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Abstract — Zusammenfassung

On a Circle Placement Problem. We consider the following circle placement problem: given a set of
pointsp,i=1,2, ..., n,each of weight w, in the plane, and a fixed disk of radius r, find a location to place
the disk such that the total weight of the points covered by the disk 1s maximized. The problem is
equivalent to the so-called maximum weighted clique problem for circle intersection graphs. That is,
givenaset Sof ncircles, D, i=1,2,...,n, of the same radius r, each of weight w, find a subset of S whose
common intersection is nonempty and whose total weight is maximum. An O (#*) algorithm is presented
for the maximum clique problem. The algorithm is better than a previously known algorithm which 1s
based on sorting and runs in O (n* log 1) time.

Uber ein Problem der Kreisscheibenplazierung. Diese Arbeit untersucht das folgende Optimierungs-
problem: gegeben sei eine Menge von Punkten P,i=1,2,...,n, in der Ebene, jeder mit Gewicht w,, und
eine Kreisscheibe mit vorgegebenem Radius; finde eine Plazierung der Kreisscheibe, die die Summe der
Gewichte aller iiberdeckten Punkte maximiert. Dieses Problem ist dquivalent zum folgenden Problem
definiert fiir den Schnittgraphen von n kongruenten gewichteten Kreisscheiben in der Ebene: bestimme
eine Clique (die korrespondierenden Kreisscheiben haben einen nichtleeren gemeinsamen Durch-
schnitt), die die Summe der Gewichte maximiert. Wir priasentieren einen O (n*)-Algorithmus fiir dieses
Problem, was eine Verbesserung darstellt gegeniiber dem besten bisher bekannten Algorithmus, der
sortiert und O (n®logn) an Laufzeit bendtigt.

1. Introduction

We consider the following circle placement problem: given a set of points p;,
i=1,2,...,n, each of weight w;, in the plane, and a fixed disk of radius r, find a
location to place the disk such that the total weight of the points covered by the disk
is maximized. The problem has an application in location theory. Consider n cities
with different populations and a radio station of a fixed transmission power. An

* Supported in part by the National Science Foundation under Grants MCS 8303925, MCS 8342682
and ECS 8340031, and ONR & DARPA under contract N00014-83-K-0146 and ARPA Order

No.4786. A preliminary version was presented at the 18th Annual Conference on Information
Sciences and Systems, March 1984, Princeton, N. J.

1 Computing 36/1 —2



2 B. M. Chazelle and D. T. Lee:

optimization problem is to find the site to set up the station so that the maximum
possible population can receive its signal. The problem is equivalent to the following
maximum weighted clique problem, That is, given a set § of n circles, D,,
i=1,2,...,n,of thesameradius r, each of weight w,, find a subset of S whose common
intersection is nonempty and whose total weight is maximized. In [6, 7] the case in
which the objects involved are rectangies is studied. A previously known solution
[1, 4] to the unweighted maximum clique problem is to sort the intersection points
of each circle and the other n—1 circles and scan for each circle the intersection
points in, say clockwise order. During the scan a count of the number of intersecting
circles with the circle under consideration is maintained, i.e., the count is
incremented by 1 when we encounter an intersection point and are about to enter the
interior of the new circle contributing the intersection point and is decremented by 1
when we leave the circle of concern. A globally maximum count is retained.
Evidently, this scheme works in time O(n?logn), which is due to sorting the
intersection points n times, one for each circle, and only obtains the maximum
cardinality of the subset of § whose common intersection is nonempty. With an
appropriate bookkeeping the subset of circles in the maximum clique can also be
obtained. As for the weighted case, the count is incremented or decremented by the
weight of the circle involved. We shall adopt the same strategy of computing the
maximum clique in the unweighted or weighted case except that we do not perform
sorting and instead obtain a graph-theoretic representation of the intersection
graph formed by these n circles, which is a planar graph with intersection points as
the vertices and arcs of the circles as the edges.

Since the weighted and unweighted cases are similar, we shall deal with the
unweighted case from now on. Let {D, ..., D,} be a set of n disks of radius r. We shall
construct the intersection graph G in an iterative manner, i.e., by inserting a new
disk, one at a time, into a previously obtained structure. The structure is initially set
to be empty and will be represented, in general, by adjacency lists. The structure is
updated upon insertion of a new disk D by traversing each face of G that intersects
the boundary of D, updating the adjacency lists on the fly. The greedy method is an
analog of the one used in computing the line arrangement of » lines in the plane
[3, 5]. It can be easily shown that this operation takes O (n*) time, but it was an open
question to decide whether this bound was optimal. We show that the greedy
algorithm 1is in fact linear, and is therefore more attractive than the best method
previously known. In the remainder of this paper we will successively describe the
basic data structure, give a precise definition of the greedy algorithm, and finally
analyze its complexity. We remark here that a straightforward plane sweep
algorithm { 2] could be used to solve the maximum clique problem in O {(n + K) log n)
time, where K i1s the number of actual intersections between circles.

To avoid singular cases, we introduce two dummy vertices on the boundary, D}, of
each disk D;. These vertices correspond respectively to the lowest and highest points
on D¥. With this minor addition, each edge of D, now belongs totally to either the left
or right part of D,. Fig. 1 depicts the basic data structure and its relation to the
planar graph G. The representation consists of a list of 9-field records, each record
being associated with an edge of G. Record for edge e stores 1. pointers to the
coordinates of its endpoints; 2. a flag to indicate on which side (left or right) or its
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supporting disk it lies; 3. pointers to the four edges emanating from e clockwise and
counterclockwise around its endpoints; 4. pointers to the two edges adjacent to e on
its supporting disk, D;. The data structure is similar to the doubly-connected-edge-
list representation of a graph [8,9]. In general, each node in G has degree four,
except for the top and bottom points of the disks, which have in general degree 2.
Finally, for each disk D;, we keep a pointer to an arbitrary edge of G that lies on D¥.
This pointer, called the handle of D;, will allow us to walk around any disk without
any preliminary search.

This representation of G allows us to traverse the boundary of each face in clockwise
or counterclockwise order in time proportional to the description-size of the face.
This operation is the basis of the greedy algorithm, which we proceed to describe
after setting some notation. Each disk D, has its boundary denoted D and its center,
C;. Similarly, D* and C denote respectively the boundary and the center of D, the
new disk to be inserted. Let G* be the planar graph formed by {D,,...,D,,D}. G*
always has exactly one unbounded face, which may possibly contain holes. A face of
G* is called a facet of D if it lies outside of D and contains an edge lying entirely on
D*. Any intersection point between D* and D¥ is called an anchor, and the two edges
on D* adjacent to the anchor are called the bases of the anchor. Note that a given
facet always has twice as many anchors as bases.

2. The Greedy Algorithm

Before describing the algorithm, we must investigate the possible configurations of
facets. To begin with, we define the notion of traversal. Consider the boundary of a
facet f, and remove its bases. We obtain a set of disjoint paths in G*, which are called
traversals (Fig. 2). Technically, a traversal T is simply a sequence of arcs, but the
term itself suggests the actual visit of the arcs. We will therefore make use of the
expression: “to perform a traversal T” as referring to the algorithmic notion of
visiting the edges of T in turn. This can be accomplished either clockwise or
counterclockwise with respect to the face encompassed. T is said to be a positive
traversal if the face lies to the right (clockwise) and a negative traversal if the face lies
to the left (counterclockwise). Note that a directed traversal always has one starting
point. From now on, unless specified otherwise, traversals' will be understood as
directed traversals. We distinguish between two important classes of traversals.

1*
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Fig. 2

Definition 1: Let p be the starting point of a directed traversal 7 (either positive or
negative). If the Euclidean distance between p and every point (not just vertices) of T
is strictly smaller than 2, the traversal is said to be bounded; otherwise it is called
wide. Note that these notions are defined only for directed traversals, which means,
in particular, that a traversal may be bounded in one direction and wide in the other.

We will show later on that a bounded traversal has the very nice property that its
endpoints constitute a base. Furthermore, all but at most a constant number of
traversals are bounded. This will provide the basis of the greedy algorithm. In the
first stage, let’s establish the validity of these two claims, then let’s use them to
completely specify the greedy algorithm. Before proceeding, we must introduce a
notion of topological orientation fundamental in the following.

Let p and ¢ be two points on a simple closed curve, C, and consider a simple directed
curve running from p to g and lying completely outside of C. From genus
considerations with respect to the region obtained by removing the interior of C
from the plane, it easily follows that there are exactly two topologically distinct
classes of directed curves from p to ¢. In one case, the curve runs around C clockwise
so that the bounded region encompassed by the curve and C lies to the right and is
said to be positively oriented around C; in the other case, the curve runs
counterclockwise, and is thus negatively oriented {(Fig. 3). When we use this notion
later on, C will be either a circle or the outside boundary of several intersecting disks.

In the following, we will use the term path in the geometric or the graph-theoretic
sense indifferently, when there is no ambiguity from the context. For example, we
will refer to the positive or negative orientation of a directed path in G* from a point
on D* to another. For convenience, we introduce the following piece of notation: let
K be a disk and A an arbitrary point in the plane distinct from its center. The line L
passing through A4 and the center of K intersects the disk in two points a and b, with
say b the further away from A. We define R (A, K) to be the unique ray supported by
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L, emanating from b, and not intersecting K. If p and ¢ are two points on D*, we
designate the arc running clockwise from p to g by A (p, q). Finally observe that if a
traversal starts at a point p which is inside (resp. outside) a disk D;, then the path
traversed must remain in (resp. out of) D;, i.e., any traversal must be consistent.
Furthermore, if the traversal is inside some disk, it must be bounded. Note that the
converse is not necessarily true.

Lemma 1: Let Tbe a(directed) bounded traversal from p to q. Then the endpointsof T
span a base, which is the arc A(p,q) (resp. A(q,p)) if T is positive (resp. negative).

Proof": Assume without loss of generality that T'is a bounded positive traversal; the
negative case is treated similarly. Let R be the bounded region enclosed by D¥ and T
(Fig. 4). We will first prove that no disk D; can intersect R strictly (i.e. intersect the
interior of R). If such a disk intersects R, it is easy to show that the ray R (p, D;) must
intersect T at least once, which is a contradiction, since T is a bounded traversal.
From this result we immediately derive that T must be positively oriented around
D*, and as we just saw, R is free of strict intersection with any D,. This implies that R
is precisely the facet corresponding to 7', and that the arc 4 (p, q) is the unique base of
this facet.

REP.D,)
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We are now ready to show that most directed traversals are bounded. To do so, we
give, without proof, two elementary results on the relative position of several circles.

Lemma 2: [t is impossible to arrange more than 5 disks of radius r, with each
intersecting D, but no two intersecting each other outside D.

Fig. 5a depicts a placement of 6 disks, which is tight in that each disk intersects D
and its two neighbors only on their boundary.

Definition 2: Assume that the region outside three disks of radius r has two
connected components. One of them has to be bounded; it is called the tripod of the
three disks. Note that three disks will often not form any tripod.

Lemma 3: The tripod of three disks of radius r cannot contain two’points more thanr
apart from each other.

Fig. 5b illustrates the case where the distance r is actually achieved.

We are now in a position to prove the second claim made earlier concerning the
scarcity of wide traversals.

A\

<7
A\

TRIPOD

(a) (b)

Fig. 5

Lemma 4: There are at most a constant number of wide traversals.”

Proof: Let V be the clockwise sequence of anchors that are the starting points of
wide positive traversals. This sequence is uniquely defined up to a circular
permutation. Let p,, p,, p; be three consecutive anchors in ¥, and let D, be the disk
contributing the edge of the wide traversal anchored at p,. Since any traversal must
be consistent, i.e., no traversal can go through both the interior and the outside of
any disk in S, and since D; cannot contain a wide traversal in its interior, it follows
that the intersection of D; and D* must be a sub-arc of A (py, p3). Identifying such
disks for every other element in ¥ leads to a set of | | V|/2] disks, all intersecting D.
Suppose now that two of these disks intersect outside of D. Since there is at least one
starting point p of V between them, they must form a tripod with D, but Lemma 3
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shows that this will force any traversal emanating from p to be bounded, hence a
contradiction. This sets the conditions of Lemma 2, from which we derive the
inequality, || V|/2] <5, which completes the proof.

We are now ready to describe the greedy algorithm in its entirety. Compute all
intersections between D and D,, for i=1, ..., p, and make these points the unmarked
elements of a set Q, initially empty. The algorithm will involve marking the elements
of Q one after the other, and will terminate when all of them have been marked at
least once. If no intersection points are found to be inserted into Q in the first place, it
is trivial to complete the algorithm, so we will assume that Q0. Let p be an
unmarked element of Q. Note that p is an anchor, and thus the starting point of two
directed traversals, one positive and the other negative. We will operate in two
stages, one with respect to each traversal. Because of symmetry, we may describe
the sequence of actions only for the positive traversal, denoted 7, with the
understanding that a symmetric task will have to be executed with respect to the
negative traversal right after completion of the first stage.

Mark p and locate its supporting edge in G, on D,. We can do this in O (n) time by
simply starting at the handle of D, and walking through the adjacency lists of G (of
course, we will not have to repeat this work at the second stage). Next, perform the
positive traversal, T, starting from p. If T is bounded, it will lead to an anchor g
which, by Lemma 1, is known to form a base with p, via the arc 4 (p, q). This allows
us to insert the base into G and update all the appropriate records, which in
particular involves splitting the two edges of G cut out by p and ¢, and restoring the
proper links between adjacent edges. At this stage, we mark g and start the unique
positive traversal emanating from g. We will iterate on this process, i.¢e., performing
successive positive traversals, until either we reach an anchor that is marked or we
detect a wide traversal, whichever occurs first. Note that the latter condition can be
checked in constant time at any step. When this process terminates, we perform the
identical series of operations, starting negative traversals from p. When both stages
have been completed, we pick any unmarked point in Q, locate it in G in O (n) time,
and iterate on the same process, until we reach termination.

Consider now the sequence V of bases in G* given, say, in clockwise order around D.
Between two successive selections of an unmarked anchor in ¢, we know from
Lemma 1 that we will find (and insert into G) a subset of bases, yet undiscovered,
which constitute a subsequence of V. For this reason, we can easily prove by
induction that the endpoints of all these subsequences are anchors that are also
starting points of at least one wide traversal. We can then use Lemma 4 to conclude
that, in the end, all the bases of ¥ will have been found and inserted in G, except for at
most a constant number of them. This shows that the sequence V appears in G, at
that point, as a chain with at most a constant number of missing links. By
maintaining the endpoints of these chains by angular order around C, we can
immediately merge the chains together and reconstitute the complete sequence Vin
constant time.

This completes the description of the greedy algorithm. We must next establish its
complexity, and to do so, a few preliminary remarks are in order. First of all, the
algorithm clearly requires O (n) time if we discount all the traversals performed. The
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main difficulty now resides in evaluating the number of steps involved in these
traversals. Because of our choice of data structure used in the algorithm, this
quantity is proportional to the total number of edges visited during the traversals.
Let C (n) be the maximum number of edges visited in all the positive traversals. By
symmetry this will also give a measure of the cost incurred in the negative traversals.
We conclude with the following result, which sets the stage for the complexity
analysis of the greedy algorithm.

Lemma 5: The worst-case running time of the greedy algorithm is O(n+ C (n)).

3. Complexity Analysis

We introduce some notation which will help identify the basic components of the
time complexity. Recall that all the traversals (positive or negative) actually
performed in the course of the greedy algorithm are bounded, even though they
might be sub-part of wide traversals. For all purposes, therefore, we can regard any
traversal performed in the algorithm as a bounded traversal. Recall that from now
on we will deal exclusively with positive traversals. For this reason, we refer to any
positive traversal performed in the algorithm as a bounded positive traversal, or
BPT for short. Note that with respect to a given facet, any edge can be classified as
either convex or concave. An edge of G will in general contribute zero or one facet-
edge. Occasionally, it will contribute two: a convex one and a concave one. It will be
relatively easy to find an upper bound on the number of convex edges, but
unfortunately, dealing with concave edges will require a slightly heavier treatment.
For this reason, we now take a closer look at the nature of concave edges.

To characterize the relative position of a concave edge e, we introduce the notion of
L-, R-, and F-edges. Let D, be the disk supporting e and let P be the directed path
from p te v, where p is the starting point of the positive traversal visiting e, and v is the
first endpoint of e encountered during the traversal. Assume now that D; » D #0,
and let C denote the boundary of D U D,.

Definition 3: The concave edge ¢ is called an L-edge (resp. R-edge) if P is negatively
(resp. positively) oriented around C. If e is a concave edge but its supporting disk, D;,
does not intersect D, it is called an F-edge.

Fig. 6 illustrates these various notions. Note that any concave edge has a unique
type: L, F, or R. Finally, we introduce the concept of essential edges. We say that a
convex edge of a BPT is essential if it is immediately preceded and followed by
convex edges in the BPT. To extend this notion to concave edges, we consider the
sublist V' of concave edges in the order induced by the BPT. An edge e of Vis called
essential if it is preceded and followed in V' by at least one edge of the same type
(these edges don’t have to be immediate predecessors and successors of e in V).
Notice the basic difference between the definition “essential” for convex and
concave edges. In the first case, we insist on adjacency in the BPT, whereas in the
latter, we require only that at least one edge of the same type appears somewhere
before and after e in the list V. In all cases, however, we are able to associate a pair of
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edges (not necessarily unique) with each essential edge. We will often use this notion
of “association” later on.

Let Cy (n), C.(n), Cr(n), Cg(n) denote the number of edges visited during all the
BPT’s and falling respectively in the following category: 1. essential convex edges;
2.,3.,4. essential concave edges of type L, F, and R, respectively. Our plan of attack
for the following will be inspired by the following lemma.

Lemma 6: C(n)=0{(n+C,(n)+C.(n)+Cp(n)+ Cr(n)).

Proof: A few key observations will suffice to substantiate our claim. We can regard
each BPT as a word formed over the alphabet {V,L, F,R}, with each letter
indicating an edge-type (convex, L,F,R). Let #X designate the number of
occurrences of letters X. We clearly have

#V<C,(m+2(1+#L+#F+ #R),
with respect to each word. Since there are at most 2 n words, we globally have
#V<C,r(m+2Q2n+#L+#F+ #R).

Any BPT has at most two non-essential concave edges of each type, therefore
summing over all the words, we derive the inequality,

H#L+#F+#R<C,(m)+Cp(n)+Cgr(n)+12n,
which completes the proof.

The remainder of this section will be a sequence of lemmas establishing upper
bounds on each of the quantities, Cy (n), C, (n), Cr(n), and Cg (n). Before proceeding,
we will establish a technical result which we will use on several occasions later on.

Lemma 7: Let LY and L~ be the two half-planes delimited by a line L, and let the disk
D, be tangent to L in L™ . Let A be the point of contact, L n D¥. If a traversal starts
from an anchor p in L™ and intersects the ray R(A, D)), then it must be wide.

Proof” Let g be a point of intersection between the traversal and the ray R (4, D,). It
is elementary to show that the Euclidean distance between g and any point in L~ is
at least 2 r, therefore the traversal cannot be bounded. '
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3.1 Dealing with Essential Convex Edges

To begin with, we establish an upper bound on Cy, (n), the maximum number of
essential convex edges encountered in all the positive traversals. This will allow us
later on to restrict our attention to concave edges.

Lemma 8: C,(n)=0 (n).

Proof: A simple observation will allow us to break up the problem into two easier
subproblems, mirror-image of each other. Our goal is to evaluate the maximum
contribution of a disk D, to the number of essential convex edges. Obviously, any
contribution of D, implies that its intersection with D is not empty. Suppose without
loss of generality that C, is vertically aligned above C. Let’s break up every edge on
Df that intersects the line L passing through C C, into its two sub-parts. This allows
us to classify each edge on D¥ unambiguously as uphill (resp. downhill) if it lies to the
left (resp. right) of L. Of course, this notation can be extended to all edges
encountered during the traversals. An essential convex uphill (resp. downhill) edge is
called a U-edge (resp. D-edge) if it is followed (resp. preceded) by an uphill (resp.
downhill) edge. Let U (n) and D (n) denote, respectively, the maximum number of
U- and D-edges in all the BPT’s. A simple geometrical observation shows that no
uphill convex edge can be preceded by a downhill convex edge in any given positive
traversal.

To see this, let e and f be two convex edges appearing in this order in some positive
traversal, and let D; and D; be the disks contributing e and f, respectively. If i=, the
order e, f corresponds to the clockwise order of the arc (D\D), therefore f cannot be
uphill if e is downhill. Suppose now that i=#j, and let I denote the intersection
D; n D;. Since e and f are convex facet-edges, D* must intersect I, so we can define P
to be the directed path going clockwise around the boundary of this intersection.
Note that P is made of two or three arcs, depending on the relative positions of D and
I. 1t is easy to verify that the distance d =| C p|is always a unimodal function when p
describes P (d is first increasing, then decreasing). It follows that if e (resp. f) is a
downhill (resp. uphill) edge for traversal 7, it must lie on the decreasing (resp.
increasing) part of the function d, therefore the traversal T will necessarily
disconnect its corresponding facet from D*, which is a contradiction (Fig. 7). This
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proves that if e is downhill, so must be f, which establishes our claim. With this result
we have

Cy (m)=0(n+U )+ D(n)).

The next step is to determine an upper bound for both U (n) and D (n). Let us begin
with the determination of an upper bound on U (n). Let ¥ be the clockwise sequence
of essential convex edges contributed by D; and e;, e,, e; be three consecutive
elements of V" such that e, is a U-edge. We wish to show that the cardinality of Vis
bounded by a constant. Without loss of generality assume that D, (resp. D;) is the
disk contributing the next edge after e, (resp. before e;) in the associated traversal.
For obvious reasons, D, and D, cannot intersect each other in the crescent (D\D),
otherwise e, could not be the convex edge of any traversal. We will introduce some
notation before proceeding. Without loss of generality assume that C, is vertically
aligned above C. Let u be the last endpoint of e; and v the first endpoint of e;,
clockwise around D, (Fig. 8). Let E (resp. E'Y denote the highest point of D, (resp. D)
with the line CCy; let H and I be, respectively, the left and right points of D* n D},
and let J designate the rightmost point of D;.

Fig. 8

Since e, i1s a U-edge, it is immediately followed by an uphill edge, therefore E has
higher y-coordinate than E’, which implies in turn that D, contains E’. The fact that
e, is a facet-edge implies that D; must also contain I. As a result, the disk D, contains
the entire arc A (E’, I), and therefore the point J, too. Let B be the intersection of D
with the vertical ray, denoted ¢, that emanates upwards from J. Since e, and e are
both facet-edges, D¥ must intersect D* on the arc 4 (I, H), which implies that D%
cannot possibly intersect the ray t. This shows that the arc A4 (u, v) strictly contains
A(E, B), therefore its length is bounded below by r. This allows us to estimate a
bound on the mintmum “angular distance™ between ¢, and ¢;. Indeed, we can easily
use this result to prove that the number of U-edges contributed by D; cannot exceed

2
'2><< 7”>=47'c.
r

A similar reasoning can be applied to D-edges. This completes the proof.
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3.2 Dealing with F-Edges

We can now exclusively concentrate on essential concave edges. We will start with
the investigation on the maximum number of essential F-edges. Recall that with any
such edge e is associated a set of pairs of F-edges of the form (e;, ¢j), with ¢; (resp. e))
preceding (resp. following) e in the corresponding positive traversal. Let F(e)
designate this set of pairs. For the sake of simplicity, we will slightly strengthen the
notion of essential F-edges. We use the notation D(X) to designate the disk
supporting the facet-edge X. If for all pairs (e;, e;) in F (e), we have D (e) n D (e;)=@ or

D(e) n D(e;)=0 (or both), we say that the edge e is loose.

Lemma 9: The maximum number of loose edges visited in all the positive traversals of
the greedy algorithm is O (n).

Proof: Tt suffices to show that no BPT T, can contain more than a constant number
of loose edges. We consider two cases. First, let’s assume that 7 does not contain any
convex edge. To begin with, we will show that it is impossible for T to contain two
edges of the form (F, L) or (R, F), appearing in this order (note that we do not require
the edges to be adjacent). Let’s consider the first case. Assume that D;and D, provide
respectively the F- and the L-edges (Fig.9). Let L be the line normal to CC; that
passes through the point of D; closest to C, and let L™ denote the half-plane
delimited by L that contains the disk D. Since T is a positive traversal, we derive that
T must cross the ray R(C, D). Since the starting point of T liesin L™, we are exactly
in the conditions of Lemma 7, which leads to a contradiction. The second case is very
similar, and we omit the details. Returning now to our original problem, we can
easily use these two results to prove that any loose edge in a convex-edge-free BPT
must be immediately preceded and followed by F-edges. But this is in blatant
contradiction with the fact that the edge is loose. Consequently any BPT free of
convex edges is also free of loose edges.

R(C,Dj)

Fig.9



On a Circle Placement Problem 13

Assume now that the BPT 7 contains at least one convex edge. We observe that the
traversal will then be entirely contained inside the convex figure formed by the
intersection of all the disks contributing convex edges to T. Given the fact that the
edges of this figure are arcs of same radius, we derive that no disk can contribute
more than one concave edge to 7. We can thus order the disks contributing concave
edges according to the sequence V in which their respective edges appear in 7.
Let W be the sequence of disks induced by V. Note that there is a one-to-one
correspondence between V and W. Consider now the graph H whose node-set is W
and whose edges indicate whether two disks of W intersect or not. It is obvious that
each connected component of H maps to a contiguous subsequence in V. Let
S={ey,...,e,} be such a subsequence; the disks supporting any pair of consecutive
edgesin S must intersect each other. From our earlier observation that subsequences
of edges of the form F — L or R — F are impossible, we immediately derive that if ¢;
and e; are loose, all the edges {e;,e;,,...,€;_,¢;} must be of type F. Combining
these two facts, we conclude that if S contains three loose edges, the middle one will
be immediately preceded and followed in S by F-edges, which contradicts the fact
that it is loose. Up to within a constant factor, it then appears that the number of
loose edges in the facet is dominated by the number of connected components in H.
Since, by assumption, T has at least one convex edge, the traversal is contained
entirely inside its contributing disk therefore, since T is a BPT, all the disks of W
must lie entirely in the circle of radius 4 r centered at the starting point of 7. Since
obviously no more than
n(4r)?

=16
i

disks of radius r can be packed into a disk of radius 4 r in a non-overlapping position,
H cannot have more than 4 connected components. This completes the proof.

We are now ready to establish an upper bound on the total number of essential
F-edges.

Lemma 10: Cp(n)=0(n).

Proof: Because of Lemma9, we may deal with non-loose essential F-edges
exclusively. Once again, our strategy will be to prove that no disk can contribute
more than a constant number of these edges. Let V' be the list of non-loose essential
F-edges contributed by disk D,. Removing from D} two consecutive edges of ¥ will
leave two disconnected arcs which must each contain the two intersection points
with D¥ of at least one disk of S that does not intersect D. For this reason, none of
these disks can contain any edge of ¥ in their interior. This shows that every
consecutive pair of edges in ¥V is separated by at least one disk. For simplicity let’s
keep only one such disk per pair. Of the remaining disks, no two can form a non-
empty tripod with D;. To see this, suppose that two of them, D;, Dy, form a tripod
with D;. The tripod will necessarily enclose some edge of ¥, which will in turn force D
tointersect at least two of the three disks D;, D;, D, , which is impossible. This sets the
conditions for applying Lemma 2. It follows that V' cannot contain more than
5 elements, which completes the proof.
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3.3 Dealing with Edges of Type L or R

The next and final step is to prove that the total number of essential edges of type L
or R is O (n). Because of symmetry, it suffices to show that C; (n)= 0 (n). To begin
with, let’s investigate the nature of L-edges more closely. Let D, be a disk
contributing an essential L-edge e to the greedy algorithm, and let T be its
associated BPT. This fact implies in particular that D and D; intersect, so we can
define the arcs L=(D*\D,) and M =(D¥\D). We will regard these arcs as directed;
counterclockwise around D for L and counterclockwise around D; for M. This
grants a total order on the points of these arcs, which we can use to describe
interesting properties of essential L-edges.

Lemma 11: Let p denote the starting point of T, and let q be the first endpoint of e (in
the direction of T). Suppose now that T', p', q', ¢ are defined in exactly the same
manner as T, p, q, e, with the only difference that q' follows q on the directed arc M
(Fig.10). It is then the case that p’ must precede p on L.

Proof: A direct consequence of the Jordan Curve Theorem.

With this simple fact in hand, we shall show that the number of essential L-edges
contributed by any disk D, is at most one. Let e be the essential L-edge ona BPT T
that is closest to I along A(J,I) (Fig.11) and let f be an L-edge that follows

TI

RGD,)

Fig. 11
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e=A(v',q)in Tand is contributed by disk D,. Recall that e and f are not necessarily
adjacent. Let us assume that D} intersects Df at v and w. Suppose there exists
another essential L-edge ¢’ contributed by D;. Then e’ must be on arc 4(J,w). If pis
the starting point of 7 and p' the starting point of 7" containing ¢', from Lemma 11,
p’ must precede p on L. Furthermore, the BPT 7" must encompass the disk D, and
intersect R (I, D,) at a point t, since 7" is negatively oriented around the boundary of
D U D,. Since the starting point p’ of 7" must precede p, we easily see that 7" must
intersect R(p’, D,), a contradiction.

Lemma 12: No disk can contribute more than one essential L-edge.

Putting all the results found so far together, we can conclude:

Theorem 1: The greedy algorithm for maintaining the intersection graph formed by
inserting a new disk into a collection of n— 1 disks of the same size runs in O (n+ C (n))
time, which is O (n).

Theorem 2: The planar graph G =(V, E) formed by n disks of the same radius with V
being the set of intersection points of these disks and E the set of arcs each of which is
determined by two intersection points, can be constructed in O (n?) time.

Proof: Apply the greedy algorithm iteratively n— 1 times. Since each iteration takes
O (n) time, the claim follows.

Once we have shown that the intersection graph G can be computed in O (#?) time,
by using the scanning algorithm of [1,3] we can obtain the size of the maximum
clique of the intersection graph formed by a set of n disks of the same radius r in O (n?)
time. Thus, we have our main result.

Theorem 3: The maximum clique of a set of n disks of radius r can be found in O (n?)
time.

4, Concluding Remarks

For the sake of simplicity, we have deliberately made use of very conservative
estimates in evaluating the running time of the greedy algorithm. We believe that the
algorithm is not only linear, but also very efficient in practice. This can be
ascertained by implementing the algorithm and performing a precise a-la-Knuth
complexity analysis.

It is interesting to notice that our algorithm can be used as such to compute any
arrangement of lines in the plane [3, 5].

Of interest is the problem in which the disks involved are not of the same size.
Whether or not similar results can be obtained remains to be seen. In contrast to
the maximum clique problem for rectangles, the time complexity of O (n?) is not
known to be optimal. The optimality problem will be also of interest and worth
investigating.
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