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1. Introduction 

The problem of decomposing a geometric struc- 
ture into simpler components has been extensively 
studied [1,2,4,6,8] for a number of reasons which, 
besides theoretical interest, include many practical 
applications in graphics, pattern recognition, tool 
design, etc. [ 1,9]. The problem, as most commonly 
encountered, can be stated as follows: 

Given a polygon (resp. polyhedron) P, what is the 
smallest set of non-overlapping convex polygons 

(resp. polyhedra), whose union is exactly P? 

In two dimensions, the problem has the intrigu- 
ing property of being solvable in polynomial time, 
yet of being NP-hard, if ho/es are allowed into the 
polygons [6]. In three dimensions, because of the 
possibly large size of the output, the problem has a 
quadra‘tic lower bound on its complexity [2]; fur- 
thermore it has been shown to be NP-hard [6]. It is 
unknown, however, whether the problem is in NP, 
and actually the absence of trivial enumerative 
procedures raises the issue of decidability alto- 
gether. We prove in this paper that the problem is 
indeed decidable (as intuition reasonably suggests), 
by using a combinatorial argument based on Tar- 
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ski’s fundamental result on the decidability of 
algebra [ 111. 

Let P be a three-dimensional polyhedron with 
N vertices, and let S denote a partition of P into a 
minimum number of convex parts. S is called a 
minimal convex partition of P, or MCP as a 
shorthand. Informally, S is a collection of non- 
overlapping convex polyhedra (called parts), whose 
union is P. More precisely, we regard S as a 
complex, i.e., as a set of pairwise disjoint poly- 
hedra sharing common faces, edges and vertices 
[S]. We will assume all complexes considered here 
to have a normal form. By this, we mean that each 
vertex should be of degree at least 3, and if two 
faces F and G of two distinct convex parts inter- 
sect in a polygon H, the 3 polygons F, G and H 
are identical. Furthermore, we require that any 
pair of parts should have at most one common 
face. These assumptions allow us to define the 
following sets without ambiguity: V, E, F are re- 
spectively the set of all vertices, edges and faces 
involved in S (each of them occurring exactly once 
in its respective set). A vertex, an edge or a face is 
said to be external if it lies entirely on the boundary 
of P (note that it does not have to be a vertex, edge 
or face of P). We designate the sets of external 
vertices, edges or faces by V,, E,, F,, respectively. 
Similarly, all the other vertices, edges and faces 
involved in S are called internal, and form the sets 
V,, E,, Fi. Finally, we define V,, E,, F, respectively 
as the sets of vertices, edges and faces of P. Note 
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that E, (resp. F,,) may not be a subset of E, (resp. 
F,). For simplicity, we will use the same notation 
to designate a set and its cardinality, as long as 
there is no ambiguity. We may then write 

V,=N, v = ve + v, , E = E, + E; , 

F = F, + Fi . 

2. The decidability argument 

To prove that an MCP of P is effectively com- 
putable, we first establish an upper bound on the 
maximum number of vertices present in an MCP. 
Then we define the scheme of a partition as a 
topological description of the corresponding com- 
plex, and we proceed with a combinatorial enu- 
meration of all possible schemes. Each scheme 
must then be tested for realizability, that is, it must 
be determined to correspond or not to an actual 
convex partition. A system of equations involving 
the coordinates of the vertices can be set up to 
express realizability, from which the problem be- 
comes purely algebraic. Finally, we obtain an MCP 
as any realizable scheme of minimum cardinality. 
Before proceeding with a description of the deci- 
sion procedure, we need some preliminary results. 
Our first task will be to show that the number of 
internal faces is polynomial in the number of 
convex parts. Note that this is trivially false if the 
convexity requirement is relaxed. 

Lemma 2.1. F, < iS(S - 1). 

Proof. We identify the polyhedra and the internal 
faces in S with respectively the nodes and the 
edges of a graph. An edge will connect two nodes 
if and only if the corresponding polyhedra share a 
common face. Since S is given in a normal form, 
each internal face corresponds to a distinct edge in 
the graph and there are no multiple edges, which 
establishes the result. q 

We next exhibit an upper bound on the total 
number of vertices in S. 

Lemma 2.2. Zf S is an MCP of P, then V = O(V2). 

16 

Proof. We first ensure that the boundary of P has 
been triangulated, i.e., each face is a triangle. This 
can be done without adding new vertices to V,,. 
Since the boundary of P has the structure of a 
connected planar graph, we have the well-known 
relations 

E,,, 6, = O(V,). (1) 

Considering the complex S, we observe that each 
edge has two endpoints and each endpoint is ad- 
jacent to at least 3 edges; therefore V < fi E. Euler’s 
formula, generalized to complexes [5], yields V = 
S + 1 + E - F, which gives 

V,(2(F-S- 1). (2) 

Like the faces of P, F, forms a planar graph 
embedded on the boundary of P. Moreover, the 
faces of F, are subfaces of F,), i.e., each face of Fe 
lies entirely within some face of F, (recall that the 
faces of F, have been made into triangles). Let h 

be the maximum number of faces of F, lying inside 
a single face of F,. Inside a triangle of F, lies either 
no edge at all or a planar graph whose edges lie on 
the boundary of some internal faces. Since internal 
faces are convex, each contributes at most one 
edge to this graph, and relation (I), applied to this 
planar graph, shows that h = O(F,), therefore F, = 
0( F,,F,). Since F = F, + F,, we derive from (2) that 
V = O(F,F;), and from Lemma 1 that V = 0(F,,S2). 
It has been shown in [2] that it is always possible 
to partition P into O(Ei) convex pieces; therefore, 
since S is an optimal partition, its cardinality 
satisfies S = O(Ei). This shows that V = O(F,Ei), 
which combined with relation (1) establishes the 
lemma. 0 

This result enables us to try out all possible 
complexes involving O(V:) vertices, and keep only 
the MCP’s. The method is, in a sense, a generaliza- 
tion of the procedure given in [5] for enumerating 
combinatorial types of d-polytopes. We define the 
scheme of S, or of any complex in general, as an 
enumeration, for each polyhedron in the complex, 
of all its vertices, edges and faces (edges and faces 
are given by the subsets of vertices which they 
involve). Giving the location of the vertices of P 
along with the scheme of S specifies the partition 
of P exactly. Let W be a subset of V, or a set of 
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subsets of V, or a set of sets of subsets of V (and 
so forth); we define L(W) to be the subset of V 
which contains exactly the vertices involved in W. 
Throughout, sets are to be taken in the usual 
sense, i.e., not as lists or multisets, thus without 
notions of order or repetition. 

(1) For every nonempty subset Z of L(W), pro- 
positions (a) and (b) are equivalent: 

(a) Z belongs to W. 
(b) There exist reals a, b, c such thut 

We next introduce the notion of abstract 
scheme. An abstract scheme for P is a family A of 
nonempty sets A,, . , A,. Each A, is a set of 
subsets of a set V = (v,,. . . , vk} with N = V, < k. 
The first N elements v,, . . , vN correspond to the 
N vertices of P and have pre-specified coordinates, 
whereas each v,, for i > N, represents an added 
(Steiner) point of the partition, and is assigned 
three variables x,, yi, z,, corresponding to its coor- 
dinates. Moreover, we require that L(A) = V and 
that Condition (ST) be satisfied for all W in 

{A,,...,A,). 

( = 1 if vI belongs to Z, 

ax,+by,+cz, 

1 

> 1 if v, belongs to 

L(W\Z. 

(2) Any point in the convex hull of L(W) lies in 
P. 

(3) For every Ai * W, no point in the convex 
hull of L(A i ) lies strict!y in the convex hull 

of WV 
(B) For every point M in P, there exists an index i, 

1 < i < p, such that M lies inside the convex 

hull of L(A , ). 

Condition (ST). 

(1) L(W) does not belong to W. 
(2) If x belongs to L(W), then the singleton {x) 

belongs to W. 

An abstract scheme of P describes a tentative 
partition of P. Each A, corresponds to a poly- 
hedron of the partition, and the requirements can 
be interpreted as follows: (1) V indeed represents 
the set of all vertices, (2) all the vertices of A, 
cannot lie on the same face (clause (1) of Condi- 
tion (ST)), and (3) all the vertices of A, involved in 
edges or faces are explicitly listed as vertices (clause 
(2) of Condition (ST)). A scheme of P is an 
abstract scheme for P. Conversely we want to 
investigate the conditions for an abstract scheme 
to be reulizable, that is, to be isomorphic to the 
scheme of a convex partition of P. The idea is to 
list out all possible abstract schemes which can 
lead to an MCP, and keep the optimal ones among 

the subset of those which are realizable. We have 
the following characterization of realizability. 

Proof. Proposition (A) ensures that (1) each A, is 
the scheme of a convex polyhedron, (2) this poly- 
hedron lies in P, and (3) the polyhedra are pair- 
wise disjoint. Finally, proposition (B) guarantees 
that the set of polyhedra covers P entirely. Thus it 
suffices to show that (1) holds if and only if W is 
the scheme of a convex polyhedron with vertices 
L(W). (b) expresses the fact that all the vertices of 

Z lie on a plane while the others do not, yet lie on 
the same side. (a) * (b) means that all the vertices, 
edges and faces expressed in W lie on the convex 
hull of L(W). Also, the requirement 

[v belongs to L(W) = (v} belongs to W] 

guarantees that all the vertices of L(W) are vertices 
of the convex hull of L(W). Conversely, (b) * (a) 
shows that W lists exactly all vertices, edges and 
faces of the convex hull of L(W). q 

We can now prove our main claim. 

Theorem 2.4. The problem of purtitioning any poly- 
hedron into u minimum number of convex parts is 

deciduble. 

Lemma 2.3. The abstract scheme A for u nonconvex Proof. The crux of the argument is a fundamental 
polyhedron P is reulizable if and onb if it is possible result by Tarski on the decidability of first-order 
to find reals (x,, y,, zi) for i = N + l,..., k, such sentences in the field of real numbers (see [ 111, but 
that the following propositions ure true: also [3,7,10]). This result asserts that every state- 
(A) For every W in {A,, . . , Ar), ment in elementary algebra (theory of real num- 
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bers) containing no free variables is effectively 
decidable. It is easy to see that the characterization 
of Lemma 2.3 can be expressed as such a logical 
statement. Any point inside the convex hull of a 
set of vertices can be expressed as a linear com- 
bination of the vertices with positive coefficients 
summing up to at most one. In order to express 
the inclusion of a point M in P, we might first 
partition P into a (near-optimal) number of convex 
parts (using the heuristic of [2], for example), then 
OR the statements relative to the inclusion of M in 
each part. Having proved that any abstract scheme 
for P can be determined to be realizable or not, we 
may simply list all possible abstract schemes in- 
volving O(V:) vertices. Lemma 2.2 shows that if 
we list them by increasing number of families A i, 
the first scheme found realizable will provide an 
MCP of P. •I 

The decision procedure described above does 
not provide any practical means for computing 
MCP’s. We have made no attempt to analyze its 
performance, yet from [7] we are led to believe 
that 22”‘N’ might be an upper bound on its execu- 

tion time. 
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