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The combination of divide-and-conquer and random sampling has proven very effective in the
design of fast geometric algorithms. A flurry of efficient probabilistic algorithms have been recently
discovered, based on this happy marriage. We show that all those algorithms can be derandomized
with only polynomial overhead. In the process we establish results of independent interest concerning
the covering of hypergraphs and we improve on various probabilistic bounds in geometric complexity.
For example, given n hyperplanes in d-space and any integer r large enough, we show how to compute,

in polynomial time, a simplicial packing of size O(rd) which covers d-space, each of whose simplices
intersects O(n/r) hyperplanes.

1. Introduction

Recent efforts have demonstrated the considerable power of randomization in
speeding up geometric algorithms, especially at the low end of the complexity spec-
trum. Efficient Las Vegas algorithms have been discovered for range searching, trian-
gulation, nearest neighbors, convex hulls, hidden-surface removal, motion-planning,
etc. [1,3,4,5,6,7,9,10,13,20,26]. But for all their appeal, probabilistic algorithms raise
a disturbing question: how much distortion in the deterministic complexity of a prob-
lem do we let in by allowing randomization? Put more bluntly, what can we hope
to learn from probabilistic models? The issue has been under intense scrutiny late-
ly, especially in the context of the NC vs. RNC question. A popular technique for
removing randomization is to check if mutual independence is necessary, and if not,
reduce the probability space to allow exhaustive searching (see Joffe’s construction
in [14] and the discussion of it in [2]). Another approach is the method of conditional
probabilities (Raghavan [19], Spencer [22], Pach and Spencer [18]). The basic idea is
to estimate the probabilities of failure associated with the nodes of the computation
tree. The difficulty is that estimating these probabilities may not always be doable
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Throughout this paper, unless specified otherwise, logarithms are taken to the base 2
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(2) Halfplane Range Search. Given n points in E%, there exists a data structure of
size O(ndt€) for counting how many points lie on one side of a query hyperplane
in time O(logn) (Clarkson [4]). There is also a data structure of size O(nLd/ 2)+€)
for reporting all k points on one side of a query hyperplane in time O(k +1logn)
(Clarkson [5]).

(3) Simplez Range Search. Given n points in E¢?, there exists a data structure
of size O(n) for counting how many points lie inside a query simplex in time

d(d—1
0] (na(é_lm% (Haussler and Welzl [13]).

(4) Probabilistic Divide-and-Conguer. Given n hyperplanes in d-space and a pa-
rameter r > 0, there exists a simplical cell decomposition of E? of size O(rd)
such that each simplex intersects O(n(log r)/r) hyperplanes (Clarkson [4], Edels-
brunner et al. [10]). The decomposition can be computed probabilistically in
polynomial time.
Using our techniques, all the probabilistic algorithms listed above can be made
deterministic. The conversions entail little else than re-implementing the random
calls made by the algorithms. Also, we are able to improve upon some of the
complexity bounds stated above. For example, given n hyperplanes in d-space and
any integer r large enough, we show how to compute, in polynomial time, a simplical
packing of size O(rd) which covers d-space, each of whose simplices intersects O(n/r)

hyperplanes.

2. Frames and Covers

A hypergraph H is a pair (V,E), where V is a finite set (the vertices) and F is
a set of nonempty subsets of V' (the edges). We say what H is a multi-hypergraph if
we allow empty and multiple edges. In that case, E is to be understood as a mutiset.
A subset of V of size r is called an r-sample. We define a frame ¥ as a pair (H; ),
where H is a hypergraph and ¢ is a map from 2V to 2F such that (i) (V) = E and
(ii) W' C W C V implies (W) C ¢(W). The frame is said to be of dimension d if
d is a positive real constant and, for each W C V, the size of {WNele€ H(W)} is
at most chld, for some constant ¢. Note that the dimension is not defined uniquely
and that bounded dimension does not imply that |¢(W)| is polynomial in |W|. The
ratio min{|e|/|V| : e € E} is called the threshold of the frame. Finally, we say that
an r-sample R is an 7-cover (or cover, for short) for the frame if it has a nonempty
intersection with every edge of #(R). Here is our main result about frames.

Theorem 1. Let F be a frame of dimension d with n vertices and let 7 < n be any
integer larger than some constant. If the threshold of ¥ 1s at least c(logr)/r, for
some appropriate constant ¢, then it is possible to find an r-cover for the frame in
O(rn®*1) time.

Before giving the proof (section 3), let us relate this result to the way random
samplipg has been used in the computational geometry literature. There are two
basic “schools” to which the majority of randomized geometric algorithms can be
attached one way or the other. One can be traced to (Clarkson [3,4,5,6], Reif and
Sen [20]) and is modeled by hypergraphs of bounded vertez dependency (in our ter-
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3. Covering a Frame

This entire section is devoted to proving Theorem 1. Let ¥ : (H = (V,E); ¢) be
a frame of dimension d with n vertices and let r < n be a positive integer. We shall
assume that 7 is larger than some appropriate constant and that the threshold of the
frame is at least 7d(logr)/r. As we recall, this means that each edge of E contains
at least 7dn(logr)/r vertices. We will successively prove the existence of an r-cover
of size r and then we will show how to compute it in O(rn®+1) time.

To begin with, let us see how far we get with the obvious approach, which is to
pick a random r-sample R. The probability that R fails to intersect a given edge of

H is at most

(" - Wd”(log’")/’"])/(") < (1 - 7—‘“:—gr-)r < exp(~T7dlogr) < 1/r™.

r T

Since E = ¢(V), there are O(n%) edges, so the probability that R is not a cover for
4 is O(n/r™®). This probability can be made less than 1 /2 for, say, any r > /n. 2

Assume now that 7 < /n. To prove the existence of an r-cover, we follow the
approach of (Vapnik and Chervonenkis [25], Haussler and Welzl [13]) and compare
the behavior of r-samples and (2r)-samples. Given a (2r)-sample S we say that an
edge e is a witness for S if 2dlogr < |SNe| < 7. Let 7(r) be the probability that a
random r-sample R fails to be a cover for . Failure means that RN e = @ for some
edge e € ¢(R). Pick one such edge, call it efl, and choose a random r-sample R in
V \ R. With very high probability R’ will “do things right”, that is, make the edge
¢ a witness for RU R'. Let p(r) be the probability that at least one edge e € ¢(R)
both fails to intersect R and is a witness for RUR’ (where both R and R’ are picked

randomly, with the condition RN R’ = §). We have
p(r) > n(r) x Prob[|[R' N e®| > 2dlogr : Je € ¢(R);RNe =10,

and therefore

(3.1) pry= (1= ). h(uk) | (),

0<k<|2d10gT]

where h(u, k) = (Z) (’;’f__ :) / (’;‘) m=n—r, and u = [7dn(logr)/r]. Using

the trivial approximations

(a—b)b< a <gﬁ
b~ \bp) T W’

uk(m - u)’r‘k T
ot < === ()

we find

2 All the results of this paper are trivial if the vertex set has a constant number of vertices.
Therefore we shall implicitly assume that n always exceeds any appropriate constant.
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From Robbins’ approximation of the factorial [12],

tle IVt e/ (24D <yt o yto—t 2t e}/ (12D

r (r - k)k r
(k) < ﬁ <(p) a+Zy,

for 1 <k < r/2, and using the fact that r < m/2,

b < () (1= ) (1 ) (10 Z)

m

we derive

The function f(x) = (M/z)® achieves its maximum at z = M /e, therefore

u 2
h(u, k) < exp(——(r — k — C) + 4dlogr + %T—) < pmd/s
m e m° T
for r large enough and k < 2dlogr. From (3.1) it follows that

(3.2) p(r) > (1 = (2dlogr + 1)r~%*)x(r) > n(r) /2.
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)
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. - old of # is at least
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feviey (cio%erl algorithm [15] woulq work just fine. The method is simple’ and it is
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strengthen the covering quality of the computed sample. We will then iterate the
modified algorithm a few times to find a small sequence of samples Ry 2 -+ 2 Ry,
out of which an r-cover can be easily derived.

Until specified otherwise let us now consider H = (V, E) to be an arbitrary
hypergraph with n vertices and O(nd) edges, without any reference to a frame. Let
a be a real (not necessarily a constant) such that 0 < a < 1, and assume that each
edge of H has at least an vertices. Lovasz’s greedy cover algorithm starts with the
empty sample R. Then, it iterates on the following process, each time adding one
vertex to the current sample R, until every edge of H intersects R.

1. Pick the vertex v of maximum degree and add it to the sample R.
2. Delete the vertex v from the current hypergraph as well as the edges that contain
it.
How big is the sample R? Let k be the number of edges in H and let k' be the
number of edges in the resulting hypergraph after the first iteration. The number of
removed edges, k — k' is at least ok, therefore k' < (1 —a)k. After |R| iterations the

hypergraph will be left with no more than roughly (1 — a)lRlnd edges. This ensures
termination within |R| = O((logn)/a) steps. To implement the algorithm efficiently,
we can compute all the vertex-degrees in preprocessing and then find the largest one.
After removing the vertex in question, we delete its incident edges: for each of them
we update the vector of vertex-degrees. The time required to do this can be charged
to the removed edges, so the total running time is O(nt+1).

If H were the hypergraph of a frame of dimension d then we could use the greedy
algorithm to compute an r-cover, provided that the threshold of the frame exceeded
¢(log n)/r, for some appropriate constant c. Since our goal is to provide r-covers for
frames with thresholds proportional to (log7)/r and above, we must improve on the
greedy algorithm (unless, of course, r is > nf, for some fixed € > 0). Once again, let
us forget about frames temporarily and return to a general hypergraph H. Note that
random samples of size c(logn)/a, for c large enough, work just as well as the greedy
cover. The difference, however, is that the random sample works more uniformly.
Indeed, it is easy to prove that for a proper setting of ¢ a random r-sample intersects
every edge of H in not just one but roughly |e|r/n vertices.

To add this nice feature to the greedy cover algorithm we must modify the
hypergraph a little and weight its edges with positive integers, First of all, replace
each edge e of size greater than 2an by edges of size between an and 2an+ 1, which
together partition e. With respect to the new hypergraph H + = (V,E?"), we define
the weighted degree of a vertex v as the sum of the weights assigned to the edges that
contain v. The trick is now to refrain from throwing out edges which have already
been hit, but instead, lower their weights. From the edges’ point of view, this has
the effect of sending this message to the algorithm:

It’s all Tight to treat me as a kth class citizen if I've been hit k

times already (and k is less than a fraction of my size), but don’t

go thinking that I am dead (as the greedy cover algorithm would).

For if you do, my disappearance will automatically impose a lower

bound on the total amount of weight the hypergraph can ever hope
. to lose, which in turn will produce a contradiction.

In some sense this approach is dual to the weighting strategy used in (Welzl (26]) for
computing spanning trees of low stabbing number.
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The Modified Greedy Cover Algori itiali
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or, from (3.4)

(logn + loga —log Wr)le| _ dle|logn le|r
2an+1 = 6an+3 ~ 25(1+1/d)n’

It remains to analyze the complexity of the algorithm. The running time is clearly
in O(Tnd“), if we assume infinite precision. But, for practical reasons, we prefer
to assume that the word-size is only, say, [logn]. To achieve O(rndt1) time, it
suffices to show how to compute the weighted degree of a given vertex in O(nd) time.
This involves the addition of O(n®) numbers, each of the form 1 /2F (0 < k < n).
Each weight 1/2F can be stored as k in a single word. In O(n?) time we can write
the degree as a sum Zos k<n O / 2k where a; is a frequency count which satisfies
0<ag = O(n%). To evaluate this sum, we add the numbers ai/2F in the order
k = n,n—1,...,1,0. For that purpose, we use a virtual computer word made
up of n real words (this is generous) and store the sum in binary by chunks of
Mogn] bits. To add ax/2* to 2k+1Sanaj/2j, we find the position of the sole one-
bit of 2-% in the virtual word (in constant time) and start the addition right there.
The integer ay, is stored over O(1) real words, so we can complete the addition in
constant time. The only source of worry is the possibility of long carries. But we
have Tgi1<j<nas/ 2 = O(na/ 2k), therefore no carry can extend over more than
a constant number of real words. This completes the proof. ]

We have restricted Lemma 5 to the case of hypergraphs with a polynomial
number of edges only for the sake of the use which we will make of it below. Obviously,
except perhaps for the complexity analysis, the result generalizes to any hypergraph
of any size in a straightforward manner.

Theorem 6. Let H be a hypergraph with n vertices and m edges, and let a be an
arbitrary real between 0 and 1 such that each edge of H has at least an vertices.
There ezist two constants b and ¢ > 0 such that running the modified greedy cover
algorithm v steps, for any r 2 b(logn + logm)/a, will produce an v sample that
intersects every edge e of H in at least cle|r/n vertices, which represents a fized
fraction of the “expected” value.

Let us now return to our frame ¥ of dimension d and threshold a. Lemma 5
gives us a bootstrapping method for computing an r-cover. We iterate the modified
greedy algorithm three times to get samples R; 2 R; 2 Rs, from which we derive
R. The details follow. As we have observed, the hypergraph H has O(n%) edges,
therefore we can apply the theorem to it. We obtain a sample R; of size

r1 = min{n, [4(d+ 1)(logn)/al}.

We know that R, intersects every edge e of the frame in at least clejr;/n vertices.
If r; < r then we atop (we'll justify, this later). Otherwise, we extract the sub-
hypergraph Hy = (Ry, Ey), where E, = {RiNe|e€ #(R;y)}. Let ¢, be the
H,-induced restriction of ¢: for each W C Ry, 9:(W) = {RiNelec€ d(W)}. We
casily- verify that & = (Hi;¢1) is also a frame of dimension d, so we can apply
Lemma 5 to It (replacing o by ca), This provides us a sample Ry C R, of size

r, = min{ry, |4(d + 1)(log r1)/(ca)l}.
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If r, < r, again we stop. Otherwise, we iterate through the same process one more
time, now with respect to the hypergraph H, = (R,, E,). In general, for al] ; > 1,
we have §; = (H;; ¢;), where H; = (R;, E;), E; = {RiNe|e€ ¢ \(R)}, and fo,
each W C R;, (W) = {R; Ne le€ ¢ (W)} Returning to our iteration, this will
produce a sample R, C R, of size

rs = min{rz, |4(d + 1)(log r2)/(c%) ).

If 73 < r, as usual, we stop. Else, we compute an r-cover for F3 by trying out 4]
possible r-samples of R, until we are successful. (We shall assign a below so that
success is always guaranteed and the cost of an exhaustive search is very small.)

To summarize, either we get an r-cover for 3 or we obtain one sample R.
(1 < i < 3) which intersects every edge of H;_,, where |R;| < r < |R;_,| (setting
Hy = H and R, = V). An important remark is that in the last three cases we
can augment the sample which we have obtained into an r-cover for ¥. Indeed,
precisely because R; intersects every edge of H;_;, we can add any vertex of R, _,
into R; without changing the fact that R; is a cover for ;_,. But a cover for any
F; is also a vertex for #, which proves our claim. Now, how do we assign o to
guarantee the success of the exhaustive search for an r-cover? We easily check that
73 < b(logloglogn + log 2)/a for some constant b. Setting

7d
o= logr

2b log -
ar

r 0g2—b7

we ensure that c’a > 7d(log 7)/r. Since the threshold of F3 is at least c*a, Lemma 4
guarantees the existence of the desired r-cover for %;. What is the complexity of the
algorithm? If we stop with Ry, R,, or Rs, the running time is O(rn®1), as indicated
in Lemma 5. Assume that we end up computing an r-cover for ;. We can verify

that
3
rs < (1 n H’M)

2 7dlogr

Since r < r; it follows that r = (loglog n)9M and therefore r3 = (loglogn)OW.

Computing the r-cover of %; takes no more than O(rf+4+1) = O(n) time. This
completes the proof of Theorem 1. -

4. Multi-Hypergraphs with Bounded Vertex Dependency

So far, we have been willing to accept deficiencies as large as log 7. But are those
covers optimal? The answer is yes, if we limit ourselves to hypergraphs of large, yet
finite, V'C-dimension (Pach [17]). In this section we look at multi-hypergraphs of
bounded vertex dependency, where the situation is-a bit different. We cannot quite
eliminate the factor log 7, but we present a scheme which will turn out to have the
same effect in the geometric applications discussed later.

Let H = (V,E) be a multi-hypergraph of n vertices and m edges. We shall
assume that H has bounded vertex dependency. This, we recall, means that each
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an r-sample R is the collection of edges whose signa(;uresdar(t_a. .s)ulbslet>s ;)rfb /I: %rilvzclllgz
i -deficient if (i) e € H(R), (ii) RNe = , and (iii) |e] > .

: ltfsg? l%’?/dct Vef.rclt; a ran(dz)m r-sample R (from the umforrr} distribution over the set

211% r—samplgs) we are interested in the conditional expectation

w(W;r,t) = E[#t-deficient edges in H | R 2 W],

is E of size > tn/r such
if r > |W|. Let E(W;t) be the multiset of edg.es e€ '
(ti}(:g:l e:zdl":f(;(g) |U I!V) = 0. ( The) following expression will be useful in the next two

lemmas:

(4.1) o (W, 7:,t) =
BEE ) i) ()
AR P

where 7 = |W| and & = |o(e) \ W|. Each summand is to be understood as 0 if
r<f4+aoorr>n-—le|.
Lemma 7. The inequality u(0;7,t) < 2cre=t/2 holds for any t, v such that 2d <r < n.

a—c 2\ < b cwederive
Proof. From (4.1) and the fact that b— e y) S\a )

r=lo(f) le () _
lohl r —t(r=lo(Hi)/r
p(@;r,t) < E (T) v (1 Ifl) < E ( ) e

n
FEE®:) fEE ‘

' E such that
Rewriting the sum EfEE(r/n)la(f)I as ZlSjsd(T/")J x (# edges f € E suc
lo(f)| = 7), we find that

pOr ) < e Y (r/nyend,

1<5<d

|
which completes the proof. N

Lemma 8. The function u(W;r,t) can be evaluated for any r andt wzthz.n an absolyte
error of 1/n? in O(n®?) time. With O(n+) preprocessing it is possible to derive
w(W U {v};7,t) from p(W;r,t) in O(n®) time.

Proof. We can rewrite (4.1) as

o= 32 (55 /050)

eeE(W;t)

or in other words

[L(W;’I‘,t) = Z 6(W;tve) Z fi(nv"" Ie" |W|’ |0(e) \ W|)7

e€E 1<i<6
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where §(W;t,e) is the characteristic function of the multiset E(W;t) and each
fi is a factorial (or its reciprocal) involving a simple arithmetic expression op its
parameters. All the parameters and the values of § can be computed on O(ndﬂ)
time. If we precompute j! and its reciprocal for j = 1,2,...,n, then we can complete
the computation of u(W;r,t) in O(n?) time. If the word-size is around logn, we
can compute each factorial and reciprocal in constant time with a relative error of at
most 1/n23+¢. This gives us a relative error on the computed value of u(W;r, ) of
less than 1/(n%?). Since the exact value does not exceed cn?, the absolute error is
less than 1/n%. To compute u(W U {v};r,t) incrementally from p(W;r, t) in O(nd)
time it suffices to observe that the parameters and the values of 6 in each summang
can be updated in constant time. 1

From Lemma 7 we derive u(@;r,2[dlog r]) < 1/2, for r larger than some cop.
stant. Therefore, with probability greater than a half, a random r-sample R hits
every edge e € H(R) of size |e| > 3dn(logr)/r vertices. Using the technique of con-
ditional probabilities (Raghavan [19], Spencer [22]), we remove the randomization by
computing the sample R incrementally. Starting from W = 0, we observe, that as
long as |W| < r, there exists v € V \ W such that p(W U {v};r,t) < w(W;r,t). This
is because

u(W;r,t)=n—_l—|W' > wW U {v)int).
veV\W

If we could compute such a vertex v we would add it to our partial sample W, and
iterate in this fashion until [W| = r. In the end, we would have w(R;r,t) < 1/2,
which is to say that there are no t-deficient edges in H(R): Because of finite precision,
however, we must content ourselves with an approximation, a(W;r,t), of u(W;r,t).
From Lemma 8 we can choose v such that BW U {v};7,t) < p(W;r,t) + 1/n?; for
this v we know that u(W U {v};r,t) < u(W;r, t) 4+ 2/n®. This method therefore
finds an R with u(R;r,t) < u(@;r,t) + 2r/n®. Setting ¢t = 2[dlogr] we find that
p(R;r,t) < 1/2+ 2r/n? < 1, for r large enough (Lemma 7). The time complexity
follows directly from Lemma 8. Thus we obtain

Lemma 9. In O(rn®™) time it is possible to compute an r-sample R that leaves no
edge of the hypergraph (3dlogr)-deficient, for any r larger than some constant.

This result is really no different from Theorem 2. Only the technique is: it sets
the stage for the computation of better covers. Ideally, we would like to say that
as long as an edge is of size > bn/r, for some constant b > 0, a random r-sample
which contains its signature will hit it almost certainly. Such a statement requires
looking further into the geometry of the specific applications. In the meantime, we
will finetune our analysis of ¢-deficient edges.

Lemma 10. There ezists a constant b > 1 such that the mequality u(@;r,t) <
u(®; [r/t],0)/2" holds for any t, r, n, where b < dt < r < n.

Proof. We shall assume that b < dt < r < n, for an appropriately large constant &.
Let e be a fixed edge of H and let R be a random r-sample. We define p(e;r, t) as

L e

A DETERMINISTIC VIEW OF RANDOM SAMPLING 241

the conditional probability that e is ¢t-deficient, given that e € H(R). Assume that e
and its signature o(e) are disjoint. We have

(= Zioto) (o e Jesr =
(o) (i e e o

from which we derive

(PZ i) sero = (0 s a0

Note that the equality still holds if e N o(e) # @, since we then have p(e;r,0) =
ple; |r/t],0) = 0. It follows that

le] r—{r/t]
pleir,0) < (1 - m) ple; [r/t],0) <

exp (LI pie 100

Assume that |e| > tn/r. Since p(e;r,t) is non-increasing in ¢ we derive that, for b

large enough,
(4.2) peir,t) < ple; [r/t],0)/(2.5)".

i S i i for later. Note that if
We use 2.5 and not 2 to give us a little breathing room t
|e|e< tn/r and therefore e is not t-deficient, (4.2) holds trivially. Now we know that

(for all t > 0)

(4.3) u(@;7,t) = Cf)_l

We easily verify that for b large enough

= lo(e)| n af n—lo(e)] noy
4y (oo () = (5 i) (i)
From (4.3) and (4.4) we derive

o <@ () % (s Fioten) e

and from (4.2) and (4.3)
(0 r,t) < (d)4(25) 7 p(@: [r/t], 0).

= (1 p e

ecE

We complete the proof by choosing b, and hence ¢, large enough. ]
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Assume now that H is robust, meaning that there exists a constant
that p(@; [_r/fj,O) < au(®;r,0), for any ¢ > a. Robustness may seem toab>e ?astl}l,Ch
unnaﬁurql, since it appears to tell us that a small random sample causes no o
deficiencies than a big one. This may actually happen, if the set H(R) of relevore
edges grows fast with the size of R. Hypergraphs originating from geometric ra o
spaces tend to be robust, as we shall see later in the applications section. nee
It follows from Lemma 10 that for a constant « large enough and any ¢, »
_(a <a<dt <7 <n) we have u(B;r,t) < au(®;r,0)/2¢. Since U is non—incréasfnn
in ¢, by increasing the value of « if necessary, we can always extend the validity gf
the previous inequality to any ¢ > 1. Also, we can extend it to any t <r by Wriiixi)g

a
Given W C V, we are now interested in

(W) = ap(Wir,0) = S 2/Cdywir ¢,
1<t<r

From the previous discussion we can Jjust re-adjust o one more time, so that
®(@r) >0, for all r, n (@ < r < n). Given a random r-sample R let x(t) be
the number of t-deficient edges. The quantity ®(W;r) is the expec,ted value of
ax(0) = ¥y <t<r 2t/@dx(t), conditioned on W C R. To say that it is nonnes..
tive implies the existence of an r-sample R O W such that for any t (1 <t <L‘r)
x(t) < ax(0)/2¢/@D. Because of finite-precision problems we weaken this condition
a little and say that an r-sample R is conformal (where « is understood) if

ax(0) +1
t AL A
X(t) < = en—

foxt t = 1,2,:..,12 Knowing that ®(@;r) > 0 tells us that a conformal r-sample
exists. Knowmg that ®(W;r) > 0, where |W| = r, tells us that W is conformal.
Once again, we can apply the method of conditional probabilities to make the

construction of a conformal r-sample effective. We begin with W = @. As long as
[W| < r, we have

e(W;r) = 7'11— Z (WU {v};r),

— W vEV\W

which implies the existence of v € V\ W such that ®(WU{v}: r) > ; i
with ®(0;7) > 0 we thus end up w\;vith S(R;T) 2(0. éeiég)se—o?(gziytz)'pfsgiggilg
however, we use the approximation of 1 discussed in Lemma 8. The relative erro£
on 4 is at most 1/(n%*3), therefore the absolute error on @ is O(1/n?). For n large
enough, the resulting sample R will satisfy ®(R;r) > —1/n, and therefore will be
conformal.

Computing ®(W;r) can be done by evaluating 4 at r points, which takes
O(rnd+1) time {Lemma 8). From there we compute a conformal r-sample in
O(r*n®?) time. We can do better, however. Assume that we have computed
®(W;r), and in particular, u(W;r,0) and that we wish to evaluate (W U {v};r).
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We can get w(W U {v};7,0) in O(n%) time (Lemma 8). Going back to the ex-
pression of pu(W;r,t) used in the proof of Lemma 8, we can write u(W;r,t) =
w(Wir,t —1) + A(t), where

Alt) =Y (6(Wit,e) = 6(Wit —1,e)) x Y filn,m le],|W],|oe) \ W)).

ecE 1<i<6

However, (§(W;t,e) — 6(W;t —1,¢)) is nonzero for at most one value of ¢, therefore
each A(t) (1 <t <) can be computed in O(nd/r) amortized time. This allows us
to compute ®(W U {v};7) in O(n%) time, which gives us a running time of O(rn®+?)
time for computing a conformal r-sample. We obtain

Lemma 11. If H is robust and r is large enough, it is possible to compute a conformal
r-sample in time O(rn+1) time.

We are getting closer to our goal of wiping out ¢-deficiency for any ¢t > 0. To
avoid a major roadblock, however, we must expand the definition of a sample. First,
if W is a subset of V we define H" to be the signature-induced restriction of H
to the vertices of W. More precisely, the edges of HW are of the form e N W, for
all e € H(W). We can regard HY as just another multi-hypergraph of bounded
vertex dependency; note that the constants ¢ and d used for H apply just the same.
We define an r-blossom to be a collection of samples B = (R, R, ..., Ry) such that
(i) |R| = r, (ii) k < |H(R)| (counted as multiset) and (iii) for any edge e that is
1-deficient with respect to R, there is an integer £(e) such that the sample Ry, is
a subset of e that intersects every edge f of H®(Ry,) of size [f| > fn/r, for some
fixed constant 3 > 1. The sample R is called the base of the blossom. The weight of
B refers to the total number of 0-deficient edges in H® (with respect to Ry,), over
all edges e in E (that are 1-deficient with respect to R).

Theorem 12. If H is robust and r is large enough, it is possible to compute an -
blossom of weight at most proportional to the number of 0-deficient edges in H (with

respect to the base of B). The running time is O(rn®1) time.

Proof. The first item on the agenda is to compute a conformal r-sample R. To
complete it into an r-blossom, we go through each 1-deficient edge e in turn and
perform the following operations. First, we compute the restriction H¢ explicitly.
Let s = [lejr/n+1y]?, where ry is the constant of Lemma 9. If s < |e| then from the
same lemma we can compute an s-sample R’ of e that leaves H® free of (3dlog s)-
deficient edges (with respect to H® and R'). We can verify that R’ fits the role of
Ry(e). Indeed, let f be an edge of H ¢(R') of size |f| > Bn/r. To see that f intersects
R, it suffices to check that 3d(logs)le|/s < Bn/r, for § large enough. If s > |e|
then we choose e as the sample. The collection of samples obtained in the process
constitutes the r-blossom B. What is its weight? It is zero if there are no 0-deficient
edges, so we can assume that x(0) > 0. Recall that x(t) denotes the number of
t-deficjent edges in H (with respect to R). We have

weight(B) < Z et + ro]%%x(t — 1).
1<t<r
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Because R is conformal and x(0) > 0,

weight(B) < Y cft +r0]*4(ax(0) + 1)/2¢~Y/CD = O(x(0)).
1<t<r

From Lemmas 9 and 11 we find that the running time is O(n2%+2). But again
using the geometrically decaying nature of t-deficient edges, we can finetune the
analysis. Computing R takes O(rn®*') time. For each edge e that is 1-deficient
we can compute the hypergraph H® in O(|e|%+!) time with proper preprocessmo:
Computing the sample Ry, takes O(sle|%+?), where s = [lelr/n + ro]%. Because ;2
is conformal the total cost is at most proportional to

d+1
tn
rn® 4 (-) (t +70)*(ax(0) + 1)/2¢-1/,
1<t<r

Since the number of 0-deficient edges in H (with respect to R) is at most er?, the
computation of the blossom takes O(rnd+1). 1

5. Random Sampling and Computational Geometry

We will now illustrate the utility of our techniques by describing an improved
method for geometric divide-and-conquer.

Geometric Divide-and-Conquer

Given n hyperpl=ncs in d-space and any integer r larger than some constant,
we wish to subdivide d-space into O(rd) simplices, none of which intersects moré
than bn/r hyperplanes, for some constant b. A slightly weaker version of the the-
orem (where bn/r is to be replaced by bn(logr)/r) is used in (Clarkson [3,4]) and
(Edelsbrunner et al [9,10}). The basic idea is to pick a random subset R of r hy-
perplanes and argue that, with high probability, each simplex of any triangulation
J of R intersects O(n(logr)/r) hyperplanes. Theorem 2 can be readily applied to
make this method deterministic. To remove the factor log r, however, we must use a
more sophisticated approach based on conformal samples. One difficulty in trying to
use conformality is that statements of the form, “the number of simplices in 9 that
intersect more than kn/r hyperplanes decreases geometrically with k applies to the
entire set of all possible triangulations and not to each individual one. This justifies
the introduction of a special type of triangulation.

We begin with a quick review of fundamental geometric concepts. Details can be
found in (Clarkson (3], Edelsbrunner [8]). A set is polyhedral if it is the intersection
of a finite number of closed halfspaces. For convenience, we define a k-simplez as
the relative interior of a polyhedral set of dimension k& with k + 1 vertices. An
arrangement A(K) of a finite collection K of hyperplanes in E% is the cell complex
induced by the hyperplanes. Each element of the complex is the relative interior of
some polyhedral set bounded by hyperplanes in K: it is called a k-face if its dimension
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is k. A cell complex is simplicial if its elements are simplices. (We shall use the word
“simplex” when no assumption is made about dimensionality.) A triangulation of d-
space is a simplicial cell complex (i.e., a complex composed exclusively of simplices)

that covers E%. A triangulation of 4(K) refers to a simplicial cell complex which
subdivides the arrangement 4(K). To handle unbounded faces uniformly we embed
the arrangement in projective d-space. Again, for convenience, we might want to
avoid wrapping around infinity by adding the ideal hyperplane into the arrangement
itself. (This is topologically equivalent to intersecting the arrangement with a large
d-ball.) In this way, unbounded faces of 4(K') are no different from bounded ones.

A convenient way to triangulate 4(K) (Clarkson [3]) is to proceed recursively
and first triangulate the n arrangements in (d — 1) space formed by intersecting each
hyperplane with the n— 1 others. Then for each cell (i.e., the closure of a d-face) F’ of
A(K), pick a vertex v (i.e., a 0-face), called the apez: for each (d-1)-face f of F that is
not incident upon v, and for each (d—1)-simplex s in f computed recursively, add the
(relative) interior of the convex hull of sU{v} to the triangulation. In this way, every
d-simplex is formed from the convex hull of its apex and a base (d — 1)-simplex. This
works well as long as F is guaranteed to have at least one vertex, which is immediately
implied if F does not contain a whole line. If it does contain a whole line, then we
can rewrite F as the sum of A+ G of an affine space A and a certain polyhedral set
G (dim(G) < d) which does have a vertex. We can therefore triangulate G and use
the “simplices” {A+t |t € G}. We can also avoid these problems by submitting the
input to a random projective perturbation. (Although this might come back to haunt
if we are shooting for a deterministic algorithm...) To simplify our discussion, we
shall assume that all the hyperplanes considered are in general position. This applies
to the hyperplanes in d-space given as input, as well as their various intersections in
lower-dimensional space. Relaxing these assumptions is easy but tedious. We also
give ourselves a Cartesian system of coordinates (z,,...,24) and assume that the
union of the input and the d fundamental hyperplanes, z; = 0, is in general position,
in the sense that any intersection of k input hyperplanes is a (d — k)-flat (not at
infinity) which inherits a local system of coordinates from (zi,...,z4_g). We now
close this excursion and refer the reader to (Clarkson [3]) for proofs of some of the
geometric facts which we just mentioned.

We are now ready to introduce the special type of triangulation to which we
alluded earlier. Our starting point is the observation that the simplices of the
triangulation described in the previous paragraph are entirely specified by a finite
number f(d) of hyperplanes of K. How many? at most 2 in l-space, 5 in 2-space,
d+ 1+ f(d — 1) in d-space, which gives f(d) = d(d + 3)/2. We define a universal
triangulation scheme T to be a mapping of any set S of at most d(d+3)/2 hyperplanes
in (projective) d-space to a finite (possibly empty) set of simplices. The elements of
7(S) are k-simplices for values of k ranging from 0 to d. Given any finite collection
K of hyperplanes in d-space and a subset S of K of size < d(d+3)/2, let T-(K, S) be
the set (not a multiset) of simplices in 7(S) that do not intersect any hyperplane of
K, except for the hyperplanes that contain them. By extension, we define T-(K) as
the union of the sets T (K, S), over all subsets S of K of size at most d(d+3)/2. We
require that T-(K) form a triangulation of 4(K). A universal triangulation scheme
can be regarded as two-step process for triangulating an arrangement: (1) lay out
candidate simplices by checking local conditions; (2) keep empty candidates. The nice
feature of this approach is that the simplices do not have to be tested for intersection
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a .
mong themselves. It is not even clear at first that a universal triangulation scheme

should always exist. But it does.

L . . . . -
emma 13. There ezists a universal triangulation scheme in any finite dimension

Proof. i

comt;) ut(I;eisz; 32 nagg;ﬁg:ttﬁ?sc;f < fd(ﬁi + 3) / 2(gyperplanes in projective d-space ang

‘ in full, usin delsbrunner et al. |1 i
A(S), using the following criteri ' pickin Tt oo nngulat
, g criterion for picking the apex of 3 f; .
of least z,-coordinate (break ties b i s  With the ee p e the vertex

: : . Y using z, x3, etc.) With the use of h
coordinates, this vertex is alwa i it Tios at mapos
rd; , ys well defined (uniquel ) if it i i i
This is called the canonical tri 3 define 1(5) a5 the v Minity
s is ca . riangulation of S. We define 7(S) as the collection of
%IVI:I;I:ITSS }111; ;h:}faia;o?;ga)ﬂ'Enelx?.gulzlition. Is 7 a valid universal tiiangulationescctlll((;nm:a)7Ir
. )8 itsell 1s the canonical triangulation of K. First. it i :
t ; . t
(t)}flasgzznz 31(1:11;3:%() 7; tllz\i canonical triangulation belongs to 7(S), for som’elzulls)s(;lé3 a:S{
< - Moreover, by construction, no simpl ’ i
a hyg;rpllane 0}fl K, except if it is entirely contai;led in itp e ot Tr(K) can intersect
e last thing to check is that no two distin impli

‘ ct simplices ¢,0’ € T

Intersect. Su‘ppose that they do and let p be a point of the intersecti7c->(ni.{) ((;?frl

ish(?fhlesser dimension. Then, p lies in an int
which intersects but does not contain o’. Th
; 5 bu ontain ¢ erefore one of these hyperpl
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By construction, H has bounded vertex dependency. Our next step thus is to
call upon Theorem 12 and compute an r-blossom B = (R, R;,...,Ry) of weight
at most proportional to the number of 0-deficient edges in H. According to the
theorem this can be done in O(rn@@+%/2+1) time. From the main property of a
universal triangulation scheme, it appears that an edge e of H is O-deficient with
respect to R if and only if its associated simplex s(e) belongs to the triangulation
T,(R). Conversely, every simplex of Tr(R) corresponds to at least one 0-deficient
edge. If no simplex of Tr(R) is 1-deficient, then we have achieved our goal. (By abuse
of language, we use R to denote either the r-sample of vertices or its corresponding
set of r hyperplanes in K; also, we say that a simplex s(e) is k-deficient to mean
that the edge e is so.) If there is at least one 1-deficient edge, then we turn to the
samples R,, ..., Ry to take care of undesirable deficiencies.

Let e be the edge of H associated with R;. Because e is 1-deficient, more than
n/r hyperplanes of K intersect the simplex s(e) without containment. It is the
purpose of R; to subdivide s(e). To do so, we compute the intersection of Tr(R;)
and s(e), which has the effect of subdividing s(e) into polyhedral sets of bounded
size. We can make each set simplicial without multiplying the overall size by more
than a constant factor. This gives us a simplicial complex S; subdividing the closure
of s(e). Now remove from S; all the simplices lying on the boundary of s(e). Doing
this for every 1-deficient edge gives us, along with Tr(R), a simplicial subdivision
P of A(R). Note that several edges may map to the same simplex s(e), and we
might want to keep this in check to avoid unnecessary duplication of work. The
subdivision P is a packing (no two simplices intersect) and a covering (the union is
d-space). However, it might not be a complex. Computing P can be done within the
same time as computing the blossom itself, that is, O(rnd(@+3/2+1) time. Indeed,
our computation of the blossom (Theorem 12) involves computing the simplices of
Tr(R) and of each T;(R;). Clipping the latter, re-triangulating them, and forming
the complexes S; adds only a constant factor to the running time. Note that we can
also compute the packing directly from the blossom, if we prefer.

What else can we say about P? The packing consists of simplices, every one of
which lies entirely in some simplex of T (R). We distinguish among the simplices of
Tr(R) (first-generation) and those of the S;’s (second-generation). Recall that the
dimension of those varies between 0 and d. From Theorem 12 we derive that each
simplex of P intersects (without containment) O(n/r) hyperplanes of K. The size
of P is proportional to the size of Tr(R), added to the weight of the blossom. But
because R is conformal, this amounts to the number of O-deficient edges, which is

O(rd). We conclude that, given n hyperplanes in d-space and any. integer r large
enough, there exists a simplicial packing of size O(r%), each of whose simplices
intersects O(n/r) hyperplanes. The packing can be computed in O(rnd(@d+3)/2+1)
time.
Theorem 14. Given n hyperplanes in d-space and any integer r large enough, there
exists a simplicial packing of size O(rd), which covers d-space, each of whose simplices
intersects O(n/r) hyperplanes. The packing can be computed in O(rnd@+3/2+1) time.
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6. Conclusions

Besides improving various complexity bounds, we believe that the majn contri-
bution of this paper is to set the dual pursuits of probabilistic and deterministic
geometric algorithms on a parallel course. On the algorithmic side, an interesting
issue is to lower the complexity of our deterministic constructions. Finally, a more
exhaustive investigation of applications should be undertaken.

Acknowledgments: We wish to thank K. Clarkson, J. Pach, and J. Spencer for
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