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Abstract

We consider the nearest-neighbor problem over the d-cube: given a collection
of points in {0, 1}d, find the one nearest to a query point (in the L1 sense).
We establish a lower bound of Ω(log log d/ log log log d) on the worst-case query
time. This result holds in the cell probe model with (any amount of) polynomial
storage and word-size dO(1). The same lower bound holds for the approximate
version of the problem, where the answer may be any point further than the

nearest neighbor by a factor as large as 2�(log d)1−ε�, for any fixed ε > 0.

1 Introduction

For a variety of practical reasons ranging from molecular biology to web
searching, nearest-neighbor searching has been a focus of attention lately [2–
4,6–10,12–15,17,19,21,22,27]. In the applications considered, the dimension
of the ambient space is usually high, and predictably, classical lines of attack
based on space partitioning fail. To overcome the well-known “curse of di-
mensionality,” it is typical to relax the search by seeking only approximate
answers. Curiously, no lower bound has been established — to our knowledge
— on the complexity of the approximate problem in its canonical setting, i.e.,
points on the hypercube. Our work is an attempt to remedy this.

We note that two recent results, due to Borodin et al. [8] and Barkol and
Rabani [5] do give lower bounds on the exact version of the problem.

Given a database or key-set S ⊆ {0, 1}d, a δ-approximate nearest neighbor
(δ-ANN ) of a query point x ∈ {0, 1}d is any key y ∈ S such that ‖x − y‖1 ≤
δ‖x − z‖1, for any z ∈ S. The parameter δ ≥ 1 is called the approximation
factor1 of the problem. Given some δ, the problem is to preprocess S so as
to be able to find a δ-ANN of any query point efficiently. The data structure
consists of a table T whose entries hold dO(1) bits each. This means that a
point can be read in constant time. This assumption might be unrealistically

1Most of the literature about ANN is concerned with algorithms that achieve approxi-
mation factors close to 1 and sometimes they use the term “ε-ANN” (for small positive ε)
to mean what we would call a (1 + ε)-ANN.
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generous when d is large, but note that this only strengthens our lower bound
result.

Theorem 1.1 Suppose the table T , constructed from preprocessing a database
S of n points in {0, 1}d, is of size polynomial in n and d and holds dO(1)-bit
entries. Then, for any algorithm using T for δ-ANN searching, there exists
some S such that the query time is Ω(log log d/ log log log d). This holds for
any approximation factor δ ≤ 2�(log d)1−ε�, for any fixed ε > 0.

How good is the lower bound? First, note that the problem can be trivially
solved exactly in constant time, by using a table of size 2d. Moreover, recent
algorithmic results [15, 17, 21], when adapted to our model of computation,
show that for constant δ > 1 there is a polynomial sized table with d-bit
entries and a randomized algorithm that enables us to answer δ-ANN queries
using O(log log d) probes to the table. Although there seems to be only a
small gap between this upper bound and our lower bound, the two bounds
are in fact incomparable because of the randomization. An important open
theoretical question regarding ANN searching is to extend our lower bound
to allow randomization.

In this context it is worth mentioning that a stronger lower bound for exact
nearest neighbor search is now known. Recent results of Borodin et al. [8]
show that even randomized algorithms for this problem require Ω(log d) query
time in our model; Barkol and Rabani [5] improve this bound to Ω(d/ log n).

2 The Cell Probe Model

Yao’s cell probe model [26] provides a framework for measuring the number
of memory accesses required by a search algorithm. Because of its general-
ity, any lower bound in that model can be trusted to apply to virtually any
conceivable sequential algorithm. In his seminal paper [1], Ajtai established
a nontrivial lower bound for predecessor queries in a discrete universe (for
recent improvements, see [6, 23, 25]). Our proof begins with a similar adver-
sarial scenario. Given a key-set of n points in {0, 1}d, a table T is built in
preprocessing: its size is (dn)c, for fixed (but arbitrary) c > 0 and each entry
holds dO(1) bits. (For simplicity, we assume that an entry consists of exactly
d bits; the proof is very easily generalized if this is number d is changed to
dO(1).) To answer queries, the algorithm has at its disposal an infinite supply
of functions f1, f2, etc. Given a query x, the algorithm evaluates the index
f1(x) and looks up the table entry T [f1(x)]. If T [f1(x)] is a δ-ANN of x, it
can stop after this single round. Otherwise, it evaluates f2(x, T [f1(x)]) and
looks up the entry T [f2(x, T [f1(x)])]. Again it stops if it this entry is the
desired answer (at a cost of two rounds), else it goes on in this fashion. The
query time of the algorithm is defined to be the maximum number of rounds,
over all queries x ∈ {0, 1}d, required to find a δ-ANN of x in the table. Note
that we do not charge the algorithm for the time it takes to compute the
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functions fr or for the time it takes to decide whether or not to stop. Note
also that we require the last entry of T fetched by the algorithm to be the
answer that it will give; this might seem like an artificial requirement but it
aids our proof and adds at most one to the query time.

We couch our cell-probe arguments in a communication-complexity set-
ting as we model our adversarial lower bound proof as a game between Bob
and Alice [11, 20]. The algorithm is modeled by a sequence of functions
f1, f2, . . .. Alice starts out with a set P1 ⊆ {0, 1}d of candidate queries and
Bob holds a collection K1 ⊆ 2{0,1}d

of candidate key-sets, each set in K1 be-
ing of size n. The goal of Alice and Bob is to force as many communication
rounds as possible, thereby exhibiting a hard problem instance. We remark
that our language differs subtly from that of Miltersen [23] and Miltersen et
al. [24] who instead invent communication problems that can be reduced to
their cell-probe data structure problems, and then prove lower bounds for
the communication problems.

The possible values of f1(x) (provided by the algorithm for every x) par-
tition P1 into equivalence classes. Alice chooses one such class and the corre-
sponding value of f1(x), thus restricting the set of possible queries to P2 ⊆ P1.
Given this fixed value of f1(x), which Alice communicates to Bob, the entry
T [f1(x)] depends only on Bob’s choice of key-set. All the possible values of
that entry partition K1 into equivalence classes. Bob picks one of them and
communicates the corresponding value of T [f1(x)] to Alice, thus restricting
the collection of possible key-sets to K2 ⊆ K1. Alice and Bob can then iter-
ate on this process. This produces two nested sequences of admissible query
sets,

P1 ⊇ P2 ⊇ · · · ⊇ Pt ,

and admissible key-set collections,

K1 ⊇ K2 ⊇ · · · ⊇ Kt .

An element of Pr×Kr specifies a problem instance. The set Pr ×Kr is called
nontrivial if it contains at least two problem instances with distinct answers,
meaning that no point can serve as a suitable ANN in both instances. If
Pr × Kr is nontrivial, then obviously round r is needed, and possibly others
as well.

We show that for some appropriate value of n = n(d), there exists an
admissible starting P1 × K1, together with a strategy for Alice and Bob,
that leads to a nontrivial Pt × Kt, for t = Θ(log log d/ log log log d). What
makes the problem combinatorially challenging is that a greedy strategy can
be shown to fail. Certainly Alice and Bob must ensure that Pr and Kr do not
shrink too fast; but just as important, they must choose a low-discrepancy
strategy that keeps query sets and key-sets “entangled” together. To achieve
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this, we adapt to our needs a technique used by Ajtai [1] for probability
amplification in product spaces.2

3 Combinatorial Preliminaries

Before getting into the proof of our lower bound, we introduce some notation
and describe a combinatorial construction that will be central to our argu-
ments. For the rest of this paper, we assume that d is large enough and that
logarithms are to the base 2. The term “distance” refers to the Hamming
distance between two points in {0, 1}d. A “ball of radius r centered at x”
denotes the set {y ∈ {0, 1}d : dist(x, y) ≤ r}. To begin with, we specify the
size n of the admissible key-sets and the number t of rounds, and also define
two auxiliary numbers h and β:

h
def= 6ct (1)

β
def= 16 · 2�(log d)1−ε� (2)

t =
⌈

ε log log d

2 log log log d

⌉
(3)

n = (h − 1)t−1d5t (4)

The significance of the above formulae will become clear in the proofs of
Lemmas 3.4–4.3. Recall that the constant c parametrizes the size of the table
in the cell-probe algorithm: the table has (dn)c entries, each consisting of d
bits.

The main combinatorial object we construct is a hierarchy H of balls or,
more formally, a rooted tree H and a family of balls, one associated with
each node of H, such that the parent–child relation in H translates into the
inclusion relation in the family of balls. Our proof will rely crucially on three
quantities being large enough: the height of H, the degree of a node in H,
and the minimum distance between balls associated with sibling nodes in H.

From this main tree H, we derive additional trees Hr, 1 ≤ r ≤ t; the tree
Hr is used in the rth round of communication between Alice and Bob. The
tree H1 is a certain contraction (in the graph theoretic sense) of H. The trees
H2, . . . ,Hr are “nondeterministic” in the following sense: roughly speaking,
Hr is obtained by picking a node v of Hr−1, “uncontracting” v to obtain a
subtree of H, and then contracting this subtree in a different way. Notice
that the choice of v determines the resulting Hr. In the proof, we shall fix the
node v (and thus determine Hr) only during the rth round of the Alice–Bob
game.

2This simple but powerful technique, which is described in §4.3, has been used elsewhere
in communication complexity, for example by Karchmer and Wigderson [18].
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The sets Pi, of admissible queries, and Ki, of admissible key-sets, will be
constructed based on these trees Hr.

We shall now describe the constructions of these trees precisely. We begin
with a geometric fact about the hypercube.

Definition 3.1 A family of balls is said to be γ-separated if the distance
between any two points belonging to distinct balls in the family is more than
γ times the distance between any two points belonging to any one ball in the
family. Here γ is any positive real quantity.

Lemma 3.2 Let B ⊆ {0, 1}d be a ball of radius k ≤ d large enough. For any
γ ≥ 16 there exists a γ/16-separated family of balls within B, such that the
size of the family is at least 2k/13 and the radius of each ball in the family is
k/γ.

Proof: We use an argument similar to the proof of Shannon’s theorem. Let
Vr be the volume of (i.e. the number of points in) a ball in {0, 1}d of radius
r, centered at a point in {0, 1}d. (Notice that this number does not depend
on the center). Clearly

Vr =
�r�∑
i=0

(
d

i

)
.

Consider the ball B′, concentric with B and of radius k/3, and call its
points initially unmarked. We proceed to mark the points of B′ as follows:
while there is an unmarked point left in B′, pick one and mark all the points
at distance at most k/4 from that point. The number N of points we pick in
B′ satisfies

N ≥
Vk/3

Vk/4
.

We can bound N from below:

N ≥
Vk/3

Vk/4
=

∑�k/3�
i=0

(
d
i

)
∑�k/4�

i=0

(
d
i

) ≥
(

d
�k/3�

)
∑�k/4�

i=0

(
d
i

) .

Note that in each term of the sum in the denominator i is at most d/4. For
such i, (

d
i

)
(

d
i−1

) =
d − i + 1

i
≥ 3,

so
�k/4�∑
i=0

(
d

i

)
≤ 3

2

(
d

�k/4�

)
.

This gives

N ≥ 2
3
·
(

d
�k/3�

)
(

d
�k/4�

)
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Fig. 1. Picking the separated family of balls B1, B2, . . .. The marked points are
indicated by hatching; the picked balls by solid fill.

=
2
3
·

�k/3�∏
i=�k/4�

d − i + 1
i

≥ 2
3
·
(
2 × 2 × · · · × 2︸ ︷︷ ︸

k/12−2 factors

)

≥ 2k/12−3,

and for large enough k, this implies N ≥ 2k/13.
Now pick balls of radius k/γ centered at the N picked points; their centers

are in B′ and their common radius is at most k/16, so these balls lie within
B. Moreover, it is easy to see that they form a γ/16-separated family. To
see why, suppose on the contrary that two points p and q in balls centered
at distinct points p0 and q0 lie within k/8 of each other. Then,

dist(p0, q0) ≤ dist(p0, p) + dist(p, q) + dist(q, q0)
≤ k/γ + k/8 + k/γ

≤ k/4,

since γ ≥ 16. But this is a contradiction since, by construction, dist(p0, q0) >
k/4.

Corollary 3.3 For k divisible by β, there exists a β/16-separated family of
radius-(k/β) balls within B, of size 2k/β.

Let H be the tree whose root is associated with the ball of radius d
centered at (0, . . . , 0). The children of the root are each associated with one
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of the 2d/β balls specified by the above corollary.3 Their children, grand-
children, etc., are defined similarly. In general, a node of depth k (root being
of depth 0) is associated with a ball of radius d/βk and its number of children
is 2d/βk+1

. We iterate this recursive construction until the leaves of H are of
depth ht−1. Note that the balls associated with the leaves of H are of radius
at least d/βht−1

, and thus, by our choice of t, large enough for the application
of Lemma 3.2; specifically, its corollary.

The tree H is used to build other trees, each one associated with a separate
round. We begin with the round-one tree H1. Given v ∈ H, let H∗

1(v) denote
the subtree of depth ht−2 rooted at v. For each node v of H whose depth
is divisible by ht−2, remove from H all the nodes of H∗

1(v), except for its
leaves, which we keep in H and make into the children of v: these operations
transform H into a tree H1 of depth h. In this way, each node v of H1

(together with its children) forms a contraction of the tree H∗
1(v). We can

easily check that a node of H1 of depth k < h has exactly

2νd/βkht−2+1

children, where ν = (1 − 1/βht−2
)/(1 − 1/β).

For 1 < r < t, we define Hr by induction. We pick some internal node v
of Hr−1 and consider the tree H∗

r−1(v) of which it is the contraction. This
tree now plays the role of H earlier: For z ∈ H∗

r−1(v), we let H∗
r(z) denote

the subtree of H∗
r−1(v) of depth ht−r−1 rooted at z. If the depth of z in

H∗
r−1(v) is divisible by ht−r−1, we turn the leaves of H∗

r(z) into the children
of z, which transforms H∗

r−1(v) into a tree of depth h that is the desired Hr.
For r = t, we define Hr (with respect to an internal node v ∈ Hr−1) as

simply the tree formed by v and its children. We note once again that, for
any r > 1, the definition of Hr is not deterministic, since the initial choice of
v is left unspecified.

Lemma 3.4 Any internal node v of any Hr satisfies 2
√

d < deg (Hr , v) <
22d/β, where deg (T , v) denotes the number of children of node v in tree T .

Proof: Observe that deg (Ht, v) = deg (Ht−1, v). So, it suffices to prove the
lemma for 1 ≤ r ≤ t − 1. Pick any such r and consider any internal node v
of Hr: deg (Hr, v) is the number of leaves of H∗

r(v), which itself is a subtree
of H of depth ht−r−1. So, if k is the depth of v in H, then

deg (Hr, v) =
ht−r−1∏

i=1

2d/βk+i

.

3To simplify the notation, we shall assume that d is a large enough power of 2. Note
that β is already a power of 2.



320 A. Chakrabarti et al.

It follows that the number deg (Hr, v) is largest when r = 1, k = 0, and
smallest when r = t − 1, k = ht−1 − 1. Thus

deg (Hr, v) ≤
ht−2∏
i=1

2d/βi

= 2νd/β < 22d/β.

On the other hand, deg (Hr , v) ≥ 2d/βht−1

, so it suffices to prove that

ht−1 log β <
1
2

log d. (5)

But this follows after some routine algebra from (1), (3), and the fact that d
is large enough.

The association between balls and nodes of Hr is inherited from H in the
obvious manner.

4 The Lower Bound

We now turn to the proof of the lower bound itself. Recall that the proof
consists of an adversarial strategy that leads to well-structured sets Pr, of
admissible queries, and Kr, of admissible key-sets. We shall require these sets
to satisfy certain invariants and shall ensure that Alice’s and Bob’s strategies
maintain these invariants. Finally, we shall show that if the invariants have
been maintained for t − 1 rounds, then the problem instance Pt × Kt is
nontrivial, which would imply that round t is necessary, completing the proof.

4.1 Admissible Queries

Recall that Alice’s message in round r partitions Pr into equivalence classes.
This partitioning can be unwieldy, so we restrict the admissible query sets to
be part of another, better-structured, nested sequence

P ∗
1 ⊇ P ∗

2 ⊇ · · · ⊇ P ∗
t ,

where each P ∗
r ⊇ Pr .

The centers of the balls at the leaves of H constitute the set P ∗
1 . For

r > 1, we define P ∗
r as the intersection of P ∗

r−1 with the balls at the leaves of
Hr. We define P1 = P ∗

1 . For r > 1, Alice chooses the set Pr to be a certain
subset of P ∗

r according to a strategy to be specified in §4.4. For r > 1, we
keep the set Pr of admissible queries from being too small by requiring the
following:

• query invariant: The fraction of the leaves in Hr whose
associated balls intersect Pr is at least 1/d.
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Note that the size of the initial collection P1 of admissible queries is not quite
as large as 2d, although it is still a fractional power of it. Indeed,

|P1| = (2d)
1−1/βht−1

β−1 .

By our assumption on table size, the index f1(x) that Alice gives Bob dur-
ing the first round can take on at most (dn)c distinct values. This subdivides
P1 into as many equivalence classes. The same is true at any around r < t,
and so Pr is partitioned into the classes Pr,1, . . . , Pr,(dn)c . An internal node
v of Hr is called dense for Pr,i if the fraction of its children whose associated
balls intersect Pr,i is at least 1/d. The node v is said to be dense if it is dense
for at least one Pr,i.

Lemma 4.1 The union of the balls associated with the dense non-root nodes
of Hr contains at least a fraction 1/2d of the balls at the leaves.

Proof: Consider one of the partitions Pr,i. Color the nodes of Hr whose
associated balls intersect Pr,i. Further, mark every colored non-root node
that is dense for Pr,i. Finally, mark every descendant in Hr of a marked
node. For 1 ≤ k ≤ h, let Lk be the number of leaves of Hr whose depth-
k ancestor in Hr is colored and unmarked. (We include v as one of v’s
ancestors.) Let L be the number of leaves of Hr. Clearly L1 ≤ L. For k > 1,
an unmarked colored depth-k node is the child of a colored depth-(k − 1)
node that is not dense for Pr,i. It follows that Lk < Lk−1/d and so, for any
k ≥ 1, Lk ≤ L/dk−1.

Repeating this argument for all the Pr,i’s in the partition, we find that
all the unmarked, colored nodes, at a fixed depth k ≥ 1, are ancestors of at
most (dn)cL/dk−1 leaves. In particular, the number of unmarked, colored
leaves is at most

(dn)cL/dh−1 < L/2d. (6)

This last inequality follows from (1) and (4). Incidentally, the quantity h is
defined the way it is precisely to make this inequality hold.

The query invariant ensures at least L/d colored leaves, so there are at
least L/2d colored, marked leaves. Moving up the tree Hr, we find that the
marked nodes whose parents are unmarked are ancestors of at least L/2d
leaves. All such nodes are dense, which completes the proof.

4.2 Admissible Key-Sets

The collections Kr of admissible key-sets need not be specified explicitly.
Instead, we define a probability distribution Dr over the set of all

(
2d

n

)
key-

sets of size n and indicate a lower bound on the probability that a random
key-set drawn from Dr is admissible, i.e., belongs to Kr. Beginning with the
case r = 1, we define a random key-set S1 recursively in terms of a random
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variable S2, which itself depends on S3, . . . , St. To treat all these cases at
once, we define Sr, for 1 ≤ r ≤ t:

• For r < t, we define a random Sr within Hr in two stages:

[1] For each k = 1, 2, . . . , h − 1, choose d5 nodes of Hr of depth k at
random, uniformly without replacement among the nodes of depth
k that are not descendants of chosen nodes of smaller depth. The
(h − 1)d5 nodes chosen in this way are said to be picked by Sr.

[2] For each node v picked by Sr, recursively choose a random Sr+1

within the corresponding tree Hr+1 (i.e., defined with respect to
node v). Such a Sr+1 is called the canonical projection of Sr on
v. The union of these (h−1)d5 projections Sr+1 defines a random
Sr within Hr.

• For r = t, a random St within (some) Ht is obtained by selecting d5

nodes at random, uniformly without replacement, among the leaves
of the depth-one tree Ht: St consists of the d5 centers of the balls
associated with these leaves.

Note that a random Sr consists of exactly (h − 1)t−rd5(t−r+1) points, thus
satisfying the definition of n in (4) for the case of S1. A random S1 is
admissible with probability one (since no information has been exchanged
yet), and so the set of all S1’s constitutes K1. Obviously, this cannot be true
for r > 1, since for one thing Sr does not even have the right size, i.e., n.

Suppose we have defined the distribution Dr−1, for some r > 1. As we
shall see from Bob’s strategy, this implies the choice of a specific Hr−1. To
define Dr, we choose some node v in Hr−1 (which immediately implies the
choice of Hr for the next round). Any key-set S1 whose construction involves
choosing an Sr within the tree Hr associated with node v is called v-based
and its subset formed by the corresponding Sr is called its v-projection.

By abuse of terminology, we say that Sr is admissible if it is a v-projection
of at least one key-set of Kr−1: for each admissible Sr, choose one such key-
set arbitrarily and call it the v-extension of Sr; for any other Sr, choose as its
(unique) v-extension any v-based key-set whose v-projection is Sr (such a key-
set is non-admissible). To define the distribution Dr, we assign probability
zero to any key-set S1 that is not a v-extension; if it is, we assign it the
probability of its v-projection with respect to the distribution of a random
Sr. During round r − 1, Bob gets to choose Kr among the key-sets with
nonzero probability in Dr.

We set a lower bound on the number of admissible key-sets by requiring
Bob’s strategy to enforce the following

• key-set invariant: A random Sr is admissible with proba-
bility at least 2−d2

.
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The underlying distribution is the one derived from the construction of Sr,
which is also equivalent to Dr.

In what follows, we shall need a tail estimate for the hypergeometric
distribution. The next lemma provides it:

Lemma 4.2 Consider a set of N of objects, a fraction 1/T of which are
“good”. Pick a random subset of size m ≤ N of these objects, all subsets of
size m being equally likely, and let the random variable X denote the fraction
of elements of this subset that are good. Then for any real t > 0 we have
Prob[ 1

T − X ≥ t] ≤ e−2mt2 .

Proof: This follows directly from Theorems 1 and 4 in [16].

Lemma 4.3 Fix an arbitrary Hr (r < t). There exists some k0 (1 ≤ k0 <

h) such that, with probability at least 2−d2−1, a random Sr within Hr is
admissible and picks at least d3 dense nodes of Hr of depth k0.

Proof: By Lemma 4.1, the dense non-root nodes of Hr are ancestors of
at least a fraction 1/2d of the leaves. By the pigeonhole principle, for some
k0 with 1 ≤ k0 < h, at least a fraction 1/2dh of the nodes of depth k0 are
dense. Of course, not all these nodes can be picked by Sr: only those that do
not have ancestors that have been picked further up the tree are candidates.
But this rules out fewer than hd5 nodes, which by Lemma 3.4, represents a
fraction at most hd52−

√
d of all the nodes of depth k0. This means that from

among the set of depth-k0 nodes that can be picked by Sr, the fraction 1/T0

that is dense satisfies

1
T0

≥
1

2dh − hd5

2
√

d

1 − hd5

2
√

d

>
1

3dh
.

Among the d5 nodes we pick at depth k0, we expect at least d5/3dh of
them to be dense, and thus we should exceed the lemma’s target of d3 with
overwhelming probability, say, 1 − 2−d2−1. Using Lemma 4.2 we see that
this is indeed the case: choose the set of objects in the lemma to be the set
of depth-k0 nodes that are available for picking by Sr and let the “good”
objects among these nodes be the dense nodes. Choose m = d5, T = T0 and
t = 1/T0−1/d2 > 0. The lemma now says that the number R of dense nodes
we pick satisfies

Prob[R ≤ d3] = Prob[R/d5 ≤ 1/d2] ≤ e−2d5( 1
T0

− 1
d2 )2

But, as observed above, T0 ≤ 3dh and so, after some routine algebra, we
obtain Prob[R ≤ d3] ≤ 2−d2−1.

The key-set invariant completes the proof.
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4.3 Probability Amplification

In the rth round, the table entry T [fr(x, T [f1(x)], . . .)] that Bob returns to
Alice can take on at most 2d distinct values, and so the collection of admissible
key-sets is partitioned into equivalence classes Kr,1, . . . , Kr,2d . Bob has to
choose one of these classes to form the new collection Kr+1 of admissible
key-sets. Unfortunately, such a large number of classes is likely to cause a
violation of the key-set invariant. To amplify the probability that a random
key-set is admissible back to 2−d2

, we exploit the fact that the distribution
is defined over a product space, and borrowing an idea from Ajtai [1], we
project the distribution on its “highest-density” coordinate.

Lemma 4.4 For r < t, there exists a dense node v of Hr such that the
conditional probability that the canonical projection on v of a random Sr is
admissible, given that it picks v, is at least 1/2.

Proof: Let D be a subset of dense nodes of depth k0 (referred to in
Lemma 4.3). We define ED to be the event that the set of dense nodes
of depth k0 picked by Sr is exactly D. Let pD be the probability that Sr

is admissible and that ED occurs, and let cD be the conditional probability
that Sr is admissible, given ED. By Lemma 4.3, summing over all subsets D
of dense depth-k0 nodes of size at least d3, we find that∑

D

cD · Prob[ED] =
∑
D

pD ≥ 2−d2−1,

and therefore cD0 ≥ 2−d2−1, for some D0 of size at least d3.
Now we derive a key fact from the product construction of the probability

spaces for key-sets. Consider the |D0|-dimensional space, where each v ∈
D0 defines a coordinate. Each point in this space represents an Sr and is
characterized by a vector 〈n1, . . . , n|D0|〉, where ni is the canonical projection
of Sr onto the ith node of D0. By the definition of admissibility for Sr’s, if
〈n1, . . . , n|D0|〉 is an admissible Sr, then all the ni’s in its vector representation
are admissible Sr+1’s. Let Ani be the set of all admissible Sr+1’s within the
Hr+1 corresponding to the ith node of D0. Clearly the admissible Sr’s that
belong to the |D0|-dimensional space are all contained in

An1 × · · · × An|D0|

the size of which is a fraction
∏

v∈D0
cv of the Sr’s for which D0 is exactly the

set of dense nodes of depth k0 picked by Sr, where cv is the probability that
a random Sr+1 within the Hr+1 corresponding to v is admissible. Because
within Sr the random construction of any Sr+1 is independent of Sr \ Sr+1,
cv is also the conditional probability that the canonical projection on v of a
random Sr is admissible, given that it picks v. Thus we see that

cD0 ≤
∏

v∈D0

cv.
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Since |D0| ≥ d3, it follows that

cv ≥
(
2−d2−1

)1/|D0|
≥ 1

2
,

for some v ∈ D0.

4.4 Maintaining the Invariants

We summarize the strategies of Alice and Bob and discuss the enforcement
of the two invariants. Skipping the trivial case r = 1, we show that if the
invariants hold at the beginning of round r < t, they also hold at the begin-
ning of round r +1. Prior to round r, consider the node v from Hr described
in Lemma 4.4. Since v is dense there is some Pr,i such that the fraction of
v’s children whose associated balls intersect Pr,i is at least 1/d. Alice chooses
such a Pr,i and defines Pr,i ∩ P ∗

r+1 to be Pr+1, the set of admissible queries
prior to round r+1. The tree Hr+1 is then rooted at v, and its leaves coincide
with the children of v in Hr. Thus, the fraction of the leaves of Hr+1 whose
associated balls intersect Pr+1 is at least 1/d, and the query invariant holds.

Turning now to the key-set invariant, recall that during round r, Bob
is presented with a table entry, which holds one of 2d distinct values. By
the choice of v in Lemma 4.4, the probability that a random Sr+1 at v is
admissible is at least a half. A key observation is that this is the same
probability that a random key-set from Dr+1 is in Kr. By the pigeonhole
principle, there is a value of the table entry for which, with probability at
least (1/2)2−d, a random key-set from Dr+1 is in Kr and produces a table
with that specific entry value. Since 2−d−1 > 2−d2

, the key-set invariant
holds after round r.

4.5 Forcing t Rounds

To complete the proof of Theorem 1.1, we must show that the invariants
on query-sets and key-sets are strong enough to guarantee that Pt × Kt is
nontrivial, i.e. that after t − 1 rounds, we still have at least two admissible
problem instances which produce different answers. We shall soon prove that
there exists at least one key-set S ∈ Kt which picks two distinct leaves v1 and
v2 of the tree Ht whose associated balls contain queries q1 and q2, respectively,
in Pt. Notice that by construction, the family of balls associated with the
leaves of Ht is a β/16-separated family. Since any key must lie within some
ball in this family, no key can be a β/16-ANN for both q1 and q2. But (2)
says that β/16 = 2�(log d)1−ε� which concludes the argument.

We prove the existence of such an S by contradiction. For any St let ν(St)
denote the number of queries in Pt that it picks (which is shorthand for “the
number of nodes it picks each of whose balls contains at least one query in
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Pt”). Suppose that no admissible St picks more than one query. Then the
probability p that a random St is admissible satisfies

p ≤ Prob[ν(St) = 0] + Prob[ν(St) = 1].

To form a random St we pick d5 leaves of Ht at random, uniformly. By the
query invariant, at least 1/d of them belong to Pt. So,

p <
(
1 − 1

d

)d5

+ 2d
(
1 − 1

d

)d5−1

< e−d4
+ 2d+1e−d4

< e−d3
.

By the key-set invariant, we must have p > 2−d2
, hence a contradiction. This

concludes the proof of Theorem 1.1.
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