple polygon in linear time. SIAM J. Comput. 28(2), 471–486 (1998)
18. Clarkson, K.L.: A randomized algorithm for closest-point queries. SIAM J. Comput. 17(4), 830–847

(1988)
19. Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational geometry. II. Discrete

Comput. Geom. 4(5), 387–421 (1989)
20. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT

Press, Cambridge (2009)
21. Devillers, O.: Randomization yields simple O(n log∗ n) algorithms for difficult �(n) problems. Int.

J. Comput. Geom. Appl. 2(1), 97–111 (1992)
22. Djidjev, H.N., Lingas, A.: On computing Voronoi diagrams for sorted point sets. Int. J. Comput.

Geom. Appl. 5(3), 327–337 (1995)
23. Dobkin, D.P., Kirkpatrick, D.G.: Fast detection of polyhedral intersection. Theor. Comput. Sci. 27(3),

241–253 (1983)
24. Dobkin, D.P., Kirkpatrick, D.G.: A linear algorithm for determining the separation of convex polyhe-

dra. J. Algorithms 6(3), 381–392 (1985)
25. Fournier, H., Vigneron, A.: A tight lower bound for computing the diameter of a 3D convex polytope.

Algorithmica 49(3), 245–257 (2007)
26. Kirkpatrick, D.G., Klawe, M.M., Tarjan, R.E.: Polygon triangulation in O(n log log n) time with

simple data structures. Discrete Comput. Geom. 7(4), 329–346 (1992)
27. Klein, R., Lingas, A.: A linear-time randomized algorithm for the bounded Voronoi diagram of a

simple polygon. Int. J. Comput. Geom. Appl. 6(3), 263–278 (1996)
28. van Kreveld, M.J., Löffler, M., Mitchell, J.S.B.: Preprocessing imprecise points and splitting triangu-

lations. In: Proc. 19th Annu. Internat. Sympos. Algorithms Comput. (ISAAC), pp. 544–555 (2008)
29. Matoušek, J.: Lectures on Discrete Geometry. Graduate Texts in Mathematics, vol. 212. Springer,

New York (2002)



Discrete Comput Geom (2011) 45: 796–823 823

30. Mulmuley, K.: Computational Geometry: An Introduction Through Randomized Algorithms. Engle-
wood Cliffs, Prentice-Hall (1994)

31. Ramos, E.A.: On range reporting, ray shooting and k-level construction. In: Proc. 15th Annu. ACM
Sympos. Comput. Geom. (SoCG), pp. 390–399 (1999)

32. Seidel, R.: A method for proving lower bounds for certain geometric problems. Tech. Rep. TR84-592,
Cornell University, Ithaca, NY, USA (1984)

33. Seidel, R.: A simple and fast incremental randomized algorithm for computing trapezoidal decompo-
sitions and for triangulating polygons. Comput. Geom. Theory Appl. 1(1), 51–64 (1991)


	Computing Hereditary Convex Structures
	Abstract
	Introduction
	Definitions and Notation
	Splitting Polytopes
	Splitting Random Colorings
	Splitting Arbitrary Colorings
	Points in Halfspaces
	Union of Hulls
	Appendix A: Clarkson-Shor Toolbox
	Appendix B: Analyzing the Halfspace Range Reporting Structure
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<


    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>

    /HEB <>

    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>


    /SKY <>

    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <>

    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


