have is not like a cooking formula, where what-
ever you throw in you get something out,” says
Hwang. “This is a method which can help, but
you still have to do a lot with respect to a
particular problem. We are looking at several
problems, but so far we haven’t really seen an
immediate application.”

Polygonal Pursuit

Bernard Chazelle can chop up polygons faster
than anyone—provided they’re big enough.

Chazelle, a computer scientist at Princeton
University, has found an algorithm for triangu-
lating polygons that achieves, in one sense, the
ultimate incomputational efficiency: The amount
of computation is roughly proportional to the
number of vertices. In the jargon of theoretical
computer science, Chazelle’s new algorithm is
O(n).

A polygon, of course, is a region in the plane
bounded by a simple closed “curve” consisting
of line segments. Triangulating a polygon is to
cut it up into triangles, all of whose vertices are
vertices of the polygon. Thus, a polygon with n
vertices will decompose into n—2 triangles
after n — 3 cuts. The question is where to make
the cuts.

At first glance, it doesn’t look as if there’s
even a problem here. Anyone—even a child—
can look at a polygon like the one shown in
Figure 2 and immediately see how to cut it up
into triangles (especially since the right-hand
side of the figure shows one way to do it!).

But look at it from the computer’s point of
view. The computer doesn’t “see” the polygon.
All it has to work with is a listing of the

vertices. Somehow or other, the computer has
to take a list of »# points and find n — 3 pairs
whose connecting line segments stay within
the polygon and don’t intersect one another.

Still sound easy? Then quick, where do you
make the cuts for the nonagon with vertices (in
clockwise order) at (0,0), (2,0), (0,3), (4,3),
(2,2), (5.2), (3,0), (1,1), and (3,-2)? No fair
drawing a picture!

Straightforward thinking about the problem
almost invariably produces a O(n?) algorithm.
For many purposes this is sufficient. A pro-
grammer just wanting to get some bug-free
software to market may sacrifice speed for
simplicity, especially if the software is only
intended for small polygons (where the over-
head costs of an “efficient” algorithm may
actually make it slower than a simple but
asymptotically inefficient approach). And
complexity theorists, accustomed to the dizzy-
ing heights of NP-completeness, may be ex-
cused for writing off the problem as another
member of the trivial class P.

But for other purposes, O(n?) is less than
desirable. “As hardware gets more powerful,
the temptation is to use big polygons,” Cha-
zelle explains. Indeed, polygons with hun-
dreds, thousands, and even millions of sides
are common in computer graphics and numeri-
cal analysis. Triangulations are important for
such purposes as “painting” a picture on a
computer screen or preparing a finite element
method solution to a differential equation. It
can be aggravating when an otherwise fast
program bogs down on a simple but plodding
subroutine. Continued on page 17

Figure 2. Left, a 14-sided polygon. Right, a triangulation of the polygon. _

Euclidean Geometry,

continued from page 16

There is also the purely theoretical challenge
of identifying the exact computational com-
plexity of a given problem. For triangulation,
the nature of the output—a list of n — 3 pairs of
vertices—means that you can’t do better than
O(n). But how close can you come?

In 1978, Michael Garey and David Johnson
of Bell Labs, along with Franco Preparata of
the University of Illinois and Robert Tarjan,
then at Stanford, came within a whisker, They
found a O(nlogn) triangulation algorithm. This
was a huge improvement over the naive O(n?)
estimate, at least theoretically. It’s hard to get
much closer to linear complexity.

There the matter stood for the better part of
a decade. Various researchers, including Cha-
zelle, chipped away at the problem, producing
algorithms that ran fast—even in linear time—
for special classes of polygons, and other algo-
rithms that were O(n?) only in the worst cases.
But 7 log n seemed to be the sticking point.

Then in 1986, Tarjan, with Christopher Van
Wyk of Bell Labs, managed to sneak an extra
“log” into the estimate. Their O(nlog logn)
algorithm came within a whisker’s whisker of
linear complexity. “It broke the n log » barrier,
and it raised hope that you could do it in linear
time,” Chazelle says. '

Like many others, Chazelle had thought
about triangulating polygons from time to time.
The Tarjan-Van Wyk result encouraged him to
look at the problem again. In 1989, he started
working on it full time. The effort paid off in
early 1990. “I worked on it pretty much non-
stop for a year,” Chazelle recalls. He first tried
to tease a linear algorithm out of the Tarjan-
Van Wyk result, but the O(nlog logn) estimate
refused to yield. Chazelle finally decided that
approach wouldn’t work. By then, though, he
had other ideas.

Six months passed before he felt anything
good would come of the time he'd invested.
But by November he had something worth
publishing: an algorithm with complexity
O(nlog#n). The asterisk essentially means you
can insert as many more log’s as you want—in
effect, Chazelle had shaved the iterated whisk-
ers off a whisker’s whiskers. He wrote up the
result and planned to call it quits. “I actually
stopped for a couple of weeks,” he recalls. “But
then I had another idea.”

The final O(n) algorithm, which took an-
other four months to work out (Chazelle wrote
the final paper in April), is based on a compli-
cated divide-and-conquer scheme and a simple
lemma that says it suffices to cut the polygon
into trapezoids. The trapezoidal decomposi-
tion consists of drawing a horizontal line throu gh
each vertex of the polygon to the nearest edge
on either side (this decomposes the outside of
the polygon as well).

, Chazelle and Janet Ir , ten 2
graduate student at Brown University, and, in-
dependently, Alain Fournier and Delfin Mon-
tuno, then at the University of Toronto, demon-
strated a O(n) algorithm for converting trape-
zoidal decompositions into triangulations. The
heart of the new result is a O(n) algorithm for
computing the trapezoids.

Chazelle’s new algorithm first chops the
boundary of the polygon into short segments
and finds a trapezoidal decomposition for each
piece. It then halves the number of pieces by
“merging” pairs of adjacent segments (the first
with the second, the third with the fourth, and
so on). This merging step is to be repeated until
the entire polygon has been reassembled, at
which point the trapezoidal decomposition can
be converted into triangles. However, this means
that each merger must be accompanied by an
adjustment of the trapezoids. The trick is not to
get bogged down doing this, as a O(nlogn)
algorithm could be the result.

Chazelle avoids that fate by simply erasing
some of the trapezoidal lines. This speeds up
the merging process, but there’s a price: What
comes out at the end is not exactly a trapezoidal
decomposition, but only an approximation to
one. The final step, then, is to make the ap-
proximation exact, and it turns out that this too
can be done in linear time. While the strategy
of the algorithm may be simple, the detailed
tactics are not. “This algorithm is so hairy,
there’s no way to describe it,” said one ob-
server. Chazelle himself is less awed. “T've
spent so much time on it that I think my method
is not very complicated,” he says. “It’s a matter
of where you stand.”

Whetherornotit's easy tounderstand, Chazelle
freely admits his new algorithm is much too
complicated to'put into practice “unless the
polygon is really huge.” For that matter, the
recent O(n log log n) algorithm and even re-
finements of the original O(n log n) algorithm
are too complicated for practical application.
What they have provided, Chazelle says, is
insight into the problem. He is hopeful that his
most recent insight will give rise to “a very
simple algorithm that would be linear or almost
linear, but would [also] be very very simple and

very practical. . . . I believe that this so-to-
speak ‘ultimate’ triangulation algorithm will
come soon, and I don’t believe it would have

“— come without understanding the theory behind
162

