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 An Effective Heuristic Algorithm for the Traveling-

 Salesman Problem

 S. Lin and B. W. Kernighan

 Bell Telephone Laboratories, Incorporated, Murray Hill, N.J.

 (Received October 15, 1971)

 This paper discusses a highly effective heuristic procedure for generating

 optimum and near-optimum solutions for the symmetric traveling-salesman
 problem. The procedure is based on a general approach to heuristics that is

 believed to have wide applicability in combinatorial optimization problems.

 The procedure produces optimum solutions for all problems tested, 'classical'
 problems appearing in the literature, as well as randomly generated test prob-

 lems, up to 110 cities. Run times grow approximately as n2; in absolute
 terms, a typical 100-city problem requires less than 25 seconds for one case

 (GE635), and about three minutes to obtain the optimum with above 95 per
 cent confidence.

 THE SYMMETRIC traveling-salesman problem is: Given an n by n symmetric

 matrix of distances between n cities, find a minimum-length tour that visits

 each city exactly once. Of course, instead of distance, other notions such as time,

 cost, etc., can be considered; we will use 'distance' to represent any such measure.
 This problem has been studied for many years, with limited success. M Exact

 algorithms may require inordinate running times; heuristic methods produce good
 answers for somewhat larger problems in reasonable times, but provide no guarantee
 that the optimum answer will appear. And with current heuristics, effectiveness
 diminishes and run time increases rapidly with n, so there has been little work
 done on problems larger than about 60 cities.

 For instance, recent work by HELD AND KARP[5] gives a method that solves

 exactly a certain class of traveling-salesman problems in a reasonable time. How-
 ever if the particular problem turns out not to be in this class, the procedure must
 be supplemented by an added mechanism-in this case, branch and bound-and
 the run time is often prohibitive. The largest problem they report on is 64 cities.

 A quite different approach is taken by KROLAK ET AL.[9] who use several fast,
 simple, and less effective heuristics to achieve good solutions, and then apply
 human judgment to pictures of the tour ("man-machine interaction") to try for
 optimum solutions. While this approach has been applied to large problems (200

 cities), it is costly in machine and especially man time, and the results are generally
 suboptimal. (Wehaveimprovedonthreeof theii five 100-city problems.) Further-
 more, pictorial methods break down for problems that are not 2-dimensional and
 Euclidean.

 This paper discusses a new heuristic method that produces optimum solutions
 with high frequency, in running times that grow about as n2. The procedure is
 based on a general approach to heuristics that we believe to be of wide applicability.
 It has already been applied with considerable success to graph partitioning.[8]
 (The graph partitioning problem is: given a graph on the set of nodes S, find a

 498
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 The Traveling-Salesman Problem 499

 subset of the nodes T that is minimally connected to S-T and satisfies the con-
 straint that T and S-T have the same number of nodes.) In this paper we concen-
 trate on its application to the traveling-salesman problem. We will discuss the

 basic philosophy involved in the heuristic procedure, describe our procedure in its
 terms, and illustrate its effectiveness with computational experience on a variety
 of traveling-salesman problems.

 Many combinatorial optimization problems like graph partitioning and the
 traveling-salesman problem can be formulated in the abstract as 'find from a set

 S a subset T that satisfies some criterion C and minimizes an objective function f.'
 For example, in the traveling-salesman problem, we have to find, from the set of all
 edges of a complete graph, a subset that forms a tour and has minimum length.

 For most of these problems, all known algorithms require computing times that
 grow exponentially with n. (Recent work in complexity theoryM7' indicates that
 problems like the traveling-salesman problem very probably are inherently ex-
 ponential.) Heuristic methods appear to be the only feasible line of attack.

 From a theoretical standpoint, although we cannot generally prove optimality of

 solutions, we can obtain statistical confidence; for practical applications, frequently

 all that matters is that good answers are obtained in feasible running times.

 One basic approach to heuristics for combinatorial optimization problems is
 iterative improvement of a set of randomly selected feasible solutions:

 1. Generate a pseudorandom feasible solution, that is, a set T that satisfies C.

 2. Attempt to find an improved feasible solution T' by some transformation of T.

 3. If an improved solution is found, i.e., f(T') <f(T), then replace T by T' and repeat
 from Step 2.

 4. If no improved solution can be found, T is a locally optimum solution. Repeat from

 Step 1 until computation time runs out, or the answers are satisfactory.

 The actual heuristic procedure (the transformation of Step 2) maps the random

 starting solutions of Step 1 into locally optimum solutions, among which the global

 optimum will hopefully appear. The better the heuristic is, the smaller the set of
 local optima will be, and the higher will be the fraction of random starts that lead

 to the global optimum. Random, uniformly distributed starting solutions are

 chosen in Step 1 (rather than, say, good solutions), unless we know in advance that
 a particular kind of starting solution leads to better answers. There are two
 reasons for this. First, a worthwhile heuristic should produce 'good' starting solu-
 tions just as fast as any other starting procedure-this is certainly our experience.
 Second, constructive solutions are usually deterministic, so that it may not be
 possible to get more than one initial solution.

 The heart of the iterative procedure is, of course, Step 2, the process that tries
 to improve upon a given solution. One transformation that has been applied to a
 variety of problemst2 1>2] is the exchange of a fixed number k of elements from T
 with k elements from S-T, such that the resulting solution T' is feasible and better.
 This is repeated as long as such groups can be found. Eventually it will not be
 possible to improve T further by such exchanges, at which time we have a locally
 optimum solution. Naturally enough, the whole problem is finding the right ele-
 ments to exchange, for one can always find optimum solutions by exchanging the
 correct groups.

 This interchange strategy was applied to the traveling-salesman problem by
 CROES,121 with k fixed at 2, and by LIN,111] with k=3, with considerable success.
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 500 S. Lin and B. W. Kernighan

 But having to specify the value of k in advance is a serious drawback. Computa-
 tional effort rises rapidly with increasing k, and it is difficult to know in advance

 what k to use as the best compromise between running time and quality of solution.

 Our heuristic method is based on a substantial generalization of the interchange
 transformation. Suppose T is a nonoptimal but feasible solution. Then we can

 say that T is not optimal because there are k elements x1, *, xk in T that are
 'out of place'; to make T optimal, they should be replaced by k elements Yi, , yk
 of S-T. The problem is simply to identify k and the x's and y's.

 Since we do not know what k should be, it seems artificial to fix k and then

 consider all possible k-subsets of T for this fixed k. Instead, we try to find k and

 xi, - , xk and Yi, , Yk as best we can, element by element. Thus we will try first
 to identify x1 and yi, as the 'most-out-of-place' pair; then, with xi and yj selected
 and temporarily set aside, we find x2 and Y2, the most-out-of-place pair in the
 remaining sets; and so on. More formally:

 1. Generate a random initial solution T.

 2. (a) Set i = 1.

 (b) Select xi and yi as the most-out-of-place pair at the ith step. This generally means
 that xi and yi are chosen to maximize the improvement when xi, *, xi are exchanged with
 yi, * , yi. xi is chosen from T- {xi, *, xi-} and yi from S-T- {yi, *, Yi-1}.

 (c) If it appears that no more gain can be made, according to an appropriate stopping
 rule, go to Step 3; otherwise, set i =i?+ and go back to Step 2(b).

 3. If the best improvement is found for i =k, exchange xi, .., xk with yi, , Yk, to give
 a new T, and go to Step 2; if no improvement is found, go to Step 4.

 4. Repeat from Step 1 if desired.

 To make this work, clearly we need several things:

 1. We need a selection rule that tells us quickly and effectively which pair is
 currently most out of place: quickly, for obvious reasons, and effectively, for a
 mistake at any stage may well destroy all hope of a good result from later stages.

 2. We need a simple function that represents the total profit from a proposed

 set of exchanges. Suppose that gq is the profit or 'gain' associated with the exchange
 of xi and yi, given that x1, Yi, *, xi1, Yi-i have already been chosen. Then it is
 most useful if the gain from the exchange of xi, , xi with yi, , yi is g1+ +gi,
 i.e., the gains are additive.

 Given this additivity, there is no need for the selection process to cease im-

 mediately when some gi is negative; in fact, we need stop only when ZEi. gi0
 for all kc of interest. This helps in evading local minima.

 3. If we are to be able to stop this selection process for any value of kc, and ex-

 change xi, , A with yi, *, yk, we must know that the exchange is feasible, that
 is, that the resulting solution satisfies the criterion C. Thus, we require that (for
 most kc) each proposed exchange leave us in a feasible state. This saves us, first,
 from some serious bookkeeping headaches, and, second, from laboring hard to
 exchange sets, only to discover that they cannot profitably be made feasible after
 the exchange.

 4. A stopping rule is needed to tell us that there can be no further profit in
 looking for elements to exchange, or at least that we have reached the point of
 diminishing returns. (This requires a delicate balance between optimism, which
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 The Traveling-Salesman Problem 501

 can spend much time chasing fruitless paths, and pessimism, which misses golden
 opportunities.)

 5. Last, we require that the sets xi, , xk and Yi, , yk be disjoint. Once
 an element is moved one way, it is not returned during this iteration. (It may

 well move back upon the next, but that is another story.) This is largely prag-
 matic-it avoids various subtle implementation bugs, reduces running time, simpli-
 fies the gain function, and provides an effective stopping rule.

 After we have examined some sequence xi, , xm and yi, , ym of proposed
 exchanges, with their corresponding gains gl, g2, , gm, the actual value of k that

 defines the sets to exchange is of course the one for which gl+g2+ ? +g?gk is maxi-
 mum (and feasible). If this is positive, the sets are exchanged, to give a new and
 better solution T, and the process is iterated from this new starting point.

 Eventually we reach a point where gi+ -]-- +?g is always zero or negative. This
 indicates that no further improvement can be made by the procedure, and so the

 solution at this time is our local optimum.

 Although in the discussion above we have assumed that every feasible set has
 the same cardinality, the basic ideas can be readily adapted to transformations
 that do not preserve the sizes of T and S-T.

 1. THE BASIC TRAVELING-SALESMAN ALGORITHM

 To APPLY THIS method to the traveling-salesman problem, let S be the set of all
 links [i.e., n(n-l)/2 edges between the n cities], and let T be an n-subset of S
 that forms a tour (feasibility criterion C). We want to find a tour with minimum
 length (objective function f).

 Consider an arbitrary tour T with length f(T) and any tour T' with length
 f(T') <f(T). Suppose T and T' differ (as sets of n links) by k links. Our basic
 algorithm attempts to transform T into T' by identifying sequentially the k pairs
 of links to be exchanged between T and S-T. That is, we attempt to find two sets

 of links X= I x1, * * *, xk} and Y= { yl, . , yA} such that, if the links in X are de-
 leted or 'broken' and replaced by the links in Y, the result is a tour of lower cost.

 Figure 1 illustrates the situation for k = 3. Figure 1 (a) is the tour T, indicating
 X and Y; Fig. 1 (b) shows the resulting T'. Notice that we have numbered the

 affected links in a natural way: xi and ys share an endpoint, and so do yi and xi+.
 (xk+i =xi)). Generally it is possible to perform this numbering, and thus convert
 T to T' sequentially. (Figure 2 shows an example where this numbering is not
 possible. This situation arose only infrequently in problems we studied.)

 Assuming the numbering can be performed, the sequence of exchanges we wish

 to find is xi, yi; x2, Y2; * , etc. Since we do not know what T' might be, the attempt
 is, of course, to find any sequence that reduces T to T' with f(T') <f (T) and iterate
 the process on T' until no further reduction can be made.

 Let the lengths of xi and ys be lxil and Iysi, respectively, and define gi= Ixii - Jyil.
 This is the gain from exchanging xi with yi. Although some of the gi may be nega-
 tive, if f(T') <f (T), clearly we have gi =f(T) -f(T') >0. Part of our pro-
 cedure is based on the following simple fact: if a sequence of numbers has a positive
 sum, there is a cyclic permutation of these numbers such that every partial sum is
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 502 S. Lin and B. W. Kernighan

 Fig. 1. Sequential exchange: (a) Tour T. (b) Tour T'.

 positive. [Proof. Let k be the largest index for which gi+ +gk-1 is minimum.
 If k<j<n,

 gk+ +g=(g1?+ +gj) (g1+ *+gk-1) >O-
 If 1<j<k,

 gk+ '+.+91+ '+gj>_k+ +gr+91+ +gk-1>0-]

 In particular, then, since we are looking for sequences of gj's that have a posi-
 tive sum, we need only consider sequences of gains whose partial sum is always positive.

 This gain criterion enables us to reduce enormously the number of sequences we

 need to examine; it is the heart of our stopping rule.

 We now present an outline of the basic heuristic algorithm. Figure 3 illustrates

 the notation. The description is annotated by a commentary in the legend; a
 simple example is worked out after the algorithm is described.

 Fig. 2. Nonsequential exchange.

 I. Generate a random starting tour T.

 2. Set G*0-o. [G* is the best improvement made so far.] Choose any node ti and let
 xi be one of the edges of T adjacent to ti. Let i = 1.

 3. From the other endpoint t2 of X1, choose yl to t3 with g' >0. If no such y, exists, go
 to Step 6(d). [This is the first application of the gain criterion.]

 4. Let i =i+1. Choose x [which currently joins t2i-1 to t2,] and yt as follows:

 (a) xi is chosen so that, if t2i is joined to ti, the resulting configuration is a tour. [Thus,

This content downloaded from 128.112.139.195 on Fri, 09 Feb 2018 01:11:47 UTC
All use subject to http://about.jstor.org/terms



 The Traveling-Salesman Problem 503

 for a given yi-i, xi is uniquely determined. This is the application of the feasibility criterion;
 it guarantees that we can always 'close up' to a tour if we wish, simply by joining t2i to t1,
 for any i_2. The choice of yi-i, Step 4(e), ensures that there is always such an x.]

 (b) yi is some available link at the endpoint t2i shared with xi, subject to (c), (d), and
 (e). If no yi exists, go to Step 5. [Clearly, to make a large cost reduction at the ith step,
 |yi| should be small, and so in general we choose nearest neighbors preferentially. See Sec-
 tion 2B.]

 Fig. 3. Algorithm description, Step 4 (the dotted line indicates a possible close-up).
 (a) i=2. (b) i=4. Note that t8 is uniquely determined. (c) i=5. Note both original
 edges at t5 have been broken. (d) Backtracking in Step 6c: multiple choices for yl.

 (c) To guarantee that the x's and y's are disjoint, xi cannot be a link previously joined
 (i.e., a yi, j <i), and similarly yi cannot be a link previously broken.

 (d) Gim g >O. [Gain criterion.]

 (e) In order to ensure that the feasibility criterion of (a) can be satisfied at i+1, the yi
 chosen must permit the breaking of an xi+,.

 (f) Before yi is constructed, we check if closing up by joining t2i to t, will give a gain
 value better than the best seen previously. [Since we have satisfied the feasibility criterion
 for i?2, we know this results in a tour.] Let yi* be a link connecting t2i to ti, and let gi* =
 1Yi* -jx14- If Gi-1+gi*>G*, set G*=Gi1,+?i* and let k=i. [G* is always the best im-
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 504 S. Lin and B. W. Kernighan

 provement in T recorded so far, and is thus our standard of comparison. G* >O, and is
 monotone nondecreasing. The index k defines the sets to be exchanged to achieve G*.]

 J. Terminate the construction of xi and yi in Steps 2 through 4 when either no further

 links xi and yi satisfy 4(c)-(e), or when Gi<G*. [Thisis our stopping criterion.] If G*>O,
 take the tour T' with f(T') =f(T) - G* and repeat the whole process from Step 2, using T' as
 the initial tour.

 6. If G* =0, a limited backtracking facility is invoked, as follows:

 (a) Repeat Steps 4 and 5, choosing Y2'S in order of increasing length, as long as they satisfy
 the gain criterion qo +g2 >0. [If an improvement is found at any time, of course, this causes
 a return to Step 2.]

 (b) If all choices of Y2 in Step 4(b) are exhausted without profit, return to Step 4(a) and
 try the alternate choice for X2. [Breaking the alternate X2 introduces a temporary violation
 of feasibility; we discuss this step in detail after the algorithm description.]

 (c) If this also fails to give improvement, a further backup is performed to Step 3, where

 the yi's are examined in order of increasing length.

 Fig. 4. The effect of alternate x2. (a) Cannot close up at x2. (b) Two choices for

 X3. (c) Unique choice for x3; limited choice for Y3.

 (d) If the y1's are also exhausted without profit, we try the alternate x1 in Step 2.

 (e) If this fails, a new t, is selected, and we repeat at Step 2.

 [Note that backtracking is performed only if no gain can be found, and only at levels 1

 and 2 (i = 1 and i = 2). We will discuss backtracking further in the next section.]

 7. The procedure terminates when all n values of t1 have been examined without profit.

 At this time, we may consider further random tours in Step 1.

 This terminates the description of the algorithm, except for discussion of the

 effect of breaking an x2 that lies between t3 and ti, as in Fig. 4(a). We allow this
 latter possibility because, although it adds some complexity, it substantially in-

 creases overall effectiveness. Choice of a nonfeasible alternate is allowed only

 for i=2.

 In Fig. 4(a), Y2 must not join to ti, for this leaves two disconnected halves.
 Now, if t5 is between t2 and t3, t6 may be on either side of t5, and, indeed, the second
 possibility will be investigated if the first does not lead to a profitable exchange.

 See Fig. 4(b).
 If t5 lies between t1 and t4, as in Fig. 4 (c), there is only one choice for t6 (it must

 be between t5 and t4, to satisfy the feasibility criterion) and t7 must lie between t2
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 and t3. But then t8 can be on either side of t7; we choose the one for which jx4j is
 maximum.

 In any case, from this point onward, we return to the normal course of the

 algorithm in Step 4.

 Fig. 5. An example. (a) Step 3. (b) Step 4; potential close-up for i =2. (c) Unique

 choice for X3. Potential close-up for i 3. (d) Forbidden choice for X3 and 16.

 An Example

 Start with a tour T, which we show schematically in Fig. 5(a), and two adjacent nodes
 t1 and t2; xi is the link joining them. Let t3 be the node nearest to t2; Yi is the edge (t2, t3).
 Since the x's and y's are to be disjoint, yl is not allowed to be either of the edges already

 connected to t2. Set gi = jxif - lyl; if this is not positive, we back up [Step 6(d)] and let t2
 be the other neighbor of tI. Set i =2 and let t4 be the neighbor of t3, as shown in Fig. 5(b).
 x2 is the edge (t3, t4).

 Now if Y2 were chosen to join 14 to ti, the result would be a tour, and if gl+?2>0, we
 could improve T by exchanging x1 and x2 with Yi and Y2. Remember this potential improve-
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 ment-this is G*; k =2 in Step 4(f). Choose t5 as the nearest neighbor of t4, and let Y2 be the
 edge (t4, t5). Again t5 cannot be either of the nodes already connected to t4.

 As we see in Fig. 5(c), there is only one choice for t6 and X3, if we wish to be able to close
 up immediately -if we let X3 be the other edge connected to t5, then the tour would become
 two separated pieces, as in Fig. 5(d).

 Again, we check to see if immediate close-up (joining t6 to tl) gives a better gain than was
 available by joining t4 to ti, update G* and set k =3. If 1 +?g2?+3?G*, the stopping rule
 says to take the profitable exchange at k = 2. We are also done if the best choice for Y3
 should happen to be (t6, to). Otherwise, we continue by selecting t7, and so on.

 Computational experience shows that the algorithm does much less work than
 superficial examination might indicate, largely because the gain criterion is very
 strong. The computation time per local optimum depends on the amount of back-
 tracking, but growth averages about n2.2 as we have described it. We will discuss
 this further at the end of Section 3.

 The feasibility criterion is satisfied by maintaining the configuration as a tour
 for i?2 or 3 (depending on which x2 is chosen). Since at each stage we try to
 maximize Gk by choosing a small Yk, we are in effect choosing out-of-place elements.
 And by terminating as soon as Gk < G*, we reduce the likelihood of following long
 fruitless paths. The average amount of overshoot (i.e., depth of search minus
 value of k) is not large. Typically, the first several improvements found by the
 procedure have large k values: changes of (y4)n with zero overshoot are common.
 Gradually improvement becomes harder to find, and the process settles down to
 a series of smaller changes (around 2-7), with some overshoot. The number of
 improvements is usually between n/4 and n/3.

 It can be easily seen that the local optimum solutions obtained from this heu-
 ristic algorithm are necessarily 3-opt in the sense of reference 11, so the results are
 guaranteed as good as those obtained in reference 11, in substantially less time.

 Backtracking

 As mentioned in Steps 6 and 7 of the basic procedure, backtracking is used but
 strictly limited. Clearly the optimum can be found, in principle, by full backtrack-
 ing at all levels, but the running time for such a procedure would be immense.
 Our backtracking appears to be an effective compromise between power and
 running time.

 Measurements show that, if a gain is to be found at a node, it is usually the first
 choice made by the procedure (the mean choice number is 1.2 for the first level and
 1.8 for the second). Hence, we in fact consider at most only a few contenders for
 y' and Y2 (a maximum of five each at the moment). Experiments indicate that this
 has no significant effect on the frequency of optimum values, and reduces the
 running time by a factor of nearly two over considering all yi and Y2. Considering
 only two contenders for each of Yi and Y2 does cut the effectiveness, although run
 time is further reduced as well.

 Limited experiments with backtracking at the third level indicate a considerable
 time penalty. Backtracking only at the first level weakens the procedure: although
 the solutions have quite good costs, comparable to those with more backtrack, the
 appearance of the optimum is less frequent. (This might be a worthwhile saving
 for large problems, or for problems where a global optimum is not critical.)
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 The Traveling-Salesman Problem 507

 2. REFINEMENTS

 THE ALGORITHM AS presented is quite effective, but we have added several refine-

 ments that increase its efficacy substantially without significant extra cost.

 A. Avoiding Checkout Time

 When the procedure produces a tour T of value f at some node t, and is then
 unable to make further progress at any node, we say that T is a local optimum,

 and call the time spent after T has been found until all nodes are investigated

 checkout time. If, on a later case, we arrive at the same tour T, there is no point in
 attempting to find further reduction-this situation has been previously 'checked

 out.' Thus, to economize on running time, when no improvement can be made at a
 node, the solution obtained is tested to see if it is the same as a previous one; if so,

 the checkout time can be avoided. This is typically 30 to 50 per cent of running
 time.

 B. Lookahead

 The procedure described selects a link yi without regard to the size of the xi+1,
 which will thus have to be broken in the next stage. If this xi+1 is actually a
 'good' link, i.e., one low in cost, the result is often a long fruitless chase only to dis-

 cover that breaking xi+1 was wrong, and hence that yi was a poor choice.
 To overcome this weakness, a restricted lookahead is added to the procedure:

 in all steps where a yi is chosen, the choice is made not on the basis of !yiJ alone,
 but by trying to maximize !xi+?1-!yl. When i is 1 or 2, this changes the order of
 consideration of links, which may have an effect on the solution. (See the- next

 paragraph.) In subsequent stages (i_ 3), it means choosing the ys corresponding
 to a maximum value of Ixi+,1 - IYi!. One might assume that we should maximize
 !xi+1y-Jyi! over all possible yi's, but after experimenting we rejected this as too
 time-consuming. Currently we use the largest !xi+11-1yi4 found among the five
 smallest (and available) jyiJ, which appears to be just as effective and much faster.

 There is another and more subtle reason why the lookahead feature is desirable.

 If we decide to join links solely on a nearest-neighbor-first basis, we commit our-

 selves on local information, the length of the link. This means that whenever
 there is a choice between joining this link instead of some other, the nearest-neighbor
 link is always chosen, and if this is wrong, there is no way to avoid it. But if we

 use -xi+1J as the criterion, yi may or may not be chosen, depending on xi+1,
 which is a function of the current state of the tour, and thus more global in nature.
 This gives an added degree of flexibility to the procedure, and improves our chances

 of getting the right answer.

 C. Reduction

 Once a number of locally optimum tours have been found by the procedure
 thus far described, we observe that certain links occur in all of them. Since much
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 of the time spent by the procedure thereafter is essentially duplication of previous
 effort by breaking these good links repeatedly, we have devised a reduction feature
 that attempts to use this information to guide further search (and incidentally
 save running time).

 A small number (currently between two and five) of distinct local optima are
 found. (If we cannot find two distinct tours in a reasonable number of tries, we
 take this as prima facie evidence that the single solution will not be improved.)
 Record all links common to all of these solutions. Now ('post-reduction') continue
 finding locally optimum solutions, with the additional restriction that no link xi
 may be broken if it occurs in this set of good links. As new locally optimum tours
 are found, continue recording the intersection.

 The effect of reduction is felt in several ways. The most obvious is a dramatic
 decrease in running time-a factor of five is typical-because there are so few situa-
 tions left to evaluate. The reduction procedure has 'trimmed the tree' of possible
 cases. If the locally optimum tours have many links in common (two distinct
 local optimum tours usually have 85 per cent in common, and even 7 or 8 will still
 have 60-80 per cent), then fewer possibilities need be evaluated by the algorithm.
 (Remember that the good links correspond to the smallest values of yi's, and so,
 when these are eliminated by reduction, the gain criterion becomes a more powerful
 eliminator.)

 However, this time saving is not our only purpose in introducing reduction.

 Rather, reduction is a means of directing search among a set of otherwise indistin-
 guishable cases. In effect, we are saying that certain cases may be rejected out of
 hand because they involve breaking links that have shown up in too many good
 tours to be accidental; breaking such links is likely to be wrong, and we should try
 something else.

 But reduction obviously biases the solutions we get. Suppose the optimum does
 not occur while we are finding prereduction tours. Then the basis of reduction
 contains only suboptimal solutions, and the postreduction procedure may not be
 able to break out of this to actually get the optimum. Thus we modify the reduc-
 tion slightly-no xi may be broken at level 4 or deeper if it occurs in the intersection
 of reduction tours; we may still break links as desired at levels 1, 2, and 3. This
 'partial reduction' gives us some flexibility to recover from a bad choice of reduc-
 tion, but retains much of the path-directing and time-saving properties of full
 reduction.

 Since the procedure uses as the basis of reduction the intersection of all tours seen
 so far, there is a certain convergence effect. If we get bad tours to start with, but
 later get the optimum, from then on the optimum should occur more frequently

 (although run time will also increase slowly as the intersection becomes smaller).

 D. Nonsequential Exchanges

 As we observed earlier (see Fig. 2), some configurations cannot be improved by
 changing a connected sequence of links. The procedure is augmented by a limited
 defense against this situation. After a locally optimum tour has been found, we
 test, among the links of the tour that may be broken (as determined by the reduc-
 tion procedure), whether we can make a further improvement by an exchange such
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 as shown in Fig. 2. Since the number of links in the tour that differ from links in
 the reduction is small, this test is rapid. Whether this process yields the desired

 improvement varies substantially from problem to problem: in some situations it
 converts the majority of nonoptimum solutions into optimum, while in others it
 has no effect whatsoever. Running time is under 50 milliseconds per unique tour

 in our implementation, so it is not very expensive insurance.

 3. COMPUTATIONAL RESULTS

 ONE MUST DEFINE the power of a heuristic method on the basis of the statistical

 distribution of answers produced over a spectrum of problems. There are several

 interrelated measures to consider: (a) How frequently does the procedure, started
 from a random initial configuration, come up with an optimum tour? (b) What is

 the number and distribution of distinct locally optimum solutions it produces?
 (c) How confident are we that it will produce at least one occurrence of the opti-
 mum in a sequence of trials? [This is closely related to (a), but is also based on

 (b).]
 We are able to measure (a) directly for our prereduction process; the probability

 of obtaining optimum solutions in a single trial is close to 1 for small-to-medium
 problems, say up to the 42-city problem. [' It drops slowly to about 0.2 to 0.3 for
 100-city problems, although individual cases may be substantially higher. The

 postreduction frequency is, of course, biased to a certain extent by the prereduction
 tours, but is generally higher than prereduction, and the run time is substantially

 improved.

 For most of the smaller problems in the literature (up to 57 cities) the optimum

 answers are known; this is not the case for larger problems. This is where (b) is
 important. If the procedure produces, over a large number of trials from com-

 pletely random starting configurations, a relatively small set of distinct answers, and
 if the lowest value occurs with sufficient frequency, we have a strong statistical

 justification for stating that the lowest value is in fact the optimum solution. For
 instance, in the 48-city problem[4] on over 200 trials, we obtain only four distinct
 solutions (11461, 11474, 11508, 11574) with relative frequencies 0.3, 0.3, 0.3, 0.1.
 This set is small, and the minimum value occurs with high frequency, so we are

 confident in saying that 11461 is optimum (which it is[5]). Similarly, on the 57-city
 problem, [6] we obtain only eight distinct solutions; the minimum-cost solution
 occurs 27 per cent of the time, and the three best account for 75 per cent of all
 solutions.

 The overall procedure has always obtained the optimum (or best known) solu-

 tion if allowed to run for a time proportional to about n2, although, as effectiveness

 diminishes with n, this time will increase for larger problems. Thus we can say, for
 instance, that with under a minute of processing we will solve (i.e., find an optimum

 tour for) a 50-city problem with over 99 per cent confidence (based on 8 seconds per
 case and 0.5 probability of an optimum on a single trial); with 3-4 minutes we will
 solve a 100-city problem, and so on.

 We have evaluated the procedure on a spectrum of problems: (a) 'classical'
 problems published by others who have studied the traveling-salesman problem;
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 (b) problems obtained by placing points randomly in Euclidean 2-space; (c) prob-
 lems obtained by placing random distances into a distance matrix; and (d) a few

 real problems derived from controlling automatic drilling equipment.

 Problem sizes ranged up to 110 points, where computer-storage limitations

 have restricted further experiments. Work is in progress to modify the storage-
 management algorithm so bigger problems may be tackled.

 (a) Classical problems. It is a measure of the difficulty of the traveling-

 TABLE I

 SOLUTIONS OF CLASSICAL PROBLEMS

 Frequency of occurrence Running time per tour Average
 of optimum (sec., GE635) number of

 S ize S o u rce __________ _____________ ______________________ d istin ct

 Pre- Post- (a) Pre- Post- solutions(c)

 20 [21 1.00 _ 0.8 - 1
 25 [4] 1.00 - 1.3 - 1
 33 [61 1.00 - 1.6 - 1
 42 [31 1.00 - 2.6 - 1
 46 [5, Tutte] 0.95 - 0.9 - -

 48 [41 0.30 0.50 2.4 2.3 3
 57 [61 0.27 0.43 8.2 3.8 3
 64 8X8 Knight's Tour, 1.00 0.95(b) 2.0 3.1 -

 var. 1

 64 8X8 Knight's Tour, 1.00 1.00(b) 2.1 2.5
 var. 2

 64 8X8 Knight's Tour, 0.51 0.50 2.8 2.8 -
 var. 3

 100 [9, w?24] 0.56 0.63 17 5.5 3.5
 100 [9, ?25] 0.25 0.35 23 9.5 4.5

 100 [9, ?26] 0.52 0.65 17 5.7 3
 100 [9, ? 27] 0.50 0.60 25 6.9 3.5
 100 [9, ? 28] 0.23 0.30 30 11 5

 (a) Frequency of optimum based on three reduction tours. Optimum values conjectured
 for 100-city problems: ?24 and ?27 agree with reference 9; ? 25, , 26, and ? 28 are better.

 (b) Optimum knight's tours are not unique.
 (c) Out of 20 trials.

 -not applicable.

 salesman problem that the classical literature is largely based on small (less than 60
 cities) Euclidean-distance problems, and that results are often obtained only at
 considerable computing expense. Many authors are, of course, more interested in
 obtaining the optimum answer to a problem, rather than a spectrum of very good
 answers, among which is likely to be found the optimum. (See reference 5, for
 instance.)

 Because of such theoretical work, the optimum answers to a small family of
 problems are known and these provide an interesting test of any procedure. We
 have studied the problems listed in Table I. These are all easy, in the sense that we
 have never failed to get the optimum answer in a small number of runs. We ob-

 tained better solutions to three of the five 100-city problems ( ? 25: 22148 vs 22193;
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 N 26: 20749 vs 20852; f 28: 22068 vs 22115) mentioned in reference 9, without the
 need for the 'man' part of man-machine interaction, and with substantially less
 machine time.

 An interesting special problem is the Tutte graph.[5} This 46-city graph has no
 Hamiltonian circuit, but does have a Hamiltonian path, so, if the distances are set
 to 0 where there is an edge, and k> 0 otherwise, an optimum traveling-salesman

 solution will have cost kc. This problem is especially easy for our procedure: the
 frequency of optimum solutions is close to 100 per cent, and run time is substan-
 tially lower than for other problems of the same size.

 We have also included three variants of the 8X8 knight's-tour problem in this
 list. Variant 1 has distance matrix entries 1, 2, *, 6 depending on the number of
 knight's moves necessary to get from one square to another. Variant 2 sets dis-
 tances between squares a knight's move apart to 1, and all other distances to rela-

 tively large random numbers. Variant 3 sets cells a knight's move apart to distance
 100, all others to 101.

 TABLE II

 SOLUTIONS FOR RANDOM POINTS ON THE UNIT SQUARE Size Avg. Freq. of Avg. time/case (sec) Avg. distinct
 Size AvgpFeq i___________ solutions post

 Pre(') Post(c) reduction

 30 0.85 2.4 0.65 1.2

 50 0.89 8.2 1.9 2.0

 70 0.70 10.5 3.5 2.2

 90 0.19 22 11.5 8.5
 110 0.21 24.5 12.2 8.5

 (a) Occurrences of optimum averaged over at least four distinct problems.
 (b) Includes checkout time.

 (c) Based on three distinct reduction tours.

 Variants 1 and 2 are similar in result-very easy, with essentially 100 per cent
 success. Variant 3 is harder-run time increases and the frequency of optimum
 solutions drops to barely 50 per cent.

 (b) Random points on the plane. The second class of traveling-salesman prob-
 lems is generated by randomly scattering points on the unit square (x and y co-
 ordinates generated uniformly and independently).

 These also appear to be generally easy, as Table II indicates, although individual

 cases vary considerably. For any specific problem, we have done a sufficient
 number of trials (20-40) to be confident that we have, if not the optimum, at least
 a good near-optimum.

 The frequency of obtaining the optimum solutions is so high that it appears that

 we can practically guarantee optimality with a modest amount of computer time,
 for problems of all sizes tested.

 Further, the running times scale well enough that (if we organize storage prop-

 erly) 200- to 300-city problems should also be well within reach.

 (c) Random entries in the distance matrix. These problems are generated by
 placing random numbers uniformly distributed on [1,lOOn] into a symmetric n by n
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 TABLE III

 SOLUTIONS FOR RANDOM ENTRIES IN THE DISTANCE MATRIX

 Avg. freq. of Avg. time/case (sec) Avg. distinct
 Size Avg.Mfreq. solutions post

 pre(b) post(c) reduction

 30 0.46 1.9 1.0 3.6

 50 0.68 6.2 2.6 4.6

 70 0.17 12.5 6.6 11

 90 0.13 19.5 11.1 12.5

 110 0.09 30 17 18

 (a) Occurrence of optimum averaged over at least four distinct problems.
 (') Includes checkout time.

 (c) Based on three distinct reduction tours.

 distance matrix, yielding a nonmetric space problem. These are, in general, more
 difficult than metric problems, and individual variation is higher, as may be seen by
 comparing Table III to Table II.

 (d) A real problem. It has often been observed that the problem of routing a

 Fig. 6. The hand solution for the 318-point problem.
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 numerically controlled drilling machine efficiently through a set of hole positions
 is a traveling-salesman problem, but if drilling time outweighs travel time, there is
 no particular advantage to any optimization. However, as we were experimenting,

 we were given a problem in which drilling is not done mechanically, but by a pulsed
 laser, and hence almost the entire cost is in travel time. (We are indebted to R.
 HABERMANN for providing us with the problem and his solution for comparison.)

 The actual problem consists of three identical sets of 105 points, plus three

 Fig. 7. The machine solution for the 318-point problem.

 stragglers, as shown in Figs. 6 and 7. Although there is a considerable regularity,
 the problem appears to be comparable to other Euclidean 2-space problems in both
 run time and solution quality. The tour of Fig. 6 was generated by hand (R.
 Habermann) by splicing together the three obvious pieces, and forcing the two end
 nodes together with an edge (not shown) of length zero. Figure 7 is a tour we
 obtained by joining several pieces of about 100 points, each optimized by our pro-
 cedure. This tour is quite different in character from the first, and about 0.85 inch
 shorter (out of 42 inches) assuming the endpoints are as shown. (We make no
 claim that the result for 318 points is optimum-there are many ways to join
 pieces. Later work will investigate the effect of treating this problem as a unit.)
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 TABLE IV

 COORDINATES FOR THE 318-POINT PROBLEM

 1 71 63 36 630 992 71 142 2244
 2 71 94 37 732 1000 72 315 2276

 3 370 142 38 1276 1197 73 496 2276
 4 1276 173 39 1213 1228 74 654 2276

 5 1213 205 40 205 1276 75 654 2315

 6 69 213 41 630 1299 76 496 2315
 7 69 244 42 732 1307 77 315 2315

 8 630 276 43 654 1362 78 142 2331
 9 732 283 44 496 1362 79 315 2346

 10 69 362 45 291 1362 80 496 2346

 11 69 394 46 654 1425 81 654 2346

 12 370 449 47 496 1425 82 142 2362

 13 1276 480 48 291 1425 83 157 2402

 14 1213 512 49 173 1417 84 220 2402

 15 157 528 50 291 1488 85 142 2480

 16 630 583 51 496 1488 86 370 2496
 17 732 591 52 654 1488 87 1276 2528

 18 654 638 53 654 1551 88 1213 2559
 19 496 638 54 496 1551 89 630 2630
 20 314 638 55 291 1551 90 732 2638

 21 142 638 56 291 1614 91 69 2756

 22 142 669 57 496 1614 92 69 2787
 23 315 677 58 654 1614 93 370 2803

 24 496 677 59 189 1732 94 1276 2835

 25 654 677 60 1276 1811 95 1213 2866

 26 654 709 61 1213 1843 96 69 2906
 27 496 709 62 630 1913 97 69 2937

 28 315 709 63 732 1921 98 630 2937
 29 142 701 64 370 2087 99 732 2945
 30 220 764 65 1276 2118 100 1276 3016

 31 189 811 66 1213 2150 101 69 3055

 32 173 843 67 205 2189 102 69 3087
 33 370 858 68 189 2220 103 220 606

 34 1276 890 69 630 2220 104 370 1165
 35 1213 921 70 732 2228 105 370 1780

 Second 105-point subset-add 1331 to x coordinate; add 2662 for third set. Three 'strag-
 glers' have coordinates (-79, 1417), (-79, 1496), (4055, 1693). Coordinates are in milli-
 inches.

 Table IV gives the coordinates for those who would like to try their luck on a big
 problem.

 Run-Time Analysis

 Run times for both prereduction and postreduction trials are included in Tables
 I-III. Plotting these times for the various types of problems shows that, for both
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 the Euclidean problems and the nonmetric problems, run time grows approximately
 as n22; postreduction times are smaller by a factor of two to three. In absolute
 terms, 100-city problems average slightly over 20 seconds per case (Fortran A,
 GE635) before reduction, and 8 seconds after.

 The functional growth can be explained as follows. At each node we search for

 a sequence of improvements; on the average, the depth of this search is a slowly
 growing function of n, say d (n). (Depth is quite close to n in the early stages, but

 rapidly becomes small.) However, as each potential exchange in the sequence is

 found, we must alter the internal representation of the tour to keep it as a tour;
 this costs a factor of n, so a single probe at a single node costs nd (n). Since the

 backtrack at levels 1 and 2 requires a bounded number of probes per starting node,

 this contributes only a constant factor, which depends on the amount of backtrack-
 ing used.

 These probes are repeated for all n nodes, until no gain can be found. Generally

 we enter the checkout phase before even n nodes have been considered, so there is at

 worst a factor of n accumulated here. Thus, overall growth is n2d (n), somewhat
 worse than n2. Postreduction, the number of alternatives decreases for each part
 of the procedure, so the constant of proportionality is smaller. In addition, d (n)

 should also decrease, but we have not tried to isolate this effect.

 4. EXTENSIONS AND CONCLUSIONS

 SEVERAL PROBLEMS RELATED to the basic traveling-salesman problem may be
 solved by simple manipulations of the distance matrix. For example, we may
 force a group of cities to be together in a tour by making the distance between them
 very small; similarly we can force them apart by artificially large distances. Thus
 we can solve shortest Hamiltonian path problems by joining the two end points
 with a small distance. (This was done for the 318-point problem discussed in the
 previous section.)

 Large Problems

 A study of optimum and near-optimum tours for several problems shows that,

 as might be expected, most cities are connected to quite nearby neighbors. The

 typical distribution is one-half nearest neighbors, and a sharp drop-off with only

 one or two links as far out as the 15th-nearest neighbor. This suggests we can

 economize on storage without detriment to solution quality by storing only some
 fraction of the nearest neighbors of each city, rather than the entire distance ma-

 trix. Since our basic procedure contains several tradeoffs between effectiveness

 and running time, by sacrificing some effectiveness, we can decrease running time

 for larger problems. For instance, we can cut down on the number of alternatives

 allowed at levels 1 and 2; if these are set to 1 or 2, we have in fact a modified al-

 gorithm that is still quite effective.
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