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Abstract

These are edited lecture notes from a graduate course at the Computer Science department
of Princeton University in Fall 2002. The course was my attempt to teach first year graduate
students students many mathematical tools useful in theoretical computer science. Of
course, the goal was too ambitious for a course with 12 three hour lectures. I had to
relegate some topics to homework; these include online algorithms, Yao’s lemma as a way to
lowerbound randomized complexity, Madhu Sudan’s list decoding algorithm (useful recently
in complexity theory and pseudorandomness), and pseudorandom properties of expander
graphs. If I had time for another lecture I would have covered basic information theory.

To put the choice of topics in context, I should mention that our theory grads take
a two semester course sequence on Advanced Algorithm Design and Complexity Theory
during their first year, and I did not wish to duplicate topics covered in them. Inevitably,
the choice of topics —especially the final two chapters— also reflected my own current
research interests.

The scribe notes were written by students, and I have attempted to edit them. For
this techreport I decided to reshuffie material for coherence, and so the scribe names given
with each chapter does not completely reflect who wrote that chapter. So I will list all the
scribes here and thank them for their help: Tony Wirth, Satyen Kale, Miroslav Dudik, Paul
Chang, Elad Hazan, Elena Nabieva, Nir Ailon, Renato F. Werneck, Loukas Georgiadis,
Manoj M.P., and Edith Elkind. I hope the course was as much fun for them as it was for
me.

Sanjeev Arora
March 2003



Contents

1 Probabilistic Arguments
1.1 Imtroduction . . . . . . . . . . . . e
1.2 Independent sets in random graphs . . . . . . . ... ... ... ... ....
1.3 Graph colouring: local versus global . . . . . ... . ... ... .......
1.4 Bounding distribution tails . . . . . . .. ... ... ... L.

2 LP Duality and its Uses
2.1 Linear Programming and Farkas’ Lemma . . . .. ... ... ... .....
2.2 The Duality Theorem . . . . . . . . . ... ... .. ... ... . ......
2.3 Example: Max Flow Min Cut theorem in graphs . . . .. ... ... .. ..
2.4 Approximate Inclusion-Exclusion . . . . .. ... ... .. ... .......
2.5 A noteon algorithms . . . . . . ... ..o

3 The Dimension Method
3.1 Basics: Fields and Vector Spaces . . . . . . . . . . .. ... ...
3.2 Systems of Linear Equations . . . . . .. ... ... ... ... ...
3.3 Dispersal of Information Using Polynomials . . . . .. .. ... ... .. ..
3.4 Hashing: An introduction . . . . . . ... ...
3.5 Pairwise and k-wise Independent Sampling . . . . .. ... ...
3.6 Madhu Sudan’s List Decoding Algorithm . . . . . ... ... ... ... ...
3.7 The Razborov-Smolensky Circuit Lower Bound . . . . . . . ... ... ...

4 The Lore and Lure of Expanders
4.1 Example: Lockdown routing/circuit switching. . . . . . ... ... ... ..
4.2  Circuit switching networks - wrapup . . . . . . . . .. ...

5 Eigenvalues and Expanders
5.1 Spectral properties of graphs and expanders . . . . . . . ... ... ... ..
5.1.1 Basic facts from linear algebra . . . . . . . ... ... ...
5.1.2 Matrices of Graphs . . . . . . . . ...
5.1.3 Expansion and spectral properties . . . . .. ... ... ...

6 Markov Chains and Random Walks
6.1 Basics . . . . ..
6.2 Mixing Times . . . . . . . . . L. e

o O W W

10
10
11
13
13
17

19
19
20
22
23
24
25
25

29
29
31

33
33
33
34
36



6.2.1 Approximate Counting and Sampling . . . . .. ... ... ... ..
6.3 Bounding the mixing time . . . . . . . ... .. Lo
6.4 Analysis of Mixing Time for General Markov Chains . . . . . . . ... ...

7 High Dimensional Geometry
7.1 High Dimensional Geometry: Introduction . . . . . .. . ... ... ... ..
7.1.1 An approximate way to think about B, . . .. ... ... ... ...
7.1.2 Funny facts . . . . . . ...
7.2 Random Walks in Convex Bodies . . . . . . ... ... .. ... ... ...,
7.3 Dimension Reduction . . . . . . . . . ... oo
7.4 VC Dimension . . . ... ... . e
7.4.1 Definition . . . . . ...
7.4.2 VC dimension of intersections of range spaces . . . . . . . .. . ...
7.4.3 Applications to Learning Theory . . . . .. ... ... ... ... ...
7.4.4 Geometric Algorithms . . . . . .. ... .. 0oL

8 Discrete Fourier Transform and its Uses
8.1 Imtroduction . . . . . . . . . . . . ..
8.2 Discrete Fourier Transform . . . . . . . .. ... ... .. .. ........
8.2.1 Functions on the boolean hypercube . . . . . . .. ... ... .. ..
8.3 Applications of the Fourier Transform . . . ... .. ... ... .......
831 DFT and PCP’s . ... ... . .. . ... ..
83.2 Long Code . . ... .. . . .
8.3.3 Reducing the random bits in small-bias probability spaces . . . . . .

9 Relaxations for NP-hard Optimization Problems
9.1 Introduction . . . . . . . . . . L
9.2 Vertex Cover . . . . . . . . . . e e e
9.3 Sparsest Cut . . . . . .. L
9.4 Lift and Project Methods . . . . . . . . .. ... ... ... ... ...
9.5 Sherali-Adams Lift and Project Method . . . . . . .. . ... ... ... ...

10 Semidefinite Programming
10.1 Introduction . . . . . . . . . . ..
10.2 Basic definitions . . . . . . . . ... e
10.3 An SDP for Graph Expansion . . . . . . . . ... ... ... ... ... ...
10.4 0.878-Approximation for Max Cut . . . . ... ... ... ... .......
10.5 Spectral Partitioning of Random Graphs . . . . . .. .. .. ... ... ...

49
49
49
50
o1
53
56
o7
61
62
62

65
65
66
67
68
68
70
71

75
75
75
76
79
80



Chapter 1

Probabilistic Arguments

SCRIBE: Tony Wirth

1.1 Introduction

Think of the topics in this course as a toolbox to rely upon during your research career.
Today’s lecture shows the application of simple probabilistic arguments to prove seemingly
difficult results. Alon and Spencer’s text goes into considerably more detail on this topic,
as will Sudakov’s course in the Math dept.

A random variable is a mapping from a probability space to R. To give an example,
the probability space could be that of all possible outcomes of n tosses of a fair coin, and
X is the random variable that is 1 if the ith toss is a head, and is 0 otherwise.

Let X1, Xo, X3,...,X,, be a sequence of random variables. The first observation we
make is that of the Linearity of Expectation, viz.

E[Z Xi| = Z E[X;]

It is important to realize that linearity holds regardless of the whether or not the random
variables are independent.

Can we say something about E[X;X5]? In general, nothing much but if X;, Xo are
independent events (formally, this means that for all a,b Pr[X; = a, X2 = b = Pr[X; =
a]Pr[Xg = b]) then E[XlXQ] = E[Xl]E[XQ]

The first of a number of inequalities presented today, Markov’s inequality says that
any non-negative random variable X satisfies

Pr (X > kE[X]) <

e

Note that this is just another way to write the trivial observation that E[X] > k-Pr[X > k.
Sometimes we refer to the application of Markov’s inequality as an averaging argument.
Can we give any meaningful upperbound on Pr[X < ¢ E[X]] where ¢ < 1, in other

words the probability that X is a lot less than its expectation? In general we cannot.



However, if we know an upperbound on X then we can. For example, if X € [0,1] and
E[X] = u then for any ¢ < 1 we have (simple exercise)

1 —
Pr(X <cu] < i
1—cu

Sometimes this is also called an averaging argument.

ExaMPLE 1 Suppose you took a lot of exams, each scored from 1 to 100. If your average
score was 90 then in at least half the exams you scored at least 80.

1.2 Independent sets in random graphs

We illustrate the power of the averaging argument by studying the size of the largest in-
dependent set in random graphs. Recall that an independent set is a collection of nodes
between every pair of which there is no edge—an anti-clique, if you like. It is NP-hard to
determine the size of the largest independent set in a graph in general.

Let G(n, %) stand for the distribution on graphs with n vertices in which the probability
that each edge is included in the graph is 1/2. In fact, G(n, %) is the uniform distribution
on graphs with n nodes (verify this!). Thus one of the reasons for studying random graphs
is to study the performance of some algorithms “on the average graph.”

What is the size of the largest independent set in a random graph?

THEOREM 1
The probability that a graph drawn from G(n, %) has an independent set of size greater
than 2[logn] is tiny.

PRrOOF: For all subsets S of {1,2,...,n}, let Xg be an indicator random variable for S
being an independent set. Now, let r.v. Y; be the number of independent sets of size k;

that is,
Y, = Z Xg.
S:|S|=k

Linearity of expectation tells us that

ElYi] = ) E[Xs].
S:|S|=k

The Xg r.v.s are indicators and there are ('g‘) potential edges between |S| vertices, hence

E[Xs] =Pr[Xg=1] =

2('3)’

Applying both the approximations

(0~(F) = ()%



we can show that

r k
ne
_ W] (1.2)

)

[ e :|210gn

[2logn

substituting 2logn for k. Hence the mean value of Y} tends to zero very rapidly.
In particular, Markov’s inequality tells us that Pr[Y; > 1] < E[Y%] and hence that the
probability of an independent set of size 2[logn] is tiny. O

Since the distribution G(n,1/2) picks each edge with probability 1/2, it also leaves out
each edge with probability 1/2. Thus we can simultaneously bound the maximum size of a
clique by 2[logn].

Now we also show a lowerbound on the size of the largest independent set/clique. Note
that substituting k£ = 2[logn] — y/logn in the above calculation for E[Y}] shows that the
expected number of independent sets of size 2[logn] — v/logn is very large. However, we
have to rule out the possibility that this number is large with probability ~ 0.

For this we need a more powerful inequality, Chebyshev’s inequality, which says

1
Pr{X — 4| > ko] < 1,

where p and o are the mean and variance of X. Recall that 02 = E[(X —p)?] = E[X?]— 2.
Actually, Chebyshev’s inequality is just a special case of Markov’s inequality: by definition,

E[|IX - pP] =0

and so,

Pr[|X —puf? > k*0?] < %

THEOREM 2
If G is drawn from G(n, %) there is almost surely an independent set of size 2[log n] —+/Iog n.

PRroOF: If k = 2logn — y/logn, then by substituting into formula (1.2) we find that E[Y}]

is approximately
( ne >k > <2Vl°g”/2>logn
2logns =7/ ~ \ 2logn ’

This quantity tends to infinity, so the mean is much greater than one. However, the variance
could be so large that the value of the mean tells us nothing.



The calculation of the variance is however quite messy. Let N stand for (Z) and p

k
stand for 2(3). The expected value of Yy is Np. We show that E[Y,f] is N2p? + ¢, where
e < N%p?, so that Var[Y,] = ¢ is smaller than N2p?. Then concentration about the mean

follows from Chebyshev’s inequality. Observe that

EYJI=E[ ) X)= >  EXsX1],

$:S|=k S,T:|S|=|T|=k

by linearity of expectation.
Note that if [SNT| < 1 then Xg and X7 are independent events and E[XgX7] =
E[Xs|E[X7] = p?>. Now we calculate the fraction of S,T that satisfy [SNT| =i > 1.

There are (Z) ways to choose S and then (lf) (T,i:lf) ways to choose T'. Then the probability

that both are independent sets is 2_2(5)2(;) = p22(§). Since XgXr = 1 iff both S and T
are independent sets and 0 otherwise, we have

== () (") G050 2 (G0

This can be shown to be N2p? + ¢ for some e < N?p2. O

In fact, in 1976 Bollobas and Erdds showed that for every n there is a number k(n) (pre-
sumably around 2logn) such that the distribution of the size of the maximum independent
set is very tightly concentrated on k(n) and k(n) + 1.

Algorithms: Somebody asked if we can find a clique or independent set of size 2[logn] in
polynomial time on such graphs. We describe a simple greedy polynomial time algorithm
that finds a clique of size [logn] in a random graph with high probability. The greedy
process is simply this: select a vertex v at random, and then look at its set of neighbours,
V1. Next, Select a vertex vo in Vj and restrict attention to neighbours of v1 and wvo; call this
set V5. We continue this process until we reach a Vi that is empty. Thus {vi,va,..., v} is
a maximal clique.
Using the fact that in a random graph, all degrees are concentrated in [§—O(y/nlogn), 5+

O(y/nlogn)] (see Chernoff bounds below), we can show that k& > logn — O(1) with high
probability.

OPEN PROBLEM 1 Is it possible to find a clique of size (1 + ¢)logn in polynomial time?
(The best algorithm we know of does exhaustive listing of sets of size (1 + ¢) log n, which
takes about n(1+2)198™ time.

1.3 Graph colouring: local versus global

Imagine that one day you pick up a political map of some world and decide to colour in
the countries. To keep the boundaries clear you decide to fill in adjacent countries with
different colours. It turns out that no matter what map anyone gives you (a map is just a
so-called planar graph), four colours will always suffice.



We can extend this notion of colouring to graphs: we assign each vertex a colour so that
no two vertices with an edge between them share a colour. More formally, a k-colouring
of a graph G = (V, E) is a family of k independent sets whose union is V. Note that we
can ask that these sets form a partition of V', but we don’t have to.

Following convention, let a(G) stand for the size of the largest independent set in G and
let x(G) stand for the minimum & for which G admits a k-colouring. The formal definition

of colouring tells us that
n

X(G) > m'

Can we provide an upper bound for the chromatic number, x(G), using a(G), for in-
stance 2n/a(G)? Such a bound is impossible: there exist graphs in which there is a large
independent set, but the remainder of the graph is a clique. However, if the vertex degrees
are bounded, then so is the chromatic number.

THEOREM 3
If the maximum degree of a graph is d then x(G) < d + 1.

PROOF: Proof by induction: The base case is trivially true. For the inductive step, assume
all graphs with n nodes satisfy the theorem. Given a graph G with n 4 1 nodes, identify
one vertex v. The induced subgraph G — {v} can be coloured with d + 1 colours, by the
induction assumption. The node v has links to at most d other nodes, due to the maximum
degree constraint, and hence is adjacent to at most d colours. Hence the d + 1th colour is
available for v and so G can be d + 1-coloured. O

Perhaps being able to colour small subgraphs with few colours might help us to colour
larger graphs? Such conjectures can waste a lot of brain-cycles. But a simple probabilistic
argument —doable on the back of an envelope— can help us dispose of such conjectures, as
in the following 1962 result by Erdds. It shows that the chromatic number is truly a global
property and cannot be deduced from looking locally.

THEOREM 4
For all k there exists a positive € such that for all sufficiently large n there is a graph G on
n vertices with x(G) > k, but every subgraph of G with at most en vertices is 3-colourable.

PRrROOF: Let G be a graph selected from G(n,p) where p = ¢/n. We show not only that
there exists such a G that satisfies the theorem statement, but that selected in this way G
satisfies it almost surely.

First, we show that with high probability «(G) < n/k, which implies x(G) > k. We can
approximate ((;:1) with 2H(@)" where H(a) is the entropy function

alog (2) + (1 —a)log (1 i a).

Using the fact that when p is small, 1 — p ~ e™P, we find that the expected number of
independent sets of size n/k is

01— 2 g _ o T (D ey -




If ¢ is at least 2k?H (1/k)In 2, this expectation drops to zero rapidly.

Second, we show that in every induced subgraph on at most en nodes, the average degree
is less than 3. Note that if there exists a subgraph on en vertices that is not 3-colourable,
then there is a minimal such subgraph. In the minimal such subgraph, every vertex must
have degree at least 3 (Proof: Suppose a vertex has degree 2 yet omitting it gives a 3-
colorable subgraph. Then putting the vertex back in, we can extend the 3-coloring to that
vertex by giving it a color that has not been assigned to its 2 neighbors.) So we have a
subgraph on s < en vertices with at least 3s/2 edges. The probability of such a subgraph

existing is at most
s 3s/2
Z n (5) ¢ /
s)\3s/2) \n ’

s<en

recalling that p = ¢/n. If s is O(1), the terms tend to zero rapidly and the sum is negligible.
Otherwise, we can use the approximations presented in line (1.1) to arrive at the quantity

S EG) 0] sl venvary

s<en

If ¢ is less than e °33¢ ™3, the summation terms are strictly less than 1, since s < en. On
the other hand we have eliminated the cases where s is O(1) so the remainder of the terms
form a geometric series and so their sum is bounded by a constant times the first term,
which is tiny.

(]

1.4 Bounding distribution tails

When we toss a coin many times, the expected number of heads is half the number of tosses.
How tightly is this distribution concentrated? Should we be very surprised if after 1000
tosses we have 625 heads? We can provide bounds on how likely a sum of Poisson trials
is to deviate from its mean. (A sequence of {0,1} random variables is Poisson, as against
Bernoulli, if the expected values can vary between trials.) The Chernoff bound presented
here was probably known before Chernoff published it in 1952.

THEOREM b5
Let X1, X5,...,X, be independent Poisson trials and let p; = E[X;], where 0 < p; < 1.
Then the sum X =" | X;, which has mean u =Y, p;, satisfies

66 w
PI‘[X > (1 —1—5)#] < [W} .

PROOF: Surprisingly, this inequality also is proved using the Markov inequality.
We introduce a positive dummy variable ¢ and observe that

Blexp(tX)] = Elexp(t _ X)) = E[[Jexp(tX0)] = [[ Blexp(tx)],  (L3)



where the last equality holds because the X; r.v.s are independent. Now,

Elexp(tX;)] = (1 — pi) + pic’,

therefore,
[T Eexpx)] =[]0 +pi(e' = D] < [[exppi(e’ = 1)
i i i (1.4)

= eXp(ZPi(et — 1)) = exp(u(e’ — 1)),

2

as 1 +z < e”. Finally, apply Markov’s inequality to the random variable exp(tX), viz.

Elexp(tX)] _ exp((e' — 1)p)
exp(t(1+0d)n)  exp(t(l+d)n)’

Pr(X > (14 0)u] = Prlexp(tX) > exp(t(1 + 0)p)] <

using lines (1.3) and (1.4) and the fact that ¢ is positive. Since ¢ is a dummy variable, we can
choose any positive value we like for it. The right hand size is minimized if t = In(1+46)—just
differentiate—and this leads to the theorem statement. O

A similar technique yields this result for the lower tail of the distribution

e~ 0 a
Pr(X < (1-0)u] < [m]

By the way, if all n coin tosses are fair (Heads has probability 1/2) then the the prob-
ability of secing N heads where |N —n/2| > ay/n is at most e~ /2. The chance of seeing
at least 625 heads in 1000 tosses of an unbiased coin is less than 5.3 x 107",

§1 Prove that the greedy algorithm finds a clique of size log n—O(1) with high probability
in a random graph.



Chapter 2

LP Duality and its Uses

SCRIBE: Satyen Kale

We introduce linear programs and the famous Duality Theorem. Our goal is to showcase
linear programs as mathematical tools; their use in algorithms is of course well-known. Our
main example is a result by Linial and Nisan on Approximate Inclusion-Exclusion. Another
example in the same spirit is the LP bound on density of error-correcting codes; see a book
on coding theory such as Van Lint or MacWilliams-Sloane.

2.1 Linear Programming and Farkas’ Lemma

A Linear Program involves optimizing a linear cost function with respect to linear inequality
constraints. They are useful for algorithm design as well as a tool in mathematical proofs.
The typical program looks as follows.

GIVEN: vectors c,aj,as,...a, € R", and real numbers by, by, ... by,.
OBJECTIVE: find X € R" to minimize ¢ - X, subject to:

ai - X > b1

ag - X Z bg
: (2.1)

a,-X > by

X > 0

The notation X > Y simply means that X is componentwise larger than Y. Now we
represent the system in (2.1) more compactly using matrix notation. Let

al b1
al b
A=| 7 and b=| -
a% bm

10
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Then the Linear Program (LP for short) can be rewritten as:

min ¢IX :
AX >b (2.2)
X >0

This form is general enough to represent any possible linear program. For instance,
if the linear program involves a linear equality a - X = b then we can replace it by two
inequalities

a-X>b and —a-X> —b.

If the variable X; is unconstrained, then we can replace each occurence by X;r — X, where
Xi+ , X, are two new non-negative variables.

The set of conditions in an LP may not be satisfiable, however. Farkas’ Lemma tells us
when this happens.

LEMMA 6

Farkas’ Lemma. The set of linear inequalities (2.1) is infeasible if and only if using
positive linear combinations of the inequalities it is possible to derive —1 > 0, i.e. there
exist A1, Aa,... Ay > 0 such that

i)\iai <0 and i)\zbz > 0.
=1 =1

2.2 The Duality Theorem

With every LP we can associate another LP called its dual. The original LP is called the
primal. If the primal has n variables and m constraints, then the dual has m variables and
n constraints.

Primal Dual

min ¢'X: max YTb:

AX >b Y'A <cT (23)
X >0 Y >0

(Aside: if the primal contains an equality constraint instead of inequality then the
corresponding dual variable is unconstrained.)
It is an easy exercise that the dual of the dual is just the primal.

THEOREM 7
The Duality Theorem. If both the Primal and the Dual of an LP are feasible, then the
two optima coincide.

PRrROOF: The proof involves two parts:

1. Primal optimum > Dual optimum.
This is the easy part. Suppose X*, Y* are the respective optima. This implies that

AX* > b.
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Now, since Y* > 0, the product Y*AX* is a non-negative linear combination of the
rows of AX*, so the inequality

v AX* > Y*Tb
holds. Again, since X* > 0 and ¢ > Y*T A, the inequality
TX* > (Y*TA)X* >v*Th
holds, which completes the proof of this part.

2. Dual optimum > Primal optimuml.
Let k be the optimum value of the primal. Since the primal is a minimization problem,
the following set of linear inequalities is infeasible for any ¢ > 0:

—TX > —(k—e¢)

AX >b (2.4)
Here, € is a small positive quantity. Therefore, by Farkas’ Lemma, there exist Ao, A1, ... Ay >
0 such that
m
—XoC + Z Aa; <0 (2.5)
i=1
m
~Xo(k =€)+ > Aibi > 0. (2.6)
i=1

Note that A\g > 0 omitting the first inequality in (2.4) leaves a feasible system by
assumption about the primal. Thus, consider the vector

M Ay
R

The inequality (2.5) implies that ATA < c”. So A is a feasible solution to the Dual.
The inequality (2.6) implies that ATb > (k —¢), and since the Dual is a maximization
problem, this implies that the Dual optimal is bigger than k — €. Letting € go to zero,
we get that the Dual optimal > k& = Primal optimal. Thus, this part is proved, too.
Hence the Duality Theorem is proved.

A=

a

Sanjeev’s thoughts on this business: (1) Usually textbooks bundle the case of infeasible
systems into the statement of the Duality theorem. He feels that this muddies the issue.
Usually all applications of LPs fall into two cases: (a) We either know (for trivial reasons)
that the system is feasible, and are only interested in the value of the optimum or (b) We do
not know if the system is feasible and that is precisely what we want to determine. Then it
is best to just use Farkas’ Lemma. (2) The proof of the Duality theorem is interesting. The
first part shows that for any dual feasible solution Y the various Y;’s can be used to obtain
a weighted sum of primal inequalities, and thus obtain a lowerbound on the primal. The
second part shows that this method of taking weighted sums of inequalities is sufficient to
obtain the best possible lowerbound on the primal: there is no need to do anything fancier
(e.g., taking products of inequalities or some such thing).
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2.3 Example: Max Flow Min Cut theorem in graphs

The input is a directed graph G(V, E) with one source s and one sink ¢. Each edge e has
a capacity c.. The flow on any edge must be less than its capacity, and at any node apart
from s and t, flow must be conserved: total incoming flow must equal total outgoing flow.
We wish to maximize the flow we can send from s to t. The maximum flow problem can be
formulated as a Linear Program as follows:

Let P denote the set of all (directed) paths from s to ¢. Then the max flow problem
becomes:

max Z fr: (2.7)
PeP
VPeP:fp>0 (2.8)
Vee E: > fr<ce (2.9)
P:ecP
Going over to the dual, we get:
min Z Cele (2.10)
ecl
Vee E:y.>0 (2.11)
VPEP:Y ye>1 (2.12)
ecP

Notice that the dual in fact represents the Fractional min s — ¢ cut problem: think of
each edge e being picked up to a fraction y.. The constraints say that a total weight of
1 must be picked on each path. Thus the usual min cut problem simply involves 0 — 1
solutions to the y.’s in the dual.

EXERCISE 1 Prove that the optimum solution does have y. € {0,1}.

Thus, the max- st-flow = (capacity of) min-cut.

2.4 Approximate Inclusion-Exclusion

WARNING: THE PROOF OF APPROXIMATE INCLUSION-EXCLUSION GIVEN HERE IS INCOM-
PLETE TOWARDS THE END. SPECIFICALLY, I FOUND AFTER GIVING THE LECTURE THAT
THE MAIN THEOREM OF THE LINIAL-INISAN PAPER IS INCORRECT AS STATED. I PLAN TO
CORRECT THIS BUT HAVEN'T GOTTEN AROUND TO. THE READER CAN STILL GET THE
BASIC IDEA FROM THE DESCRIPTION BELOW.

Now we see an interesting application of linear programming and the duality theo-
rem. The Inclusion-Exclusion formula for the cardinality of the union of n finite sets
Ay, As, ..., A, is given by

[ATUA U U AL =) A =D AN A =+ ()" A n Ay N 0 Ay (2.13)

i<j
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The question is, suppose we know only the first k terms of the formula, how good an
approximation can we get? The simple idea of truncating the formula to the first k£ terms
doesn’t work: for instance, consider the case when all A; are identical.

The answer (due to Linial and Nisan, 1988) is that for £k > Q(y/n), we can get a good
approximation, correct upto a multiplicative factor 1 — (’)(exp(fT%))7 while for k& < O(y/n),
no good approximation is possible.

Our approach is to look at a related question. Let A = (A, Ag,...,Ay,) and B =
(B1,Ba, ..., By) be two collections of sets. Assume that for any set S C [n] with |S| < k
we have |V;cg Ai| = |Nies Bi| - We want to estimate how far apart ||J A;| and || B;| can
be.

Without loss of generality, we may assume that the A; and the B; are events in a
probability space, and we will consider a slightly more general question, viz. we would like

to estimate
n n

E(k,n) = sup(Pr[| ] A;] - Pr[| ] By)), (2.14)
i=1 i=1
where (A1, Ay, ..., A,) and (B1, B, ..., B,) satisfy the condition

Pr((| Aj] = Pr[[) B (2.15)
€S €S
for every S C [n] such that |S| < k.

Now, we define a j-atom to be an intersection of exactly j of the A;’s and the com-
plements of the remaining (n — j). Note that any other event consisting of intersections
of events A; or their complements can be expressed in terms of these atoms, and that all
the atoms are disjoint events. We call a collection of n events symmetric if all the j-atoms
occur with the same probability.

LEMMA 8
The optimum value of Ej, ,, is attained for some A and B that are symmetric.

PROOF: For any A we construct a symmetric collection A’ whose each term in the Inclusion-
Exclusion formula is the same. The Lemma then follows.

Obtain A’ by setting the probability of each j-atom of A’ to be the average of the proba-
bilities of the j-atom of A. There is only one n-atom, so Pr[A] A} .- Al] = Pr[A1 Ay - - A,).
Now consider Pr[A]Af--- Al _,]. It may be expressed as

Prl A} Ay Al A + Pr{A} A - AL AL,

Doing a similar rewriting for all conjunctions of (n — 1) events, and adding, we see that the
(n — 1)th term of the inclusion-exclusion for A’ is the same as for A. Proceeding this way,
a simple induction shows the equivalence of all terms. O

Now let
a; = sum of all j-atoms of Ay, Ag, ..., Ay; (2.16)
b; = sum of all j-atoms of By, By, ..., By; (2.17)
rj = sum of all j-intersections of Ay, Ag, ..., Ay; (2.18)
q; = sum of all j-intersections of By, By, ..., By. (2.19)
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LEMMA 9
The following relation connects the r; and the a;:

n .
1

=3 ()
i=j J

PrOOF: Consider a generic term, say Pr[4; N As N ... A;] contributing to r;. Expand this
out as the summation of atoms:

PI‘[AlﬂAgm...Aj]:ZPI‘[AlﬂAgm...Ajﬂs],

where s in the summation runs over all the atoms of Aj1,..., Ap.
In this summation, each i-atom is counted exactly (;) times: once for each j-subset of
the ¢ uncomplemented events. The lemma follows. O

Now, we will construct an LP that solves (2.14).

LemmA 10
The solution to (2.14) is given by solving the following LP:

max sz : (2.20)
1=1

Vj<k: i (;) zi =0 (2.21)

i=j
VSCn): > a4 <1 (2.22)
i€S
-3 <1 (2.23)
€S

PRrROOF: First, we check that x; = a; — b; is feasible: for (2.21),

n

Z(;):ci:rj—quo V’Lgk‘,

=7

and (2.22, 2.23) follow easily from noting that the a; and b; are probabilities of disjoint
events, and so for any S C [n] the sum ), ¢ z; represents a difference in probabilities and
is therefore bounded in absolute value by 1.

For the reverse direction, let z1,xo,...,x, be a feasible solution to the LP. Now define
the a; and b; by

g =T (2.24)
0 otherwise

b =4 TIHTS (2.25)
0 otherwise
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It is easy to check that this defines proper probabilities using (2.22, 2.23), and that the
sequences of events they define satisfy (2.15) because of (2.21). O

Now we look at the dual of the LP. It involves finding ug, Ag > 0 and y;’s such that

min Y (Ag+ps) : (2.26)
SCn]
Vi<i<n: Z()\S —ps) + Z (Z> y; =1 (2.27)
S3i j<min(i,k) J

Clearly, the optimum solution will, for each subset S, never need to make both A\g and
g positive. For example, if A¢ = a > 0 and pug = b > a then making Ag =0 and ug =b—a
still satisfies all constraints while lowering the objective.

For any given y1,92,...,yn, what is the best choice of Ag,us? For each i let ¢; =
1 =3 <min(ik) (;)yj Let I ={i:¢; >0} and J = {j : ¢; < 0}. Let c; = max{c; :i € [}
and c. = min{—c¢; : j € J}. (If I or J is empty the corresponding max or min is defined

to be 0.) Then there is a dual solution of cost ¢4 + c—, namely, A\; = ¢4, puy = c— and the
variables associated with all other subsets are zero. Furthermore, every feasible solution
must have some set with Ag > ¢4 and some other set with ug > c_, and thus have cost
at least ¢y + c_. Finally, we claim that at the optimum, the y;’s are such that J = (), and
hence ¢ = 0. Suppose not, and c_ > 0. Then divide all y; by 1 + c_; a simple calculation
shows that the new c_ is 0 whereas the new cy is Cffcc_‘. Thus the objective function has
gone down, which contradicts optimality.
We have thus proved:

LEMMA 11
The dual solution is the following optimization problem.

1
‘ 1= j : 2.2
i | (1= 3 () 229

j<min(i,k)
-y (Z,>yj >0 Vi (2.29)
j<min(ik) J

LEMMA 12
The optimum value of the program in Lemma 11 is given by

inf(max(l - q(m))> (2.30)

q \'m€[n]

where the infimum ranges over all polynomials q of degree atmost k with constant term 0
such that q(m) <1 for allm € {1,...,n}.

PROOF: Recall that (%) = x(x_l)(x_?!)"'(x_iﬂ), which is a degree i polynomial whose con-

stant term is 0. (That is, at x = 0 its value is 0.) It is also a polynomial that is 0 at
x=1,2...,(i —1). We note that any polynomial of degree at most k& and constant term
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0 can be written as a linear combination of (f), for 1 <4 < k. (The proof is by induction.

If the polynomial is cx’ + g(x) where ¢(x) is a polynomial of degree at most i — 1, then it

may be expressed as ci! (%) + r(x) where r(x) has degree at most ¢ — 1.) Finally, note that
k

if we define the polynomial ¢(x) = ZFI (j) yj, then (2.28) becomes simply

inf( max (1—q(m))>

q \me{l,..,n}
as required. The proof follows. O

To prove an upperbound on the primal, we construct a suitable feasible solution to the
dual (2.28). We use the Chebyshev polynomials. Here are some of their properties:

1. Recall that for each integer m > 0, cos(m#) is a polynomial in cos(6) of degree m. Thus
cos(mcos™1(x)) is a degree m polynomial in z, called the m’th Chebyshev polynomial
Tn(x). It is also given by

Tm(x):(x—i-\/xQ—l)m—;(x— xQ—l)m' (231)

2. For z € [-1,1], we have —1 < T),,(z) < 1.
Consider the following polynomial of degree k,

Tk( 2:E—(n+1) )

n—1

Gn(z) =1— 1) (2.32)
T ( fzjll))

Note that ¢(0) = 0 (i.e. its constant term is 0) and when x € [1,n], Tk(%) € [-1,1]
0 |qgn(x) — 1| <1/D where D = ‘Tk(%)‘

Then p(z) = Dgn(x)/(1 4+ D) satisfies % < p(m

1 for all m € [1,n]. Thus it
is a dual feasible solution and we conclude that E(k,n 1

D—1 __ 2
~—1rD — 1xD- Thus the

c\_/\_/

maximum ratio for Pr[U;4;] and Pr[U; B;] is 1= El(k_ < DEl. It only remains to estimate
this quantity. Since D = ‘Tk(—ﬁ—ﬂ)‘ = (A\F + A7%)/2 where A = ﬁi ~ 1+ % for large
n, we can upperbound this by

D+1

<1+ 0(K*/n).

2.5 A note on algorithms

We have emphasized the use the duality theorem as a tool for proving theorems. Of course,
the primary use of LPs is to solve optimization problems. Several algorithms exist to
solve LPs in polynomial time. We want to mention Khachiyan’s ellipsoid algorithm in
particular because it can solve even exponential size LPs provided they have a polynomial
time separation oracle. (There is an additional technical condition that we need to know
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a containing ball for the polytope in question, and the ball should not be too much bigger
than the polytope. Usually this condition is satisfied.)

A separation oracle for an LP decides whether a given input (x1,x9,...,z,) is feasible
or not, and if it isn’t, outputs out one constraint that it violates.

For example, consider the dual of max-flow (viz. fractional min-cut) that was discussed
in the previous lecture:

min Z Cele (2.33)

ecl
Vee E:y. >0 (2.34)
VPEP:) ye>1 (2.35)
ecP

This can be solved in many ways, but the simplest (if we do not care about efficiency too
much) is to use the Ellipsoid method, since we can design a polytime separation oracle for
this problem using the shortest path algorithm. Suppose the oracle is given as input a vector
(Ye)ecr. To decide if it is feasible, the oracle computes the shortest path from s to t with
edge weights = y., and checks if the length of this shortest path is atleast 1. (Of course,
before anything else one should check if all the y. > 0.) Clearly, (ye)cecr is feasible iff the
shortest path has length at least 1, and if it is infeasible then the shortest path constitutes
an unsatisfied constraint.



Chapter 3

The Dimension Method

SCRIBE: Miroslav Dudik

The “Dimension Method” is Sanjeev’s name for elementary linear algebra arguments.
This is all the algebra one needs 80% of the time; only occasionally (one example is num-
ber theoretic cryptography) does one need anything more powerful than elementary linear
algebra.

3.1 Basics: Fields and Vector Spaces

We recall some basic linear algebra. A field is a set closed under addition, subtraction,
multiplication and division by nonzero elements. By addition and multiplication, we mean
commutative and associative operations which obey distributive laws. The additive identity
is called zero, the multiplicative identity is called unity. Examples of fields are reals R,
rationals Q, and integers modulo a prime p denoted by Z/p. We will be mostly concerned
with finite fields. The cardinality of a finite field must be a power of prime and all finite
fields with the same number of elements are isomorphic. Thus for each power p* there is
essentially one field F with |F| = p*. We shall denote this field by GF(p*).

A wector space V over a field F is an additive group closed under (left) multiplication by
elements of F. We require that this multiplication be distributive with respect to addition
in both V' and F, and associative with respect to multiplication in F.

Vectors vi,..., vy are said to be linearly independent if Zle a;vi = 0 implies that
a; = ag = --- = a = 0. A maximal set of vectors {v;},.; whose every finite subset is
linearly independent is called a basis of V; all such sets have the same cardinality, called
the dimension of V' (denoted dim V). If V' has a finite dimension k and {vi}f:1 is a basis
then every vector v € V' can be uniquely represented as

k
V= g QVi,
i=1

where a; € F. Thus all finite-dimensional vector spaces are isomorphic to F*. If F is finite
then |V| = |F|*. An example of a vector space over a finite field is the field GF(p*) when
viewed as a vector space over GF(p).

19
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Let Ap,xn = {a;j} be a matrix over a field F. Rank of A, denoted by rank A, is the
maximum number of linearly independent rows in A. It is equal to the maximum number
of linearly independent columns. Hence rank A = rank AT

Let M = {m;;} be an n by n matrix. The determinant of M is defined as follows:

det M = Z (—1)™@ ﬁ Mg (i)
=1

oESH

where S, is the group of permutations over [n], and (o) is the parity of the permutation
0. The matrix M, «, has rank n if and only if det M # 0. We will use this fact to prove
the following result, which is our first example of the Dimension Method.

THEOREM 13
Let M,,x,, be a random matrix over GF(2). Then Pr[det M # 0] > 1/4.

PRrROOF: Denote the columns of M by M;, where ¢ = 1,2,...,n. It suffices to bound the
probability that these columns are linearly independent:

Pr[My,...,M,, linearly independent)]

Pr[Mj,...,M; linearly independent | My, ..., M;_; linearly independent]

I

@
I
-

(1 —Pr[M; € span(My,...,M;_1) | My,...,M;_; linearly independent).

I

@
Il
—

Now, if My,...,M;_1 are independent then their span is of dimension ¢ — 1 and hence it
contains 271 vectors. The column M; is picked uniformly at random from the space of 2"
vectors, independently of My, ..., M,_1. Thus the probability that it will lie in their span
is 2071 /2m,

n

=[Ja-2""" > ﬁexp{—%l*" -2In2}

i=1 =1

o0
> exp{—2In2) 277"} = exp{-2In2} = 1/4.
=1

3.2 Systems of Linear Equations

The system of m linear equations in n unknowns over a field F can be represented by a
matrix A,,x, and a vector b,,x1 as

Ax = b, (%)

where x,,«1 is the vector of unknowns.
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PROPOSITION 14
1. The system (x) is feasible if and only if b € span(Ai,...,A,), which occurs if and
only if rank(A|b) = rank A. (Here A|b is the matrix whose last column is b and the
other columns are from A.)

2. Suppose F is finite. If rank A = k then the system (x) has either 0 solutions (if
infeasible) or F"~* solutions (if feasible). In particular, if n = k then the solution is
unique if it exists.

3. If b = 0 then a nontrivial solution exists if and only if rank A < n — 1. In particular,
if n > m then nontrivial solutions always exist.

EXAMPLE 2 Suppose M is a random matrix over GF(2) and b is a random n x 1 vector.
What is the probability that the system Mz = b has a unique solution? By Theorem 13 it
is at least 1/4.

THEOREM 15

A nonzero polynomial of degree d has at most d distinct roots.
PROOF: Suppose p(z) = Z?:o c;r' has d + 1 distinct roots aq, ..., g4 in some field F.
Then

d
Zaé- -¢; = play) =0,
i=0

for j =1,...,d+ 1. This means that the system Ay = 0 with

1 o o ... o
1 « a3 ol
A= 2 2 2
2 d
1 aap agyy Qdt1

has a solution y = ¢. The matrix A is a Vandermonde matrix, hence
det A = H(O‘i — o),
i>j
which is nonzero for distinct «;. Hence rank A = d + 1. The system Ay = 0 has therefore

only a trivial solution — a contradiction to ¢ # 0. O

THEOREM 16
For any set of pairs (a1,b1),. .., (ag+1,b4+1) there exists a unique polynomial g(x) of degree
at most d such that g(a;) =b; for alli=1,2,...,d+ 1.

PRroOOF: The requirements are satisfied by Lagrange Interpolating Polynomial:
d+1
Zb' ) Hj;éi(x - aj)
R
el [1;2i(ai —aj)

If two polynomials g;(x), g2(z) satisfy the requirements then their difference p(z) = g1(x) —
g2(z) is of degree at most d, and is zero for = aj,...,a441. Thus, from the previous
theorem, polynomial p(z) must be zero and polynomials g1 (z), g2(z) identical. O
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3.3 Dispersal of Information Using Polynomials

Polynomials are often useful in situations where information needs to be dispersed in an
error-tolerant way, so that it can be reconstructed even if it is partially corrupted or de-
stroyed.

Suppose we want to encode a message into a finite number of packets to be transmitted
through a faulty network. This network can drop up to 1/2 of packets, but it does not
corrupt the contents of the remaining packets. To achieve a successful transmission, we can
use polynomial interpolation:

Encoding. Without loss of generality assume the message is a d+1-tuple ¢y, ¢y, ...,cq € F,
where |F| > 2d. Take 2d + 1 distinct points a1, ...,a4+1 € F and determine values of the

polynomial p(x) = Z?:o c;zt at a;. Send packets (a1, p(a1)),. .. ,(@2qr1, Pa2ds1))-

Decoding. Packets describe the polynomial p with sufficient redundancy. Even when d
packets are dropped, the polynomial p and hence the original message is uniquely determined
by the remaining d + 1 pairs.

Now suppose that the network can corrupt up to 1/4th of the packets. We will use
a strategy developed by Berlekamp and Welch in 1985. In order to transmit a message
described by a polynomial p(z) of degree d, we will send 20d pairs (o;,p(c;)). Let the
received pairs be (af, 3]) (for missing packets, we can set o = 3 = 0). A pair (a, 3))
will be considered corrupted if p(c}) # (.. Then there exists a nonzero polynomial e(z) of
degree at most 5d, which is zero at all corrupted values o — this is called an error locator

polynomial.

LEMMA 17
There exist nonzero polynomials e(x) and ¢(x) such that

dege < 5d
degc < 6d

and c(of) = Ble(a)) fori=1,2,...,20d.
PRrROOF: Taking the error locator polynomial e(z) and ¢(x) = p(x)e(z) we obtain

Ble(al) if pair (o, 8!) is not corrupted
p(c))-0=0=p-0 if pair (o}, 3]) is corrupted.

1717

c(af) = plaf)e(e;) = {

COROLLARY 18
Polynomials e(x) and c(x) that satisfy conditions of previous lemma can be found in time
polynomial in d.

PROOF: Equations c(c,) = fle(c)), where coefficients of ¢ and e are unknown, form a
system of 20d linear equations in 11d + 2 unknowns. The lemma guarantees its feasibility.
We can solve for coefficients by Gaussian elimination. O
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THEOREM 19 (BERLEKAMP-WELCH)
If ¢(x), e(x) satisfy the conditions of the lemma then e(x)|c(z) and p(x) = ¢(x)/e(x).

PRrOOF: Consider the polynomial ¢(x) — p(z)e(z). It has degree at most 6d, but it has at
least 15d roots because it is zero on all noncorrupted of’s. Therefore, ¢(z) — p(x)e(z) = 0
and c(x) = p(z)e(z). O

REMARK 1 This strategy will work whenever a fixed d-fraction of packets is corrupted,
where § < 1/2. Somebody asked if a scheme is known that recovers the polynomial even if
more than 1/2 the packets are corrupted. The answer is Yes, using Sudan’s list decoding
algorithm. See the homework.

3.4 Hashing: An introduction

Most schemes for Hashing also rely on a simple dimension argument.

Suppose we want to store n numbers from the set 1,2, ..., ¢ with a fast look-up. We will
use an array of size p and each element insert into a bucket indexed by the hash function.
Each bucket contains a chained list of elements with the same value of hash function. During
a look-up, it suffices to examine contents of a single bucket. If we can guarantee that the
number of elements stored in a bucket (the bucket size) is small, the operation will be fast.

We will assume that ¢ and p are prime, p =~ 2n and choose a hash function h at
random. We pick a,b € GF(q) at random and define h as z — (ax + b mod ¢) mod p.
The probability of collisions, i.e. events when h(z) = h(y) for x # y, should be low. We
might for example require that the family of hash functions be 2-universal:

2
(Ve # y) Prih(z) = h(y)] < o
It is often possible to prove a stronger statement:
1
(Vz # y)(Vu, v) Pr[h(z) = u, h(y) = v] = el

Families satisfying this condition are called pairwise independent.

ExaMpPLE 3 Consider a hash function h : x — ax+b mod p, where a, b are picked randomly
from GF(p). For fixed z,y,u,v € GF(p), where x # y, the system

ar+b=u

ay +b=vw
has a single solution a,b € GF(p). Hence the probability that h(z) = u, h(y) = v is 1/p>.

ExXaAMPLE 4 Element Distinctiveness Problem. We want to determine if there are two
identical numbers in a given sequence. We can hash all elements and then examine each
bucket separately. We could do it by sorting elements in every bucket, but for simplicity
assume that we examine every pair in a given bucket. If the number of buckets is O(n) and
the expected number of pairs in a bucket is O(1) then the expected runtime will be O(n).
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Suppose we use a hash function h : X — U, [U| = p = 2n, picked at random from a
pairwise independent family. Fix a bucket v and consider random variables

X, — {1 if h(z) = u,

0 otherwise,

where x is an element of the sequence. By pairwise independence, choosing arbitrary y € X
such that y # x, we obtain

Pr(h(z) = u] = Y _Prlh(z) = u,h(y) = v] = 1/p.
veU

The size of bucket u is S = X,. Calculate the expectation of S*:

E[$?] =) E[X.X,] =Y E[X;]+ ) E[X,X,]
T,y z T#Y
= Pria(x) =ul+ Y _Prh(x) = u,h(y) = ul
z T#Y
=n/p+nn—1)/p*~1/2+1/4=0(1).

Since the number of pairs in a bucket is O(S?), we obtain by linearity of expectation that
the expected runtime is

O(> _E[S}]) = O(n).

(Aside: The element distinctness problem is impossible to solve (even using randomness)
in linear time in the comparison model, where the algorithm is only allowed to compare two
numbers at every step.

3.5 Pairwise and k-wise Independent Sampling

Consider a randomized algorithm that uses n random bits and gives a Yes/No answer.
Suppose we know that one of the answer happens with probability at least 2/3 but we
do not know which. We can determine that answer with high probability by running the
algorithm m times with independent random bits and taking the majority answer; by the
Chernoff bounds the error in this estimation will by exp(—m). Can we do this estimation
using fewer than mn random bits? Intuitively speaking, the algorithm converts n random
bits into a single random bit (Yes/No) so it has thrown away a lot of randomness. Can we
perhaps “reuse” some of it? Later in the course we will see some powerful techniques to do
so; here we use more elementary ideas. Here we see a technique that uses 2n random bits
and its error probability is 1/m. (We need m < 2".) The idea is to use random strings that
are pairwise independent and use Chebyshev’s inequality.

A sequence of random variables z1, 23, 23,... is pairwise independent if every pair is
independent.

We can construct a sequence of m pairwise independent strings {z;}, z; € GF(q), g ~ 2"
using 2log ¢ random bits. Let {z;},x; € GF(q) be any fixed sequence. Pick a,b € GF(q)
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at random and set z; = ax; + b. Running the algorithm on zy, ..., 2z, will guarantee that
answers are pairwise independent.

Analogously, we can construct k-wise independent sequences by picking ag, ..., ai_1 at
random and applying the map x +— Z?;& a;jx’ to an arbitrary sequence {z;},z; € GF(q).
Chebyshev inequality generalizes to higher moments:

Pr{\X ~BX]| >~ (E[\X - E[X]]’“])l/k} <qk

This uses klog ¢ random bits but the error in the estimation goes down as 1/mF.

EXAMPLE 5 Secret Sharing (A. Shamir, How to share a secret, Comm. ACM 1979). We
want to design a scheme for sharing a secret ag among m people so that k£ + 1 people can
recover the secret, but k or fewer people cannot.

If ag, ..., a are picked randomly and person i receives the pair (o, p(«;)) where p(z) =
S a;x' then any set of k people will receive a random k-tuple of strings, whereas k + 1
people will be able to recover the polynomial p(z) by interpolation.

3.6 Madhu Sudan’s List Decoding Algorithm

Sudan’s algorithm gives a way to recover a polynomial from its values, even when most
(an overwhelming majority) of the values are corrupted. See Question 4 on HW 2 for a
self-guided tour of this algorithm.

Strictly speaking, this algorithm doesn’t use “just” the dimension method: it also uses
Berlekamp (or Kaltofen’s) algorithm for factoring polynomials over finite fields.

3.7 The Razborov-Smolensky Circuit Lower Bound

Scribe: Paul Chang

We describe the Razborov-Smolensky method for circuit lowerbounds as another exam-
ple of the dimension method.

We are very far from separating NP from P; the turing machine model seems too
complex to reason about. It is natural to try to prove an exponential lower bound for a
restricted model of computation. The Razborov-Smolensky lower bound applies to one such
model. The theorem presented in this section was originally proved by Razborov using his
Method of Approximations (he won the Nevanlinna prize in 1990 for this work). Smolensky
later extended this work and clarified this method for the circuit class considered here.

DEFINITION 1 A circuit C is a directed acyclic graph with n input nodes, labeled x1 to x,,
and one output node. All other nodes are labeled with a boolean operation. When we label the
input nodes with n bits and let the other nodes compute in the obvious manner (computing
the boolean operation on their incoming edges and placing the 1-bit result on the outgoing
edges) we get a boolean value on the output node, denoted C(x). The size of a circuit is the
number of nodes. Note that the circuit nodes may have unbounded degree.
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DEFINITION 2 A family of circuits is a collection of circuits {Cy}n>1, such that the nth
circuit has n input nodes. We say that a circuit family computes a function f : {0,1}* —

10,1} if for all z, Ciy(x) = f(z).

REMARK 2 A circuit family can compute undecidable languages - we may hardwire into a
circuit any of 2" functions on n inputs, and may use different circuits for each input length.
(For example, there exists a circuit family which computes {1<**>|M halts on w}).

We are interested only in a subclass of circuits, the MODg circuits.

DEFINITION 3 A MODg circuit of depth d on n inputs is one whose depth is bounded by a
constant d. Each boolean gate performs any of the four operation AND (A), OR (V), NOT
(—), and sum modulo three (MODs). The MODs gate outputs zero if the sum of its inputs
18 zero modulo three, and one otherwise.

The inclusion of the M ODs3 gates gives the circuit some power. Nevertheless we show
that it cannot compute the M ODy function, namely, parity of n bits.

THEOREM 20
The Razborov/Smolensky Circuit Lower Bound. Computing MODs with MODs

1
circuits of depth d requires a circuit of size exp(2(n2d)).
In the rest of the section we prove this theorem. The proof proceeds in two steps.

Step 1. In the first step, we show (using induction on h) that for any depth h MODs
circuit on n inputs and size S, there is a polynomial of degree (2[)" which agrees with
the circuit on 1 — S/2! fraction of the inputs. If our circuit C' has depth d then we
set 21 = n'/2 to obtain a degree \/n polynomial that agrees with C on 1 — 5/2”1/2d/2
fraction of inputs.

Step 2 We show that no polynomial of degree y/n agrees with MO Dy on more than 49/50
fraction of inputs.

Together, the two steps imply that S > gn'/1/2 /50 for any depth d circuit computing
MODs, thus proving the theorem. Now we give details.
Step 1. Consider a node i in the circuit at a depth h . (The input is assumed to have
depth 0.) If fi(z;,---,x,) is the function computed at this node, we desire a polynomial
fi(@s, -+ ,xn) over GF(3) with degree (21)", such that on any input in {0,1}" C GF(3),
polynomial f; produces an output in {0,1}. (In other words, even though f; is a polynomial
over GF(3), for 0/1 inputs it takes values in {0,1} C GF(3).) Furthermore, we desire

Pr,c o1y fi(e) # ()] < ( (3.1)

circuit size
2l

We construct the approximating polynomial by induction. The case h = 0 is trivial.
Suppose we have replaced the output of all nodes up to height h with polynomials of
appropriately bounded degree and error. We wish to approximate the output of a node g
of height h + 1 with immediate inputs fi,--- , f.
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1. If g is a NOT gate, we may write g = —f;. Then, § = 1 — f; is an approximating
polynomial with the same degree and error as that of f;.

2. If g is a MOD3 gate, we use the approximation g = (>, fi)?. The degree increases
by at most a factor of 2, and there is no increase in the error rate.

3. If g is an AND or an OR gate, the required approximation is slightly harder to
produce. Suppose g = Ajerfi- The naive approach approximates an AND node g
with a polynomial IT;¢; fz If g = Vier fi we use De Morgan’s law and similarly obtain
the naive approximator 1 — J[,.;(1 — f}) Unfortunately, both of these increase the
degree of the polynomial by a factor of ||, which could be much larger than the
allowed 2I.

Let us give the correct solution for OR, leaving the case of AND to yet another
application of De Morgan’s laws.

If g is an OR gate, then g = 1 if and only if at least one of the f; = 1. We observe
that if any of the f; = 1, the sum (over GF'(3)) of a random subset of {f;} is one with
probability at least 1/2.

Pick [ subsets S1,---,S5; of {1,--- ,k} randomly. We compute the [ polynomials
>jes( fj)Q, each of which has degree at most twice that of the largest input polyno-
mial. We then compute the OR of these [ terms using the naive approach. The result
is a polynomial with degree at most 2/ times that of the largest input polynomial.
For any x, the probability over the choice of subsets that this polynomial differs from
OR(fl, e ,fk) is at most % So, by the expectation argument, there exists a choice
for the [ subsets such that the probability over the choice of x that this polynomial
differs from OR(fl, e ,fk) is at most %

(There was a question in class about how the errors at different gates affect each other.
An approximator may introduce some error, but another approximator higher up may
introduce another error which cancels this one. The answer is that we are ignoring this issue,
and using just the union bound to upperbound the probablity that any of the approximator
polynomials anywhere in the circuit miscompute.)

This completes the inductive construction of the proper polynomial.

Step 2. Suppose that a polynomial f agrees with the M OD5 function for all inputs in a
set G' C 0,1". If the degree of f is bounded by /n, then we show |G| < (&)2".

Consider the change of variables y; = 1+ z; (mod 3). (Thus 0 — 1 and 1 — —1.)
Then, G’ becomes some subset of {—1,1}", and f becomes some other polynomial, say
9(y1,Y2, - ., Yn), which still has degree y/n. Moreover,

MODg(xl,xg,...,xn) = (32)

0 =1y, =1

Thus g(y1, Y2, - -, Yn), a degree \/n polynomial, agrees with II!" ;y; on G. This is decidedly
odd, and we show that any such G must be small. Specifically, let Fz be the set of all
functions S : G — {0,1,—1}. Clearly, |Fg| = 3¢, and we will show |Fg| < 3(%)271, whence
Step 2 follows.
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LEMMA 21
For every S € Fg, there exists a polynomial gs which is a sum of monomials ar [[;c; i
where |I| < § + /n such that gs(z) = S(x) for all x € G.

PROOF: Let S : GF(3)" — GF(3) be any function which agrees with S on G. Then S
can be written as a polynomial in the variables ;. However, we are only interested in its
values on (y1,¥2,...,yn) € {—1,1}", when y? = 1 and so every monomial all;cry!" wlog
has r; < 1. Thus wlog, Sis a polynomial of degree at most n. Now consider any of its
monomial terms Il;cry; of degree |I| > n/2. We can rewrite it as

ILicry: = H?:lyiﬂiefyiv (3-3)

which takes the same values as g(y1,y2,...,yn);cy; over {—1,1}". Thus wlog every
monomial in S has degree at most 5++/n. O

To conclude, we bound the number of polynomials whose every monomial with a degree
at most § + /n. Clearly this number is #polynomials < g#monomials 41 q

#monomials < ‘{N C{1---n}|N| < g +v/n (3.4)
n
< nz (Z) (3.5)
i§§+\/H

Using knowledge of the tails of a binomial distribution,

<49

—2" 3.6
< (36)



Chapter 4

The Lore and Lure of Expanders

SCRIBE: Paul Chang

Now we move to the study of Expander graphs. Their numerous applications to a areas
such as error correcting codes, routing networks, sorting networks, derandomization, and
PCP reductions make them indispensable in any theorist’s toolkit.

DEFINITION 4 An (a, ) expander family is a sequence of d-regular bipartite graphs on 2n
nodes, (the family has one graph for each n > 1) such that for all af < 1, each set S of
nodes on the left where |S| < an has at least 3 |S| neighbors.

REMARK 3 If d is a constant independent of n an alternative definition —equivalent, as
we will show later using the Alon-Cheeger inequality— is that there is a gap between the
largest eigenvalue (namely d) and the second largest eigenvalue of the adjacency matrix.

As shown in an earlier problem set, for every o and 3 there exists a d such that almost all
d-regular bipartite graphs on n nodes are («, 3) expanders. Today we show one example of
such graphs for telephone switching networks.

4.1 Example: Lockdown routing/circuit switching.

This example is partially motivated by the study of massively parallel computers and partly
by telephone networks. We model a communications network as a graph with N inputs and
N outputs. We wish to route calls from the input users to the output users through routers
represented by internal nodes. Each call occupies the routers it uses, so separate calls must
take vertex disjoint paths. In particular, we would like to be able to route any permutation
matching inputs to outputs with decentralized control. In this section we construct a
network in which all permutations can be routed. In the next lecture, we will decentralize
the control.

REMARK 4 Any network which can route all of the permutations has size Q(NlogN), since

N! < #states < dFmodes (4.1)
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Oo

1 0 N g e N

Figure 4.1: An example delta network. Each layer contains a dotted set of edges up and a
solid set of edges down. In the multibutterfly, each of these sets forms an expander graph.

DEFINITION 5 A Delta network on N inputs is defined recursively: it consists of the first
level, which contains the N input nodes, and two subnetworks that are Delta networks on %
inputs, and are called the up and down networks respectively. Fach input node has edges to
inputs in both up and down networks. Outputs whose address has the MSB (most significant
bit) 1 lie in the up subnetwork and the remaining outputs are in the down subnetwork.
Clearly, any call to a destination whose MSB is 1 must go from the input node to some
node in the up subnetwork. Reasoning similarly for all the levels, we see that the delta
network is a layered network in which the up/down decision at level i depends on the ith bit
of the destination node. We may route to any of the input nodes of the smaller networks.
An example of the Delta network is the butterfly, where each input node (boby . .. biog N)
has exactly two outgoing edges, one each to the up and down subnetwork. The edges go to

nodes whose label in the that subnetwork is (biba, ... biog N)-

Butterfly networks cannot route all permutations with vertex disjoint paths. For in-
stance, they function poorly on the transpose permutation. Instead, we present the multi-
butterfly network of Upfal ’88. In the butterfly network, each of N nodes in the input layer
is connected to one of the % top nodes of the next layer. In the multibutterfly, the degree
of that node is d and the subgraph of edges from each of N nodes to the % top nodes of
the next layer is an («, 3) expander for aff < %
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We assume that the number of inputs (also, number of outputs) is 2aN and each is
connected to 1/2a successive inputs (resp., outputs) of the multibutterfly. (Alternatively,
we may still use N for the number of inputs and outputs and then connect them using
multibutterflies with N/2« inputs.)

We claim that any permutation on these 2a/N inputs/outputs can be routed using vertex
disjoint paths. We do this layer by layer. At most aN/2 calls need to be routed to the top
(or bottom) subnetwork. Let S be the set of nodes at which these calls originate. We can
route these calls in a vertex disjoint manner if there exists a matching between this subset
S of input nodes and any subset S’ of nodes in the top network. To see that this can be
done, we apply Hall’s theorem, noting that the expander property guarantees that S has at
least |S| neighbors.

THEOREM 22
Hall’s Theorem. If G = (V1,Va, F) is a bipartite graph, there exists a perfect matching
involving Vi if and only if for all subsets S C Vi, [['(S)| > |5].

PRrROOF: Apply the max-flow min-cut theorem. O

Repeating for all levels we obtain our vertex disjoint paths.

4.2 Circuit switching networks - wrap up

scribe: Elad Hazan

Last time we saw a network which enables the routing of the input set {1,..., N} into
any permutation on the inputs using vertex disjoint paths. We only showed the existence of
these paths. Now we describe a distributed algorithm that finds these paths in O(log? N)
time.

Recall that in the network there were log N ”layers”, each one consisting of N nodes,
that together with either the consecutive or previous layer constitute a [-expander (see
definition previous lecture, or below) for some 5 > % (where d is the degree of each node
regarding edges between two consecutive layers). Also, recall that the network was “lightly
loaded,” and only one out of every 1/2a successive inputs/outputs are involved in a call.

Suppose the number of calls is 2aN. At the first layer, N wish to enter the “up”
subnetwork and aN wish to enter the “down” subnetwork. Wlog let us concentrate on
the alN calls that wish to go up, and describe how to set up in O(log N) time a perfect
matching between those nodes and some set of &N nodes in the up subnetwork. Repeating
this matching algorithm at each subsequent level gives a total running time of O(log2 N)
(note that the matching in the up and down networks do not interfere with each other and
can go on in parallel).

Here is the matching algorithm. Let G = (L, R, E) be a bipartite d-regular graph that
is an (a, B) expander, and let S C L be a set of at most aN nodes that wish to match to
nodes in R. Let S; = S. The algorithm proceeds in phases; the following is phase .

1. Every node in S; sends a ”proposal” to every neighbor in R.

2. Every node on R that gets a single proposal accepts.



3. Every node on L that recieves an acceptance, matches to any one of the nodes in R
that accepted it, and then drops out. All remaining nodes constitute S;41.

4. Repeat till all vertices of L are matched.

The next claim shows that |S;| decreases by a constant factor after every phase, and so
in O(log N) phases it falls below 1, that is, it becomes 0.
Claim: ‘Slg‘l‘ < 2(1— B/d).

In phase ¢, let n; be the number of vertices from R that get exactly 7 proposals. Since
G is a d-regular graph, we have:

|Sz| ~d2n1+2n2+3n3—|—,,,22k.nk an‘f‘Qan
Since G is an (a, 3)-expander:
‘F(S)’ =ny1+ng+..= an > ﬁ‘S‘
k=1

Combining both:

an nl—i—Qan (26 —d)|S].

This is the number of nodes in R that send acceptances. Any node in S; can receive at most
d acceptances, so the number that drop out is at least ny/d. Thus |S;+1] < |S;| — n1/d and
the claim follows.

REMARK 5 This simple algorithm only scratches the surface of what is possible. One can
improve the algorithm to run in O(log N) time, and furthermore, route calls in a nonblocking
fashion. This means that callers can make calls and hang up any number of times and in any
(adversarially determined) order, but still every unused input can call any unused output
and the call is placed within O(log N) steps using local control. The main idea in proving
the nonblocking is to treat busy nodes in the circuit —those currently used by other paths—
as faulty, and to show that the remaining graph/circuit still has high expansion. See the
paper by Arora, Leighton, Maggs and an improvement by Pippenger that requires expansion
much less than d/2.
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Chapter 5

Eigenvalues and Expanders

SCRIBE: Elad Hazan

5.1 Spectral properties of graphs and expanders

5.1.1 Basic facts from linear algebra

We begin by stating several definitions and results from linear algebra:
Let M € R™ "™ be a square symmetric matrix of n rows and columns.

DEFINITION 6 An eigenvalue of M is a scalar A € R such that exists a vector x € R" for
which M -x = X-x. The vector x is called the etgenvector corresponding to the eigenvalue
A. (The multiset of eigenvalues is called the spectrum.)

Facts about eigenvalues and eigenvectors of symmetric matrices over R:

1. M has n real eigenvalues denoted \; < ... < A,. The eigenvectors associated with
these eigenvalues form an orthogonal basis for the vector space R" (for any two such
vectors the inner product is zero and all vectors are linear independent).

2. The smallest eigenvalue satisfies:
. T Mz
min T
TER" z#0 T X

A =

Denote the eigenvector corresponding to \; as xz;. Denote the vector space of all
vectors in R" that are orthogonal to z1 as: W(z1) := R™\ span{z1}. Then the second
smallest eigenvalues satisfies:

. 2T Mz
Ay = min =
zeW(z1) T° X

If we denote W (x1,...,x_1) := R" \ span{xy,...,xx_1}, then the k’th smallest eigen-

value is:
. T Mz
A = min

zeW(x1,....T5—1) 2Ty

This characterization of the spectrum is called the Courant Fisher Theorem.
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3. Denote by Spec(M) the spectrum of matrix M, that is the multi-set of its eigenvalues.
Then for a block diagonal matrix M, that is, a matrix of the form:

A 0
=[5 5]
The following holds: Spec(M) = Spec(A) U Spec(B)

4. Eigenvalues of a matrix can be computed in polynomial time. (Eigenvalues are the
roots of the characteristic polynomial of a matrix).

5. The Interlacing theorem:
A matrix B is denoted a principal minor of matrix M if it can be obtained from M
by deleting & < n columns and k rows.
Let A € R(=1Dx(=1) 16 g principal minor of the matrix M. Let:

Spec(A) = {1 < ... < pp—1}

Then:
M S <A< < S g1 <Ay

5.1.2 Matrices of Graphs

The most common matrix associated with graphs in literature is the adjacency matrix.
For a graph G = (V, E), the adjacency matrix A = Ag is defined as:

1 (i,j) € E
Aij =
0 otherwise
Another common matrix is the Laplacian of a graph, denoted L5 = £, and defined as:

1 i=j

£i,=40 i#jand (i,j) ¢ E

= i-dj i#jand (i,j) € E
(where d; is the degree of the node v; € V)
Notice that if the graph G is d-regular, then its matrices satisfy Ag = d(I — Lg). Denote
by {\;} the eigenvalues of A and by {u;} the eigenvalues of £. Then the previous relation
implies: A\; = d(1 — p;).
Fact: for any graph, the laplacian is a positive semi-definite matrix, that is, for any vector
y € R™

Vye R" . yTLy >0

(or equivalently, all eigenvalues are nonnegative).
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Example - The cycle

Consider a cycle on n nodes. The laplacian is:

1 0 0
0 1 —1
0 _% |

This matrix has 1’s on the diagonal, and 0’s or —% elsewhere, depending on whether the
indices correspond to an edge. Since a cycle is 2-regular, in each row and column there are
exactly two entries with —%.

CLAIM 1 The all ones vector 1 is an eigenvector of the laplacian of the n-node cycle, corre-
sponding to eigenvalue 0.

PrOOF: Observe that since every row has exactly two —% then:
L-1=0=0-1

O In fact, we can characterize all eigenvalues of the cycle:
CLAIM 2 The eigenvalues of the laplacian of the n-node cycle are:
21k
1—cos ™2  k=0,1,..,n—1}
n

PROOF: Observe that if the vertices are named consecutively, then each vertex ¢ is connected
to i — 1,74+ 1 mod n. Therefore, a value A is an eigenvalue with an eigenvector & if and
only if for every index of Z:

1
x; — 5(9«“@‘—1 +xip1) = A

(where sums are modulo n)

It remain to show the eigenvectors. For eigenvalue A\, = 1 — cos% we associate the
eigenvector z¥ with coordinates:

2mwik

z¥ = cos

And indeed (recall the identity cosz + cosy = 2 cos Z3¥ cos Z5Y):

2
1 2mik 1 2n(i + Dk 2 — 1Dk
xf—g(xf_l-l-xfﬂ) = cos = —5(003 m(i+1) + cos m(i—1) >
omik 1 ( o2mik 27Tk>
= cos — — [ 2cos cos ——
n 2
omik ( 27Tk>
= cos 1 —cos—
n n
= {L‘f . )\k
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5.1.3 Expansion and spectral properties

In this section we state the connection between expansion of a graph (defined below) and
the eigenvalues of its characteristic matrices.

DEFINITION 7 Let G = (V,E) be a graph. For any subset of vertices S C V define its

volume to be:
Vol(S):=> d;
i€S

For a subset of vertices S C V denote by E(S,S) the set of edges crossing the cut defined
by S. Using the above definition we can define edge expansion of a graph:

DEFINITION 8 The Cheeger constant of G is:

o BES o EES)
G = min — —— = min .
SCV min{Vol(S),Vol(S)}  scvva(s)<|e Vol(S)

(N.B. This number is closely related to the conductance of the graph.)
The vertex expansion is defined as:

DEFINITION 9 A graph G = (V, E) is a c-expander if for every subset of vertices of cardi-
nality less then half of the vertices, the number of vertices in the set of neighbors is at least
c times the original set. Formally:

vS CV.IS| < LIV] . [D(S)] = e[S
Denote by cg the maximal constant ¢ for which the graph G is a c-expander.
Observe that for a d-regular graph G (or if d denotes the average degree in any graph):
hg <cg <d-hg

We now arrive at the main theorem of the lesson, describing the connection between eigen-
values of the Laplacian and the edge expansion:

THEOREM 23 (CHEEGER-ALON)
If X\ is the second smallest eigenvalue of the Laplacian of the graph G, then:

h2
7G$)\§2hg

PROOF:[first part] We first prove that A < 2hg.
We begin with a small claim regarding the smallest eigenvalue:

CrAaM 3 G has an eigenvalue 0, corresponding to the eigenvector & with coordinates:

wi = \/d;
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PRrOOF: By straightforward calculation. Denote by b the vector:
b:=L- w

The i'th coordinate of b is:

jeF(i)\/— mVae Z \/_

JEL(?)

Hence b is the zero vector, and thus 0 is an eigenvalue corresponding to the above eigenvector.
O

Using the previous claim, we can write an explicit expression for the second smallest eigen-
value:

. e
A= min

5.1.1
x:3;7/d;x; =0 xTx ( )

Using the identity: 27 Mz =", jziMi jxg

1 2 .CCZ'CC]'
= min T — 5.1.2
23V dix;=0 Zz Qfl Z ‘ Eg(z dzd ( )

Now substitute y; := fi:

(Zi diy; — 3 jer ?/z’?/j)

= min 5.1.3
Sid;yi=0 > diy? ( )
I DI A ) (5.1.4)

Sid;yi=0 > diy?

(Aside: This characterization of the second eigenvalue is worth keeping in mind.)
Now let S C V so that Vol(S) < |E| (note that Vol(V) = 2|E|). Fix @ to be with
coordinates:

—vOzl(S) €S
a; =
1 .
“Va®) " &5

Notice that a is legal as:

d; di  Vol(S) B Vol(?) B
Zd a= Z 2 Vol(S5) % Vol(S)  Vol(S) Vol(S) ’




Now, according to the last expression obtained for \ we get:

< Z(i,j)EE (ai — aj)Q
B > diag

2
1 1
(Vol(S) + wz(?)) E(S5,5)
di di
ZieS Vol(S)2 + ZieéS Vol(S)2
1 1 —
= + — * E S’ S
(VOZ(S) Vol(S)) (5.5)

2 _
= voz(S)'E(S’S)

And since this holds for any S C V, it specifically holds for the set that minimizes the
quantity in Cheeger’s constant, and we get:

A < 2hg

a

Before we proceed to the more difficult part of the theorem, we recall the Cauchy-Schwartz
inequality: if a1,...,a, € R ; b1,...,b, € R, then:

Saibi < (Y ad)z - (Y 0)2 (5.1.5)
=1 [

7

PROOF:[second part] Let ¢ be the vector so that:

Z(i,j)eE (yi — Z/j)2

A=
ZZ‘ diy?
Define two vectors 4, ¥ with coordinates:
—vi ¥i <0
U; =

0 otherwise
Yi yi >0

V; =

0  otherwise
Observe that:
(yi —y5)* > (i — uj)® + (v; — v))
And hence:
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Since %2 > min{g, g it suffices to show that:

2
> )ep(Ui — uj) N hZ,
> diud 2
Now comes the mysterious part (at least to Sanjeev): multiply and divide by the same
quantity.

Z(z‘,j)EE(ui - uj)2 - Z(z‘,j)EE(ui - uj)2 o Z(i,j)eE(ui + Uj)2
> diu? > diuf Z(i,j)eE(ui + uj)?
e — )6 pep(ui +1u5)°]
B >0 diug - 2Z(i,j)€E(u12 +u3)
Where the last inequality comes from (a + b)? < 2(a? + b?). Now using Cauchy-Schwartz
in the numerator:

 (Sapenl — ) + ;)P
- 2(32; diug)?
[Z(i,j)eE(“? - u?)]2
203, diu?)?
Now denote by S = {v1,...,vx} C V the set of the first k vertices. Denote by C} the size
of the cut induced by Sk:

Cl == |E(Sk, k)|
Now, since uf — u? = ul2 — ufﬂ + U?H — U?H... + u?fl — u?, we can write:
2 2\ _ 2 2
Z (ui — Uj) = Z(ukz — Ujgy1) - Ck
(i,j)EE k

And thus, returning to the chain of inequalities we get:

Z(i,j)EE(ui —u;)? S [Z(i,j)eE(u? - U?)]Q
> diuf B 2032, diuf)?
ok (uf — uisy) - Cil
2(32; diu)?
According to the definition of hg we know that Cy, > hg - (D_,<4 di) (as hg is the minimum
of a set of expressions containing these). Hence:

[Zk(ui - Uiﬂ) “hg - (Zzgk di)]2
(T

— 2. [Zkz(u% - U%Jrl) ) (Zzgk d;)]?

- 2(3; diu?)?

. S

2(32, diu?)?

>
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And this concludes the second part of the theorem. O

REMARK 6 Note that we proved the stronger result that actually one of the cuts Cj sat-

B(Sk,Sk) . .
i Vol(5,).V oI5 < v2X. Namely, the algorithm to find a sparse cut is to take

the eigenvector (y1,v2,...,yn) corresponding to A, and check all the n cuts of the type
Sk ={i:x; <z}

isfies
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Chapter 6

Markov Chains and Random Walks

SCRIBE: Elena Nabieva

6.1 Basics

A Markov chain is a discrete-time stochastic process on n states defined in terms of a
transition probability matrix (M) with rows ¢ and columns j.

M = (P;)

A transition probability P;; corresponds to the probability that the state at time step ¢+ 1
will be j, given that the state at time t is . Therefore, each row in the matrix M is a
distribution and Vi, j € SP;; > 0 and Z]. P =1.

Let the initial distribution be given by the row vector x € ", x; > 0 and >, z; = 1.
After one step, the new distribution is xM. It is easy to see that xIM is again a distribution.
Sometimes it is useful to think of x as describing a certain amount fluid sitting at each node,
such that the sum of the amounts is 1. After one step, the fluid sitting at node ¢ distributes
to its neighbors, such that P;; fraction goes to j.

We stress that the evolution of a Markov chain is memoryless: the transition probability
P;; depends only on the state i and not on the time ¢ or the sequence of transititions taken
before this time.

Suppose we take two steps in this Markov chain. The memoryless property implies that
the probability of going from i to j is ), PixPkj, which is just the (7,7)th entry of the
matrix M?. In general taking ¢ steps in the Markov chain corresponds to the matrix M?.

DEFINITION 10 A distribution m for the Markov chain M is a stationary distribution if
™ = 7.

Note that an alternative statement is that 7 is an eigenvector which has all nonnegative
coordinates and whose corresponding eigenvalue is 1.

ExaMPLE 6 Consider a Markov chain defined by the following random walk on the nodes
of an n-cycle. At each step, stay at the same node with probability 1/2. Go left with
probability 1/4 and right with probability 1/4.

41



The uniform distribution, which assigns probability 1/n to each node, is a stationary
distribution for this chain, since it is unchanged after applying one step of the chain.

DEFINITION 11 A Markov chain M is ergodic if there exists a unique stationary distribution
7 and for every (initial) distribution x the limit lim;_, oo xXM! = 7.

THEOREM 24
The following are necessary and sufficient conditions for ergodicity:

1. connectivity: Vi, j : M!(i,j) > 0 for some t.
2. aperiodicity: Vi : ged{t : M'(i,j) > 0} = 1.

REMARK 7 Clearly, these conditions are necessary. If the Markov chain is disconnected it
cannot have a unique stationary distribution —there is a different stationary distribution for
each connected component. Similarly, a bipartite graph does not have a unique distribution:
if the initial distribution places all probability on one side of the bipartite graph, then the
distribution at time ¢ oscillates between the two sides depending on whether ¢ is odd or
even. Note that in a bipartite graph ged{t : M(i,j) > 0} > 2. The sufficiency of these
conditions is proved using eigenvalue techniques (for inspiration see the analysis of mixing
time later on).

Both conditions are easily satisfied in practice. In particular, any Markov chain can be
made aperiodic by adding self-loops assigned probability 1/2.

DEFINITION 12 An ergodic Markov chain is reversible if the stationary distribution ™ sat-
isfies for all i, j, mP;; = w;iPj;.

Uses of Markov Chains. A Markov Chain is a very convenient way to model many sit-
uations where the “memoryless” property makes sense. Examples including communication
theory (Markovian sources), linguistics (Markovian models of language production), speech
recognition, internet search (Google’s Pagerank algorithm is based upon a Markovian model
of a random surfer).

6.2 Mixing Times
Informally, the mizing time of a Markov chain is the time it takes to reach “nearly uniform”

distribution from any arbitrary starting distribution.

DEFINITION 13 The mizing time of an ergodic Markov chain M is t if for every starting
distribution x, the distribution xM" satisfies |xM" — 7T|1 < 1/4. (Here |-|; denotes the {;
norm and the constant “1/4” is arbitrary.)

The next exercise clarifies why we are interested in ¢; norm.

EXERCISE 2 For any distribution 7 on {1,2,...,N}, and S C {1,2,...,N} let n(S) =
> icg M- Show that for any two distributions 7, 7,

|r — 7'('/‘1 = QSgI{rll?.}.(,N} |m(S) —7'(9)]. (6.2.1)



Here is another way to restate the property in (6.2.1). Suppose A is some deterministic
algorithm (we place no bounds on its complexity) that, given any number i € {1,2,..., N},
outputs Yes or No. If |1 — 7|; < e then the probability that A outputs Yes on a random
input drawn according to 7 cannot be too different from the probability it outputs Yes on an
input drawn according to 7’. For this reason, ¢; distance is also called statistical difference.

We are interested in analysing the mixing time so that we can draw a sample from the
stationary distribution.

EXAMPLE 7 (Mixing time of a cycle) Consider an n-cycle, i.e., a Markov chain with n states
where, at each state, Pr(left) = Pr(right) = Pr(stay) = 1/3.

Suppose the initial distribution concentrates all probability at state 0. Then ¢ steps
correspond to about 2¢/3 random coin tosses and the index of the final state is

(#(Heads) — #(Tails)) (mod n).

Clearly, it takes Q(n?) steps for the walk to reach the other half of the circle with any
reasonable probability, and the mixing time is 2(n?). We will later see that this lowerbound
is fairly tight.

6.2.1 Approximate Counting and Sampling

Markov chains allow one to sample from very nontrivial sets, provided we know how to find
at least one element of this set. The idea is to define a Markov chain whose state space is
the same as this set. The Markov chain is such that it has a unique stationary distribution,
which is uniform. We know how to find one element of the set. We do a walk according
to the Markov chain with this as the starting point, and after 7' = O(mixing time) steps,
output the node we are at. This is approximately a random sample from the set. We
illustrate this idea later. First we discuss why sampling from large sets is important.

Usually this set has exponential size set and it is only given implicitly. We give a few
examples of some interesting sets.

ExXAMPLE 8 (Perfect matchings) For some given graph G = (V| E) the set of all perfect
matchings in G could be exponentially large compared to the size of the graph, and is only
know implicitly. We know how to generate some element of this set, since we can find a
perfect matching (if one exists) in polynomial time. But how do we generate a random
element?

EXAMPLE 9 (0 — 1 knapsack) Given aj...a,,b € Z™T, the set of vectors (z;,...,2,) s.t.

In both cases, determining the exact size of the set is in #P (the complexity class corre-
sponding to counting the number of solutions to an NP problem). In fact, we have the
following.

THEOREM 25 (VALIANT, LATE 1970s)
If there exist a polynomial-time algorithm for counting the number of perfect matchings or
the number of solutions to the 0 — 1 knapsack counting problem, then P = NP (in fact,

p = p#P),
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Valiant’s Theorem does not rule out finding good approximations to this problem.

DEFINITION 14 A Fully Polynomial Randomized Approximation Scheme (FPRAS) is a
randomized algorithm, which for any € finds an answer in time polynomial in (% log %) that
is correct within a multiplicative factor (1+€) with probability (1-0).

It turns out that approximate counting is equivalent to approximate sampling.

THEOREM 26 (JERRUM, VALIANT, VAZIRANI, 1984)
If we can sample almost uniformly, in polynomial time, from A = {(z1,...,zn): Y. a;x; <
b}, then we can design an FPRAS for the knapsack counting problem.

Conversely, given an FPRAS for knapsack counting, we can draw an almost uniform
sample from A.

REMARK 8 By “sampling almost uniformly” we mean having a sampling algorithm whose
output distribution has ¢; distance exp(—n?) (say) from the uniform distribution. For ease
of exposition, we think of this as a uniform sample.

PrOOF: We first show how to count approximately assuming there is a polynomial time
sampling algorithm. The idea is simple though the details require some care (which we
suppress here). Suppose we have a sampling algorithm for knapsack. Draw a few samples
from A, and observe what fraction feature xy = 0. Say it is p. Let Ay be the set of
solutions with ;1 = 0. Then p = |Ao|/|A|. Now since Ay is the set of (xa,...,z,) such
that Y .o, a;x; < b— ajxy, it is also the set of solutions of a knapsack problem, but with
one fewer variable. Using the algorithm recursively, assume we can calculate |Ag|. Then we

can calculate
|A| = Aol /p.

Now if we do not know |Ay|, p accurately but up to some accuracy, say (1 + €). So we
will only know |A| up to accuracy (1 + €)% ~ 1 + 2e.

Actually the above is not accurate, since it ignores the possibility that p is so small that
we never see an element of Ay when we draw poly(n) samples from A. However, in that
case, the set A; = A\ Ay must be at least 1/2 of A and we can estimate its size. Then we
proceed in the rest of the algorithm using A;.

Therefore, by choosing € appropriately so that (1 + €)™ is small, and using the Chernoff
bound, we can achieve the desired bound on the error in polynomial time.

The converse is similar. To turn a counting algorithm into a sampling algorithm, we need
to show how to output a random member of A. We do this bit by bit, first outputting x,
then x4, and so on. To output z;, output 0 with probability p and 1 with probablity 1 — p,
where p = |Ag| /| 4| is calculated by calling the counting algorithm twice. Having output
x1 with the correct probability, we are left with a sampling problem on n — 1 variables,
which we solve recursively. Again, we need some care because we only have an approximate
counting algorithm instead of an exact algorithm. Since we need to count the approximate
counting algorithm only 2n times, an error of (1 + €) each time could turn into an error of
(1 + €)?*, which is about 1+ 2¢. O

Thus to count approximately, it suffices to sample from the uniform distribution. We
define a Markov chain M on A whose stationary distribution is uniform. Then we show
that its mixing time is poly(n).
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The Markov chain is as follows. If the current node is (z1,...,z,) (note ajx1 + agxs +
..+ apzy, < b) then

1. with probability 1/2 remain at the same node

2. else pick i € {1,...,n}.
Let y = (z1,...,%i—1,1 — T4, Tiy1,...,2,). If y € A, go there. Else stay put.

Note that M is
1. aperiodic because of self-loops

2. connected because every sequence can be turned into the zero vector in a finite number
of transformations, i.e., every node is connected to 0.

Therefore, M is ergodic, i.e., has a unique stationary distribution. Since the uniform dis-
tribution is stationary, it follows that the stationary distribution of M is uniform.

Now the question is: how fast does M converge to the uniform distribution? If M mixes
fast, we can get an efficient approximation algorithm for the knapsack counting: we get the
solution by running M for the mixing time and sampling from the resulting distribution
after the mixing time has elapsed.

THEOREM 27
(Morris-Sinclair, 1999): The mixing time for M is O(n®).

Fact (see our remark later in our analysis of mixing time): running the M for a bit
longer than the mixing time results in a distribution that is extremely close to uniform.
Thus, we get the following sampling algorithm:

1. Start with the zero vector as the initial distribution of M.
2. Run M for O(n?) time.
3. output the node at which the algorithm stops.

This results in a uniform sampling from A.

Thus Markov chains are useful for sampling from a distribution. Often, we are unable to
prove any useful bounds on the mixing time (this is the case for many Markov chains used
in simulated annealing and the Metropolis algorithm of statistical physics) but nevertheless
in practice the chains are found to mix rapidly. Thus they are useful even though we do
not have a proof that they work.

6.3 Bounding the mixing time

For simplicity we restrict attention to regular graphs.

Let M be a Markov chain on a d-regular undirected graph with an adjacency matrix A.
Assume that M is ergodic and that d includes any self-loops.

Then, clearly M = %A.



Since M is ergodic, and since %f is a stationary distribution, then %f is the unique
stationary distribution for M.

The question is how fast does M convege to %fr? Note that if x is a distribution, x can
be written as

1 n
x=1—+ E ;€4
n
=2

where e; are the eigenvectors of M which form an orthogonal basis and 1 is the first eigen-
vector with eigenvalue 1. (Clearly, x can be written as a combination of the eigenvectors;

oL L2
the observation here is that the coefficient in front of the first eigenvector 1 is 1-z/ |1 )

which is 1 3, 2, = 1)

M'x = M1 (Mx)

L ls
=2
1 n
= M7T(M(=T+ ) aikes))
n =2
— E —|— (671 ’iel
=2
Also

n
H Zai)‘geiHQ < )‘inax
=2
where A4, 18 the second largest eigenvalue of M. (Note that we are using the fact that
the total ¢2 norm of any distribution is >, z? < > x; = 1.)
Thus we have proved |Mx — £1|, < A, .. Mixing times were defined using /; distance,

but Cauchy Schwartz inequality relates the fo and ¢; distances: |p|; < /n|p|,. So we have
proved:

THEOREM 28
The mixing time is at most O(2&%),

)\max

Note also that if we let the Markov chain run for O(klogn/Amax) steps then the distance
to uniform distribution drops to exp(—k). This is why we were not very fussy about the
constant 1/4 in the definition of the mixing time earlier.

Finally, we recall from the last lecture: for S C V, Vol(S) = > .. g d;, where d; is the
degree of node i, the Cheeger Constant is

|E(S, S|

hag = in
SCVwol(5)< Yol Vol(S)

If 14 is the smallest nonzero eigenvalue of the Laplacian L of M, then
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The Laplacian for our graph is

Therefore,
and

Note that A\paz = (1 — u2)t.
Therefore,

| Z;Oéixﬁei\h <(1- jG)t\/ﬁ

and we obtain the Jerrum-Sinclair inequality:
R 2

|Mtx — AT < (1= %) /m.

Examples:

L. For n-cycle: Apaz = (1 — -%)', mixing time ~ O(n?logn) (c is some constant).

2. For a hypercube on 2" nodes (with self-loops added), A\jee = (1 — ) (this was a
homework problem), so mixing time ~ O(nlogn) (c is some constant).

Observe that the mixing time is much smaller than the number of nodes, i.e., the random
walk does not visit all nodes.

Finally, we note that random walks also give a randomized way to check s—¢ connectivity
(for undirected graphs) in logarithmic space, a surprising result since the usual method of
checking s — ¢ connectivity, namely, breadth-first-search, seems to inherently require linear
space.

The main idea is that a random walk on a connected graph on n nodes mixes in O(n*)
time (the Cheeger constant must be at least 1/n?) and so a logarithmic space algorithm
can just do a random walk for O(n?logn) steps (note that space O(logn) is required is
just to store the current node and a counter for the number of steps) starting from s, and
if it never sees t, it can output reject. This answer will be correct with high probability.
This application of random walks by Alleliunas, Karp, Karmarkar, Lipton and Lovasz 1979
was probably one of the first in theoretical computer science and it has been the subject of
much further work recently.
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6.4 Analysis of Mixing Time for General Markov Chains

Thanks to Satyen Kale for providing this additional note

In the class we only analysed random walks on d-regular graphs and showed that they
converge exponentially fast with rate given by the second largest eigenvalue of the transition
matrix. Here, we prove the same fact for general ergodic Markov chains. We need a lemma
first.

LEMMA 29
Let M be the transition matrix of an ergodic Markov chain with stationary distribution ©
and eigenvalues A\1(= 1) > X\a > ... > \,, corresponding to eigenvectors vi(= m),va,. .. Up.
Then for any k > 2,

’l)kl =0.

PROOF: We have v, M = A\jvz. Mulitplying by 1 and noting that MI =1, we get

Since the Markov chain is ergodic, Ax # 1, so vl = 0 as required. O

We are now ready to prove the main result concerning the exponentially fast convergence
of a general ergodic Markov chain:

THEOREM 30
In the setup of the lemma above, let A = max {|\a|, |\n|}. Then for any initial distribution

x, we have
|z M = 7lls < X'|J]|2.

PROOF: Write x in terms of vy, v, ..., v, as

n
T = QT + E a;U;.
=2

Multiplying the above equation by 1, we get a; = 1 (since z1 = w1 = 1). Therefore
M =7+ 3", a;Mwv;, and hence

lzMt — 7|y < ]\Zai)\ﬁvng (6.4.1)
=2

<ANy/a3+--+a2 (6.4.2)

< M|z, (6.4.3)

as needed. O
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Chapter 7

High Dimensional Geometry

SCRIBE: Nir Ailon, Renato F. Werneck

Now we move on to a study of high-dimensional geometry. By this we mean the study
of algorithms for n points in R¢, where d is large (say logn or even n). This has become
increasingly important recently, both theoretically and practically.

7.1 High Dimensional Geometry: Introduction

Some useful generalizations of geometric objects to higher dimensional geometry:

e The n-cube in R™: {(x1...7,,) : 0 < x; < 1}. To visualize this in ®*, think of yourself
as looking at one of the faces, say 1 = 1. This is a cube in R3 and if you were
able to look in the fourth dimension you would see a parallel cube at 1 = 0. The
visualization in " is similar.

The volume of the n-cube is 1.
e The unit n-ball in R": B,, := {(x1...7,) : > 27 < 1}. Again, to visualize the ball in

R4, imagine you have sliced through it with a hyperplane, say z; = 1/2. This slice is
a ball in R®3 of radius /1 — 1/22 = 1/32. Every parallel slice also gives a ball.

The volume of B, is (%' (assume n even if the previous expression bothers you),

. . 1
which is nem)

7.1.1 An approximate way to think about B,

A good approximation to picking a random point on the surface of B,, is by choosing random
x; € {—1,1} independently for ¢ = 1..n and normalizing to get ﬁ(:cl, ...y Tp). To get a point
inside the ball, it is necessary to pick the distance from 0 randomly. Note that the distance
is not distributed uniformly: the density at radius r is proportional to r™~!.

Remark: An exact way to pick a random point on the surface of B" is to choose x; from

2

the normal distribution for ¢ = 1..n, and to normalize: %(xl, oy p), where I = (3, ; )2,
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7.1.2
1.

Funny facts

Scribe’s contribution: The volume of the unit n-ball tends to 0 as the dimension tends
to o0.

. For any ¢ > 1, a (1 — 1) - fraction of the volume of the n-ball lies in a strip of width

O(4/ Clo%) A strip of width a is B, intersected with {(z1,...,z,)|z1 € [-§, §]}.

. If you pick 2 vectors on the surface of B,, independently, then with probability > 1— %,

Viogn

n

| c0s(Oy)| = O( );

where O, , is the angle between x and y. In other words, the 2 vectors are almost
orthogonal w.h.p. To prove this, we use the following lemma:

LEMMA 31
Suppose a is a unit vector in R". Let x = (x1,...,z,,) € R™ be chosen from the surface
of By, by choosing each coordinate at random from {1, —1} and normalizing by factor

ﬁ. Denote by X the random variable a - x = >, a;x;. Then:

Pr(|X|>t) <e ™

Proor: We have:
p=EX)=E)_ax)=0
2

o* = E[(Y_ai;)’) = E[)_aiajwizj] = ) aia;Elviz] =) % -

Using the Chernoff bound, we see that,

S

Pr(lX|>1t) < e~ (5 = g~nt?
O

COROLLARY 32
If two unit vectors x,y are chosen at random from R, then

—1
Pr <\cos(0x7y)] > oge) <€

n

1
o

Now, to get fact (3), put e =
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7.2 Random Walks in Convex Bodies

We can apply our earlier study of random walks to geometric random walks, and derive
bounds on the mixing time using geometric ideas.
Definition of a convex body: A set K C R" is convex if Vz,y € K, X € [0,1],

A+ (1-MNy e K.

In other words, for any two points in K, the line segment connecting them is in the set.
examples: Balls, cubes, polytopes (=set of feasible solutions to an LP), ellipsoides etc.
Convex bodies are very important in theory of algorithms. Many optimization problems

can be formulated as optimizing convex functions in convex domains. A special case is linear

programming.

Today’s Goal: To generate a random point in a convex body. This can be used to
approximate the volume of the body and to solve convex programs (we saw how to do the
latter in Vempala’s talk at the theory lunch last week). We emphasize that the description
below is missing many details, though they are easy to figure out.

First we need to specify how the convex body is represented:

e e K.
e K is contained in a cube of side R with center at O.

A unit cube is contained in K.

° RSnQ.

there exists a ”separation oracle” that given any point x € R™ returns ”yes” if x € K
and if ¢ K then returns a separating hyperplane {y|a’y = b} s.t. x and K are on
opposite sides (i.e. a’z < b,a’z > b Vz € K). Note 1: a (closed) convex body can
actually be characterized by the property that it can be separated from any external
point with a separating hyperplane. Note 2: In the linear program case, giving a
separating hyperplane is equivalent to specifying a violated inequality.

The idea is to approximate the convex body K with a fine grid of scale § < n—12 The
volume of K is approximately proportional to the number of grid points. There is some
error because we are approximating the convex body using a union of small cubes, and the
error term is like

(number of grid cubes that touch the surface of K) x (volume of small cube),

which is < volume of K since the minimum crosssection of K (at least 1) is much larger
than the dimensions of the grid cube.

Consider the graph G whose vertices are grid notes contained in K, and there is an
edge between every pair of grid neighbors. To a first approximation, the graph is regular:
almost every node has degree 2n. The exceptions are grid points that lie close to the surface
of K, since not their 2n neighbors may lie inside K. But as noted, such grid points form
a negligible fraction. Thus generating a random point of Gk is a close approximation to
generating a random point of K.
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Figure 7.2: The dashed convex body is obtained by smoothening the solid triangle.

However, we only know one node in Gk, namely, the origin 0. Thus one could try the
following idea. Start a random walk from 0. At any step, if you're on a grid point x, stay
at x with probability 1/2, else randomly pick a neighbor y of z. If y € K, move to y, else
stay at x. If this walk is ergodic, then the stationary distribution will be close to uniform
on G, as noted. The hope is that this random walk is rapidly mixing, so running it for
poly(n) time does yield a fairly unbiased sample from the stationary distribution.

Unfortunately, the walk may not be ergodic since Gk may not be connected (see fig-
ure 7.1).

To solve this problem, we smoothen K, namely, we replace K with a p-neighborhood of
K defined as

K = U By (z,p),
zek

where By, (z, p) is a closed ball centered at x with radius p, and p ~ % (see figure 7.2). It
can be checked that this negligibly increases the volume while ensuring the following two
facts:

e K’ is convex, and a separation oracle for K’ can be easily built from the separation
oracle for K, and,

e Any 2 grid points in K are connected via a path of grid points in K.

Now let Gk be the graph on grid nodes contained in K’. It is connected, and almost
all its nodes are in K (since the volume increase in going from K to K’ was minimal).
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We go back to estimating the mixing time. Recall that the "mixing time” is the time ¢
s.t. starting from any distribution xg, after ¢ steps the distribution x; satisfies

1
=7l < 7.

Using the Jerrum-Sinclair inequality from the previous lecture, we have

2
oo — 7l < (1~ SYVA,

where ¢ is the Cheeger number attached to the graph and N is the size of the graph (number
of grid points in K’). So we reduce to the problem of estimating the Cheeger constant.
[Aside: In case you ever go through the literature, you will see that many papers use
the “conductance” of the graph instead of the “Cheeger” number. The conductance of a
graph G is
. |E(S,9)|Vol(V)
min =
scv Vol (S)Vol(S)
Easy exercise: the conductance is within factor 2 of the Cheeger number.|
To estimate the Cheeger number of the grid graph, we use a result by Lovasz and
Simonovits. Let U be a subset of nodes of Gg+. Consider the union of the corresponding
set of grid cubes; this is a measurable subset (actually it is even better behaved; it is a finite
union of convex subsets) of K. Call this set S. Let S be the boundary of S. Then it is
not hard to see that:

Vol,,_1(0S) < E(S,S) < 2nVol,,_1(89),
where E(S, S) is the number of grid edges crossing between S and S. The [LS] result is:

THEOREM 33
If K is a convex body containing a unit cube, then for any measurable S C K,

Vol,_1(S) > %min{Vo]n(S), Vol (3)},

where D is the diameter of K.

Recall that the diameter of our body is poly(n) since we started with a body whose
diameter was n? and then we placed a grid of size 1/n? or so. Combining all the above
information, we get that

1
6> .
poly(n)
Therefore, the mixing time is (’)(# log N) = O(poly(n)).

7.3 Dimension Reduction

Now we describe a central result of high-dimensional geometry (at least when distances are
measured in the /5 norm). Problem: Given n points 2!, 22, ..., 2" in R", we would like to
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find n points u',u?,...,u" in R™ where m is of low dimension (compared to n) and the

metric restricted to the points is almost preserved, namely:
28— 2|2 < ||lu’ — |2 < (1 +€)||27 — 272 Vi, j. (7.3.1)

The following main result is by Johnson & Lindenstrauss :

THEOREM 34

In order to ensure (7.3.1), m = 0(1052") suffices.

Note: In class, we used the notation of k vectors z'...z* in %", but we can always embed

the k vectors in a k-dimensional space, so here I assume that n = k and use only n.
PROOF:
1 m

Choose m vectors x*,...,x™ € R"™ at random by choosing each coordinate randomly

from {4/ %, — %} Then consider the mapping from R™ to R™ given by

z— (z-at 2z 2?2 a™).

In other words u’ = (2°- a2t - 2%, ... 2" . 2™) for i = 1,..., k. We want to show that with
positive probability, u', ..., u* has the desired properties. This would mean that there exists
at least one choice of u!,...,u” satisfying inequality 7.3.1. To show this, first we write the
expression |[u’ — u7|| explicitly:

b= 3 (30 et )
k=1 \i=1
Denote by z the vector z° — 27, and by u the vector u* — u/. So we get:
m n 2
=1 = =3 (S )
k=1 \i=1

Let X}, be the random variable (3" ; zizf)%. Its expectation is p = 2E¢||2[| (can be seen
similarly to the proof of lemma 31). Therefore, the expectation of ||u|? is (1+¢)| z|?. If we
show that ||u]|? is concentrated enough around its mean, then it would prove the theorem.
More formally, we state the following Chernoff bound lemma:

LEMMA 35
There exist constants ¢; > 0 and co > 0 such that:

L Pr{|ul? > (1+ B)p] < e=#m
2. Prlfull® < (1— B)p] < e=e2*m
Therefore there is a constant ¢ such that the probability of a "bad” case is bounded by:

Pr([ul® > (14 B)p) v (Jull® < (1= B)p)] < e~
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Now, we have (%) random variables of the type ||u; — u;||>. Choose 8 = §. Using the
union bound, we get that the probability that any of these random variables is not within
(1 £ §) of their expected value is bounded by

So if we choose m > w, we get that with positive probability, all the variables

are close to their expectation within factor (14 §). This means that for all 4,j:

1=+l =P < ' =2 < 1+ 5) A+ 12" = |

Therefore, ‘
Iz = 2]* < llu’ = [ < (14 €)?[|2° = 27)1%,

and taking square root:
28 = 2| < flu’ = || < (L +€)]l2" = 2,

as required.
It remains to prove lemma 7.3. We prove the first part. Let o? =
and we get the following equation:

L€ 5o 41 = a?m|lz|?

P = Prlul> > (1 + B)u] = Pr{llul* > (1 + B)am]|z||?)

[

rlllull® = (1 + B)a*m|z|* > 0]
[
[ex

rlt(||lul|® — (1 + B)a®m]|z||*) > 0] Vt >0 (7.3.2)
rlexp (¢([[ul® — (1 + B)a’m|2[*)) > 1]
< Blexp (t(||ul]* — (1 + B)a’ml|z]*))]  (Markov)

P
P
P

We calculate the last expectation:

P < Elexp(t(||ul|*))] exp(—t(1 + B)a’m]z||*) (constant goes out)

m n

= Elexp(t(Y_(Q_ zf)?))] exp(—t(1+ B)a’ml|=|?)

k=1 =1

= Elexp(t(}_(Y_ 2 (2])%) +t(Q_ (Y mznaiay))] exp(—t(L + B)a’m|z|?)

ko1 k  I£h

= Elexp(ta’m||z|* + (> (O ziznayay)))] exp(—t(1 + B)a’m)z[|*)
k  I£h

(7.3.3)

The last step used the fact that (z)? = a2 and ) 22 = ||z||?>. So continuing, we get:

P < Elexp (t Z Zzlzhxl xi)))] exp (—tBa’m||z||?) (7.3.4)
& I%h
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The set of variables {xf:cﬁ}#h are pairwise independent. Therefore the above expectation
can be rewritten as a product of expectations:

P < [ T]]] Elexp(tziznatat)] | exp(—tBa’m|z|?) (7.3.5)
k 1#£h

we notice that

1 1
Elexp(tzzpzial)] = 3 exp(tzizpa?) + 3 exp(—tzzpa?) < exp(t?zizia?)

(the last inequality is easily obtained by Taylor expanding the exponent function). Plugging
that in (7.3.5), we get:

P < HHeXp(tQZlQZ}QLCK4) exp (—tfa’m]|z||?)

k 1£h
m
7.3.6
= Hexp (t*2fzpat) | exp (—tBa’m]z|?) ( )
I#h
= exp (mt? Z aat —tBa’ml|z]?)

I#h

Using simple analysis of quadratic function we see that the last expression obtains its

2
__ Al

~ 5.2 2.2°
20 Zl;éhzlzh

minimum when

Substituting for ¢, we get:

&l

P < exp (—f*m-——="——
A3 5 %

(7.3.7)

Finally, the expression

5(z) = [El
A3 25

is bounded below by a constant ¢;. To prove this, first note that d(z) = d(yz) for any v # 0.
So it is enough to consider the case ||z|| = 1. Then, using Lagrange multipliers technique,
for example, we get that d(z) obtains its minimum when z; = ﬁ for each [ = 1..n. Plugging

this in the expression for §(z) we see that it is bounded above by a constant ¢; that does
not depend on n. This completes the proof. O

7.4 VC Dimension

scribe: Renato F. Werneck
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We continue our study of high dimensional geometry with the concept of VC-dimension,
named after its inventors Vapnik and Chervonenkis. This useful tool allows us to reason
about situations in which the trivial probabilistic method (i.e., the union bound) cannot
be applied. Typical situations are those in which we have to deal with uncountably many
objects, as in the following example.

EXAMPLE 10 Suppose we pick set of m points randomly from the unit square in R?. Let
C be any triangle inside the unit square of area 1/4. The expected number of samplepoints
that lie inside it is m /4, and Chernoff bounds show that the probability that the this number
is not in m/4[1 £ €] is exp(—e2m).

Now suppose we have a collection of 2V™ triangles of area 1/4. The union bound shows
that whp the sample is such that all triangles in our collection have m /4[1+ €] samplepoints.

But what if we want the preceding statement to hold for all (uncountably many!) trian-
gles of area 1/4 in the unit square? The union bound fails badly! Nevertheless the following
statement is true.

THEOREM 36

Let € > 0 and m be sufficiently large. Let S be a random sample of m points in the unit
sphere. Then the probability is at least 1 — o(1) that every triangle of area 1/4 has between
m/4[1 £ €] samplepoints.

How can we prove such a result? The intuition is that even though the set of such
triangles is uncountable, the number of “vastly different” triangles is not too large. Thus
there is a small set of typical representatives, and we only need to argue about those.

7.4.1 Definition

VC-dimension is used to formalize the above intuition. First, some preliminary definitions:

DEFINITION 15 A Range Space is a pair (X, R), where X is a set and R is a family of
subsets of X (R C 2%).1

DEFINITION 16 For any A C X, we define the Pr(A), the projection of R on A, to be
{rnA:reR}.

DEFINITION 17 We say that A is shattered if Pr(A) = 24, i.e., if the projection of R on
A includes all possible subsets of A.

With these definitions, we can finally define the VC-dimension of a range space:

DEFINITION 18 The VC-dimension of a range space (X, R) is the cardinality of the largest
set A that it shatters: VC-dim = sup{|A| : A is shattered}. It may be infinite.

19X denotes the power set of X
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Example 1. Consider the case where X = R? (the plane) and R is the set of all axis-
aligned squares. The sets A we consider in this case are points on the plane. Let’s consider
different values of | Al:

e |A| = 1: With a single point on the plane, there are only two subsets A, the empty set
and A itself. Since there for every point there are axis-aligned squares that contain it
and others that don’t, A is shattered.

e |A| = 2: If we have two points, it is easy to find axis-aligned squares that cover both
of them, none of them, and each of them separately.

e |A| = 3: It is possible to come up with a set of three points such that are shattered;
the vertices of an equilateral triangle, for example: there are axis-aligned squares that
contain none of the points, each point individually, each possible pair of points, and
all 3 points.

e |A| = 4: In that case, it is impossible to come up with four points on the plane that
are shattered by the set of axis-parallel squares. There will always be some pair of
points that cannot be covered by a square.

Therefore, the VC-dimension of this range space if 3.

Example 2. Let X = F™ (where F is a finite field) and R be the set of all linear subspaces
of dimension d. (Note that these cannot possibly shatter a set of d+ 1 linearly independent
vectors.)

First assume d < n/2. We claim that any set A = {v1,v9,...,v4} of d linearly indepen-
dent vectors is shattered by X. Take any subset I of the vectors. We can build a basis of a
d-dimension subspace as follows: first, take the || vectors of this set (which are all linearly
independent); then, complete the basis with d — |I| linearly independent vectors z; in F"
that do not belong to the (d-dimensional) subspace determined by v1, v, ..., vq. This basis
determines the subspace

Spaﬂ{{vz‘}z‘eb RBd4+1y 2d+2y - - + zd+d—|[|}a

which is d-dimensional, as desired.

But note that this construction works as long as there are d — |I| linearly independent
vectors “available” to complete the basis. This happens when d < n/2. If d > n/2, we can
pick at most n — d vectors outside the set. Therefore, the VC-dimension of the range space
analized is min{d,n — d}.

We now study some properties of range spaces related to VC-dimension. The next
theorem gives a bound; it is tight (exercise: prove this using the ideas in the previous
example).

THEOREM 37
If (X, R) has VC-dimension d and A C z has n elements then |Pr(A)| < g(d,n) where

g(d,n) = Zz‘gd (?)
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To prove this theorem, all we need is the following result:
LEMMA 38
If (X, R) has VC-dimension d and |X| = n then |R| < g(d,n).

This lemma clearly implies the theorem above: just apply the lemma with A instead of
X, and look at the range space (A, Pr(A)). We now proceed to the proof of the lemma.

PRrOOF: We prove Lemma 38 by induction on d + n. Let S = (X, R), and consider some
element z € X. By definition, we have that

R1
S—z=(X—{z},{r—{x}:r € R}

and
Ro

S\z=(X—-{z},{reR:x¢&rbutrU{z} € R})

Note that every element of R that does not contain x is contained in R;; and every element
of R that does contain x is in Ry (with  removed). Therefore,

|R| = |R1| + |Ra|.

A well-known property of binomial coefficients states that
n n—1i n—1i
()= (7))
) 1 1—1

according to our definition of g(d,n).
In the subproblems defined above, | X — {z}| = n — 1. We claim that there exists an

x such that S\ x has VC-dimension at most d — 1. That being the case, the inductive
hypothesis immediately applies:

[R| = |Ra| + |Ro| < g(d,n—1) +g(d = 1,n = 1) = g(d,n).

which implies that

So once we prove the claim, we will be done. Let A C S be shattered in S with |A| = d.
We want to prove that in S\ z no set B C X — {x} can be shattered if |B| = d. But this is
straighforward: if B is shattered in S\ z, then B U {x} is shattered in S. This completes
the proof of Lemma 38. (Incidentally, the bound given by the lemma is tight.) O

The following result is due to Haussler and Welzl (1987), and also appears in Vapnik
and Chervonenkis’s paper.
THEOREM 39
Let (X, R) be a range space with VC-dimension d, and let A C X have size n. Suppose S
is a random sample of size m drawn (with replacement) from A, and let m be such that

4 2 8d 8d
m > max 4 —log —, —log — ;.
€ 6 € €
Then, with probability at least 1 — 0, S is such that for all r € R such that |[r N A| > en, we
have [r N S| # 0.



PROOF: Define r to be “heavy” if |r N A| > en. We will now analyze a single experiment
from two different points of view.

1. From the first point of view, we pick two random samples N and T, each of size
exactly m (note that they both have the same characteristics as the set S mentioned
in the statement of the theorem).

Consider the following events:

e Fj: there exists a heavy r such that r N N = () (this is a “bad event”; we must
prove that it happens with probability at most §);

e Fj5: there exists a heavy r such that r NN =0, but |r NT| > em/2.

We claim that, if £; happens with high probability, then so does Es5. Specifically, we
prove that Pr(FEs|E;) > 1/2. Suppose E; has happened and that some specific r is
the culprit. Now, pick T'. Consider the probability that this r satisfies [r NT| > <
(this is a lower bound for Pr(F3|E;)). We know that |r NT| is a binomial random
variable; its expectation is em and its variance is €(1 — €)m (and therefore strictly
smaller than em. Using Chebyschev’s inequality, we get:

) em 4

< em/2)? = (7.4.1)

Pr<|rﬂT| < %

Because the statement of the theorem assumes that m > 8/¢, we conclude that indeed
PT(EQ‘El) Z 1/2

2. Now consider the same experiment from a different point of view: we pick a single
sample of size 2m, which is then partitioned randomly between N and T. Consider
the following event:

E.:rnN=0,but |[rNT|>em/2.

Ey = LJ E,.

r:heavy

It is clear that

Given N U T, the number of distinct events FE, is no greater than the number of
different sets in the projection Pyyur(R). From Lemma 38, the fact that the VC-
dimension of X is d implies that Pyur < g(d,2m). (Note: This is the crucial step
that uses the VC dimension.)

Given a choice of N UT, we now estimate the probability of E, happening when we
select N and T em
P’:Pr(rmN:m rN(NUT)| > 7)

Let p=|rN (N UT)|. Then, the conditional probability above is

2m —p)2m—p—1)---(m—p+1)
2m(2m —1)---(m+1)

- m(m-—1)---(m—p+1)

C2m(2m—1)...(2m —p+1)

o

<2P<2¥



There are no more than g(d,2m) distinct events E,.. Applying the union bound, we
see that the probability that at least one of the occurs for a fixed N U T is at most
g(d,2m) - 27™/2_ But this holds for any choice of N UT, so

Pr(Es) > g(d,2m) - 272, (7.4.2)

Together, Facts 7.4.1 and 7.4.2 imply that
Pr(E,) < 2g(d,2m) - 27m/2.

It remains to be proven that the RHS of the above expression is a lower bound on 4. The
hard case is d > 2. The definition of g(d,2m) ensures that g(d,2m) < (2m)?, so it’s enough
to prove that

2. (2m)t2™m/? < 5. (7.4.3)

Rearranging this expression and taking the (base-two) logarithm of both sides,

2 2
% > dlog(2m) + log 5= % + % > dlog(2m) + log 5

The constraints on m defined in the statement of the theorem take care of the second “half”
of this inequality:
—

(LTSN

em
- 2
4

SR )
SR )

m > —log

It remains to be proven that
% > dlog(2m).

This follows from a simple calculation (omitted).
O

7.4.2 VC dimension of intersections of range spaces

Let (X, R) be a range space of VC dimension d. Consider the range space (X, Rnp) where
RAp consists of h-wise intersections of sets in B. We claim that the VC-dimension is at
most 2dh log(dh).

For, suppose A is some subset of R that is shattered in (X, Rnp), and let k = |A|. Then
| P, (A)| = 2%, but we know that it is at most (') where m = |Pr(A)| < g(k,d). Hence

2k‘ < <g(k7d)> < k(d—i—l)h
> h _ )

whence it follows that k& < 2dhlog(dh).
Exercise: Generalize to range spaces in which the subsets are boolean combinations of
the sets of R.
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7.4.3 Applications to Learning Theory

VC-dimension has a close connection to Valiant’s PAC (Probably Approximately Correct)
model, introduced in 1984. Specifically, VC-dimension gives conditions under which one can
learn a concept in principle (using possibly a very tedious nonpolynomial time computation).
Valiant’s notion requires learning algorithms be polynomial. Nevertheless, in many cases one
can obtain a polynomial-time algorithm using VC-dimension arguments, as in the following
simple example.

Suppose we are trying to learn an unknown rectangle C' contained in [0; 1] x [0;1]. Let
i be an unknown measure on [0;1] x [0;1] — one can think of if as concetrated on grid
points of a fine grid. Somebody picks in samples according to g and labels them + or —
depending on whether C' contains them or not. Our task is to guess what C' is.

Our algorithm is the obvious one: find some rectangle C’ that separates 4+ from — (note:
one exists, namely, C') and output that as your guess. Intuitively this makes sense, but how
well does it approximate the actual rectangle C' we are looking for?

Let’s look at the symmetric difference between C' and C’, defined as follows.

CAC' = (C\C)U(C'\ O).

(Observation: the range space defined by the difference of rectangles has constant VC-
dimension, as shown by Section 7.4.2.) This is the set of all points that are wrongly classified
(points that belong to C' and not to C’ or vice-versa). Suppose that the probability of error
is high, i.e., that Pr,[CAC’] is large. With high probability the sample is such that for
every (4, Cy such that u(C1ACy) is large, C1 ACy contains a sample point. Therefore, with
high probability (over the choice of the sample), C” is such that u(C’AC) is small.

7.4.4 Geometric Algorithms

VC dimension arguments are invaluable for designing (randomized) geometric algorithms.
We now consider a problem that has attracted great interest recently: nearest neighbor
searching in R?, where d is large. Given n points in R?, our goal is to build a data
structure using which one can, given any y € R?, return the closest neighbor in the set.
(A number of norms can be used to define “closeness”: {1, {3, and ¢, are among those
commonly used.)

A typical application is as follows. Assume you have a class of objects (images, for
example, each of which is a vector of pixel values). Each object can be modeled as a point
in R%. This would allow you to make similarity queries: given a new point (image), find
the existing point that is closest (the image in the database that is similar to the new one,
for example).Of course, this assumes that the modeling of objects as vectors is such that
similar objects map to nearby points, which happens to be true in many applications.

As a warmup, let’s consider the 2-dimensional case. This is a well-solved problem. First,
we build the Voronoi diagram of the original points: this diagram partitions the space into
separate regions, one for each point in the original set. The region associated with point p
represents the set of points that are closer to ¢ than to any other point in the space (the
way ties are handled depends on the application). This diagram can be built in O(nlogn)
time.
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The original nearest neighbor searching problem then reduces to point-location in the
Voronoi diagram. One way to do that is to divide the space into wvertical slabs separated
by vertical lines — one passing through each vertex of the Voronoi diagram. There are at
most O(n) slabs and each is divided into up to O(n) subregions (from the Voronoi diagram).
These slabs can be maintained in a straightforward way in a structure of size O(n?) (more
sophisticated strucutures can reduce this significantly). Queries can be thought of as two
binary searches (one to find the correct slab and another within the slab), and require
O(logn) time.

Higher dimensions: Meiser’s Algorithm The notion of Voronoi diagrams can be
generalized in a straighforward way to arbitrary dimensions. For every two points p and g,
the points that are equidistant from both define a set H,, given by:

Hpq = {.Cl? : d(xvp) = d(x7Q)}

Considering a d-dimensional space with the £5 norm, we get that

Since p;, ¢;, and d are constants, Hp, must be a hyperplane.

The number of hyperplanes is m = (g), quadratic in the number of points. However, the
number of cells in the Voronoi diagram could be n®@. How can we store this diagram so
as to quickly answer nearest neighbor queries? Here we describe Meiser’s algorithm (1986),
which does so in O(f(d)logn) time, where f(d) is some exponential function of d.

First, take a random sample S cointaining O(d?log? d) points. Then, construct a data
structure for doing point location within S. Triangulate each cell of the arrangement of S.
(In a plane, triangulation means dividing the cell into triangles; in higher dimensions one
gets simplices. Recall that a simplex in R? is an intersection of d + 1 halfspaces.) For each
cell C' in this triangulated arrangement, recursively construct a data structure for point
location with respect to the hyperplanes that intersect C.

cLAIM: With high probability, S is such that for every cell C, the number of hyperplanes
that intersect C' is at most m/2.

Assuming the claim is true, it is easy to see that Q(m), the query time for a structure
of size m, is

Q(m) < f(d*log®d) + Q(m/2) ~ f(d*log® d)logm,

where f is the time required to perform point location within S. Moreover, the total space
P(m) necessary to process instances with m hyperplanes is

P(m) < g(d®log?) - S(m/2) ~ [g(d* log® d)]'*#™,
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where g determines the size of the structure for point location within the sample. We don’t
compute f, g because that is not the point of this simplified description. (Using some care,
the running time is d°@ logn and storage is no(d).) We now proceed to prove the claim:

ProOF: Consider the range space (X, R), where X is the set of all m hyperplanes of
the Voronoi diagram and R contains for each simplex D a subset Rp C X containing all
hyperplanes that intersect the interior of D. From Section 7.4.2 we know that the VC-
dimension of this range space is O(d?logd). Then with high probability the sample must
be such that for every simplex D that is intersected by at least m/2 hyperplanes is inter-
sected by at least one hyperplane in the sample. This means that D cannot be a cell in the
arrangement of the sample. O

Because the RHS grows faster than the LHS, we only have to worry about the smaller
possible value of m, which is mg = (8d/¢)log(8d/e) according to the statement of the
theorem:

T > dlog(2me)

d d d d
¢ (8— log 8—) > dlog (2 . 8—logg—)
€

€

8d 16d 8d
2d log (—> > dlog <— log —>
€ €

8d\ 16d . 8d
log| — | >log| —log—
€ € €

<8d>2 16d . 8d
- Z_log_

€ €

S—d ZQlog%
€ €

4d 8d

> log —.
€ €

The last inequality is obviously true, so we are done.
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Chapter 8

Discrete Fourier Transform and its

Uses

SCRIBE: Loukas Georgiadis

8.1 Introduction

Sanjeev admits that he used to find fourier transforms intimidating as a student. His fear
vanished once he realized that it is a rewording of the following trivial idea.

If uy,us,...,u, is an orthonormal basis of R™ then every vector v can be expressed as
>, apu; where a; =< v,u; > and Y, af = |v]3.

Whenever the word “fourier transform” is used one is usually thinking about vectors
as functions. In the above example, one can think of a vector in R as a function from
{0,1,...,n — 1} to R. Furthermore, the basis {u;} is defined in some nice way. Then the
«;’s are called fourier coefficients and the simple fact mentioned about their ¢ norm is
called Parseval’s Identity.

The classic fourier transform, using the basis functions cos(27rnz) and sin(27nx), is
analogous except we are talking about differentiable (or at least continuous) functions from
[—1,1] to R, and the definition of “inner product” uses integrals instead of sums (the vectors
are in an infinite dimensional space).

ExAMPLE 11 (Fast fourier transform) The FFT studied in undergrad algorithms uses the
, \T
following orthonormal set u; = (1 WL w(Nfl)]> for j = 0,1,...,N — 1. Here

N
WN = e~ 2m/N is the N root of 1.
Consider a function f : [1, N] — R, i.e. a vector in R”. The Discrete Fourier Transform
(DFT) of f, denoted by f, is defined as

N
fio=Y"f@) oy Y ke [1,N] (8.1.1)

r=1

The inverse transform reconstructs the initial vector f by
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1 & (k-
2 : 1)(z— 1

In other words f is written as a linear combination of the basis vectors u; = (1 W

N
for j in [1, N]. Another way to express this is by the matrix-vector product f = MFf, where
1 1 1 .. 1
1 it w12 L V=D)
Wy Wy e Wy
M=|[1 w3 W2 Wyt (8.1.3)
1 WEVN—I)J wEVN—l)Q o UJEVN—1).(N—1)

is the DFT matrix.

Fast Fourier Transform (FFT): We can exploit the special structure of M and divide
the problem of computing the matrix-vector product M f into two subproblems of size N/2.
This gives an O(N log N) algorithm for computing the Fourier Transform. Using a simple
property of the Discrete Fourier Transform and by applying the FFT algorithm to compute
the DFT we can multiply n-bit numbers in O(nlogn) operations.

8.2 Discrete Fourier Transform

In general we can use any orthonormal basis ui, uo,...,uny. Then we can write
N
i=1

and the coefficients fz are due to orthonormality equal to the inner product of f and of the
corresponding basis vector, that is f; =< f,u; >

DEFINITION 19 The length of f is the La-norm

I£]l2 = /Z F2(i). (8.2.2)

Parseval’s Identity: The transform preserves the length of f, i.e.

I1£115 = fo. (8.2.3)
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8.2.1 Functions on the boolean hypercube

Now we consider real-valued functions whose domain is the boolean hypercube, i.e., f :
{=1,1}" — R. The inner product of two functions f and g is defined to be

1
<fgs=gn Y fe). (8.2.4)
xe{-1,1}n
Now we describe a particular orthonormal basis. For all the subsets S of {1,...,n} we

define the functions

xs(x) =[] . (8.2.5)

€S
T . . .
where x = (xl :cn) is a vector in {—1,1}". The xg’s form an orthonormal basis.

Moreover, they are the eigenvectors of the adjacency matrix of the hypercube.

EXAMPLE 12 Note that

and

X{iy (%) = ;.

Therefore,

1
<X >=5p ), #i=0.
xe{-1,1}"

REMARK 9 Let #; =1 for all i in I C {1,...,n}. Then xgs(x) = 1iff [T N S| is even.

REMARK 10 Now we show our basis is an orthonormal basis. Consider two subsets S and
S’ of {1,...,n}. Then,

1 1
< XS, X8 > = o > xs®)xe(x) = on N IER IR
xe{-1,1} xe{-1,1}nieS jes’

= — Z H T; =< Xsas, Xg >= 0 unless S =9’

n
xe{—1,1}n ieSAS’

Here S A S = (S = S5")U (S" —S) is the symmetric difference of S and S’
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Since the xg’s form a basis every f can be written as

f= >, fsxs (8.2.6)

SC{1,...,n}

where the coefficients are

. 1

fs=<fxs>=5( > f0- Y fe). (8.2.7)
x:xs(x)=1 xixs(x)=—1

REMARK 11 The basis functions are just the eigenvectors of the adjacency matrix of the

boolean hypercube, which you calculated in an earlier homework. This observation —and

its extension to Cayley graphs of groups— forms the basis of analysis of random walks on

Cayley graphs using fourier transforms.

8.3 Applications of the Fourier Transform

In this section we describe two applications of the version of the Discrete Fourier Trans-
form that we presented in section 8.2.1. The Fourier Transform is useful for understanding
the properties of functions. The applications that we discuss here are: (i) PCP’s and (ii)
constructing small-bias probability spaces with a low number of random bits.

8.3.1 DFT and PCP’s

We consider assignments of a boolean formula. These can be encoded in a way that enables
them to be probabilistically checked by examining only a constant number of bits. If the
encoded assignment satisfies the formula then the verifier accepts with probability 1. If no
satisfying assignment exists then the verifier rejects with high probability.

DEFINITION 20 The function f : GF(2)" — GF(2) is linear if there exist ai,...,a, such
that f(x) =Y i, a;z; for all x € GF(2)".

DEFINITION 21 The function g : GF(2)" — GF(2) is d-close if there exists a linear func-
tion f such that Prycqrppn[f(x) = g(x)] > 1—4.

We think of g as an adversarily constructed function. The adversary attempts to deceive
the verifier to accept g.

The functions that we considered are defined in GF(2) but we can change the domain
to be an appropriate group for the DFT of section 8.2.1.
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GF(2) {(-1,1}CR
0+0=0 1-1=
0+1=1 1-(~1) =1
14+1=0 (1) (-1) =1

Therefore if we use the mapping 0 — 1 and 1 — —1 we have that ). qx; = [[;cq -
This implies that the linear functions become the Fourier Functions xg. The verifier uses
the following test in order to determine if g is linear.

LINEAR TEST
Pick x,y €r GF(2)"
Accept iff g(x) + g(y) = g(x +y)

It is clear that a linear function is indeed accepted with probability one. So we only
need to consider what happens if g is accepted with probability 1 — 4.

THEOREM 40
If g is accepted with probability 1 — § then g is d-close.

PRrOOF: We change our view from GF(2) to {—1,1}. Notice now that
"x+y" = (Cclyl Toy2 ... SCnyn)
and that if p is the fraction of the points in {—1,1}" where g and y g agree then by definition
gs =< g,xs >=p—(1—p)=2p—1.

Now we need to show that if the test accepts g with probability 1 — § it implies that
there exists a subset S such that gg > 1 —2§. The test accepts when for the given choice of
x and y we have over GF(2) that g(x) 4+ g(y) = g(x+y). So the equivalent test in {—1,1}
is g(x) - g(y) - g(x +y) = 1 because both sides must have the same sign.

Therefore if the test accepts with probability 1 — § then

p=Exylg(x) g(y) - 9x+y)]=(1-6)—-6=1-24 (8.3.1)
We replace g in (8.3.1) with its Fourier Transform and get
n= Exvy [( Z gS1X5’1 (X)) : ( Z g5’2X52 (y)> : ( Z g53X5’3 (X + Y))]
S1<¢{1,...,n} S»CA{1,...,n} S3C{1,...,n}

= Ex,y[ > sy 9> 985 X1 (%) X2 (y) x95(x + Y)]
S17S2753g{17"'7n}

= Z §S1 gSz 953 EX7y |:XS1 (X) X S2 (Y) XSs (X + y)]
51,592,53C{1,...,n}

= Z §S1 gSz gSSEXy |:XS1 (X) XS3 (X) XS (Y) XSs3 (y)] .
51,592,53C{1,...,n}
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However
Ex [Xsl (%) X35 (X)] =< XS1s XS5 >

which is non-zero only if S; = S3. Similarly for fixed x we conclude that it must be Sy = Ss.
Therefore a non-zero expectation implies S; = Sy = S3 and we have

~3 ~ ~2 ~
p= > g<maxlasl > 53 =maxlisl
Sg{177n} Sg{:[??n}

because Parseval’s identity gives > ¢ g% = 1. We conclude that maxg |gs| > 1 — 26.
O

8.3.2 Long Code

DEFINITION 22 The function f : GF(2)" — GF(2) is a coordinate function if there is an
ie{l,...,n} such that f(x) = z;.

Obviously a coordinate function is also linear.

DEFINITION 23 The Long Code for[1... W] encodesw € [1,..., W] by the function L,,(x) =

Xy -

REMARK 12 A log W bit message is being encoded by a function from GF(2)" to GF(2),
i.e. with 2 bits. So the Long Code is extremely redundant but is very useful in the context
of PCP’s.

Now the verifier is given a function and has to check if it is “close” to a long code. We
give Hastad’s test.

LonG CobpE TEST
Pick x,y €g GF(2)V
Pick a “noise” vector z such that Pr{z; = 1] =€
Accept iff g(x) + g(y) =9(x+y +2)

Suppose that g(x) = zw for all x. Then g(x) + g(y) = zw + yw, while g(x +y +z) =
(x+y+2z)w = 2w + yw + xw. So the probability of acceptance in this case is 1 — e.

THEOREM 41 (HASTAD)
If the Long Word Test accepts with probability 1/2 + § then

> Fi1—2¢)51 > 2.
S
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The proof is similar to that of the Theorem 40 and is left as an exercise. The interpre-
tation of Theorem 41 is that if f passes the test with must depend on a “few” coordinates.
This is not the same as being close to a coordinate function but it suffices for the PCP
application.

REMARK 13 Hastad’s analysis belongs to a field called influence of boolean variables, that
has been used recently in demonstration of sharp thresholds for many random graph prop-
erties (Friedgut and others) and in learning theory.

8.3.3 Reducing the random bits in small-bias probability spaces

We consider n random variables x1, ..., x,, where each z; is in {0,1} and their joint prob-
ability distribution is D. Let U be the uniform distribution. The distance of D from the
uniform distribution is

ID-Ull= ) [Uw) ~Dw)l

we{0,1}7

DEFINITION 24 The bias of a subset S C {1,...,n} for a distribution D is
biasp(S) = ‘Prp[zm - 1] —Prp[zm :o”. (8.3.2)
€S €S

Here we are concerned with the construction of (small) e-bias probability spaces that
are k-wise independent, where k is a function of €. Such spaces have several applications.
For example they can be used to reduce the amount of randomness that is necessary in
several randomized algorithms and for derandomizations.

DEFINITION 25 The variables x1,...,x, are e-biased if for all subsets S C {1,...,n},
biasp(S) < €. They are k-wise e-biased if for all subsets S C {1,...,n} such that |S| < k,
biasp(S) < e.

DEFINITION 26 The variables x1,...,x, are k-wise §-dependent if for all subsets S C
{1,...,n} such that |S| <k, ||U(S) — D(S)|| <. (D(S) and U(S) are the distributions D
and U restricted to S.)

REMARK 14 If § = 0 this is just the notion of k-wise independence studied briefly in an
earlier lecture.

The following two conditions are equivalent:
1. All z; are independent and Pr[z; = 0] = Pr[z; = 1].

2. For every subset S C {1,...,n} we have Pr[} . qx; = 0] = Pr[}_, gz; = 1], that is
the parity of the subset is equally likely to be 0 or 1.
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Here we try to reduce the size of the sample space by relaxing the second condition,
that is we consider biased spaces.

We will use the following theorem.

THEOREM 42 (DIACONIS AND SHAHSHAHANI '88)

ID-U| < 2”( 3y ﬁg)”2 - ( 3 biasD(S)2>l/2. (8.3.3)

SC{1,...,n} SC{1,...,n}

PRrOOF: We write the Fourier expansion of D as D =) ¢ ﬁSXS. Then,
D=U+Y_ Dgxs. (8.3.4)
S#0
Now observe that
1> Dsxslls = 2”< > Dsxs: Y f)SXS> =2") Di<2") D3 (8.3.5)
S#0 S#0 S#£0 S#0 5
Also by the Cauchy-Schwartz inequality
ID=U| =D~ Uly <2"|D - Ul. (8.3.6)
Thus
Lo\ 1/2 1/2
Ip-vj<2( Y pE) T =( X biasn(s?) (8.3.7)
SC{1,...,n} SC{1,...,n}

The second equality holds from equation (8.2.7). O

If we restrict our attention to subsets of size at most k& then Theorem 8.3.3 implies:
COROLLARY 43
If D is e-biased then it is also k-wise d-independent for § = 25/2¢.

The main theorem that we want to show is

THEOREM 44 (J. NAOR AND M. NAOR)
We can construct a probability space of e-biased {0,1} random variables x1,...,x, using
O(log n + log ) random bits.

PRrROOF: The construction consists of three stages:

STAGE 1: Construct a family F C {0,1}" such that for r €z F and for all subsets
SC{l1,...,n},

Prxs(r) = 1] = 5,



where
Xs(x) = sz ( mod 2).
€S

and ( is some constant. We discuss this stage in section 8.3.3.
STAGE 2: Sample £ = O(log (1/€)) vectors r!, ... rf from F such that for all subsets S
Pro e |Vie{l,... 0}, Xs()) = o] <e.

Note that if we just sample uniformly from F with log (1/€) samples then we need logn -
log (1/€) random bits. We can do better by using a random walk on an expander. This will
reduce the number of necessary random bits to O(logn + log (1/¢)).

STAGE 3: Let a be a vector in {0,1}* chosen uniformly at random. The assignment to
the random variables z1,...,x, is

14

(.21?1 o ... xn)T:Zairi

i=1

With probability at least 1—e not all r'’s are such that for all S, x’s(r?) = 0. But if there ex-
ists a vector 1/ in the sample with x’s(r/) = 1 then we can argue that Prp[x's(z1,...,2,) =
1] =Prp[xs(x1,...,2,) = 0]. Consequently biasp(S) <e. O

Construction of the family F

We construct logn families Fi, ..., Fiogn. For a vector v € {0,1}" let |v| be the number
of ones in v. For a vector r chosen uniformly at random from F; and for each vector v in
{0,1}" with k < |v| < 2k — 1 we require that

Prij<r,v>=1]> 3.

Assume that we have random variables that are uniform on {1,...,n} and c-wise in-
dependent (using only O(clogn) random bits - see Lecture 4). We define three random
vectors u, v and r such that

1. The u;’s are c-wise independent and Pru; = 0] = Pr[u; = 1] = 1/2.
2. The w;’s are pairwise independent and Pr{w; = 1] = 2/k.
3. The elements of r are

_— 1 ifu;=1and w; =1
"1 0 otherwise
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We claim that Pr[< r,v >=1] > 1/4 for all v with k£ < |v| <2k — 1. In order to prove
this we define the vector v/ with coordinates:

;)1 ifvyy=1and w; =1
i 0 otherwise

By the above definition we have < v/,u >=<r,v >. We wish to show that

Pril <|v| <<= (8.3.8)

N —

Because the u;’s are c-wise independent (8.3.8) sufficies to guarantee that Pr[< v/,u >=
1] > 1/4. We view |v/| as a binomial random variable h with probability p = 2/k for
each non-zero entry. Therefore, E[h] = pl and Var[h| = p(1 — p)l, where [ € [k,2k — 1] is
the number of potential non-zero entries. By Chebyshev’s inequality at the endpoints of
[k, 2k — 1] we have

k(1 — 1
Pr(|h — ph| > 2] < 2170 1
4 2
and
2pk(1 — 4
Prlh —2pk] > 3 < P22 L

Thus, for ¢ = 2kp + 3 = 7 we get success probability at least 1/2.

So if |v| is approximately known we can get high probability of success with O(logn)
bits. Since we don’t know |v| we chose a €x {0,1}'°6™ and construct

logn
r= E a;r’', where r' € F;.
i=1

Each family F; corresponds to the case that |v| € [2¢71,2¢ —1]. Now for any v we can show
that Pr[< v,r >=1] > { (so 8 =1/8).
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Chapter 9

Relaxations for NP-hard
Optimization Problems

SCRIBE: Manoj M P

9.1 Introduction

In this lecture (and the next one) we will look at methods of finding approximate solutions
to NP-hard optimization problems. We concentrate on algorithms derived as follows: the
problem is formulated as an Integer Linear Programming (or integer semi-definite program-
ming, in the next lecture) problem; then it is relaxed to an ordinary Linear Programming
problem (or semi-definite programming problem, respectively) and solved. This solution
may be fractional and thus not correspond to a solution to the original problem. After
somehow modifying it (“rounding”) we obtain a solution. We then show that the solution
thus obtained is a approximately optimum.

The first main example is the Leighton-Rao approximation for “Sparsest Cut” in a graph.
Then we switch gears to look at “Lift and Project” methods for designing LP relaxations.
These yield a hierarchy of relaxations, with potentially a trade-off between running time
and approximation ratio. Understanding this trade-off remains an important open probem.

9.2 Vertex Cover

We start off by introducing the LP relaxation methodology using a simple example. Vertex
Cover problem involves a graph G = (V| E), and the aim is to find the smallest S C V such
that V{i,j} € E,i€ SorjeS.
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An Integer Linear Programming (ILP) formulation for this problem is as follows:

x; € {0,1} for each i € V
z;+x; > 1 for each {i,j} € £
Minimize sz
iV

The LP relaxation replaces the integrality constraints with
0<z;<1lforeachiecV

If opT is the solution to the ILP (i.e., the exact solution to the vertex cover problem), and
OPT; the solution to the LP relaxation (f indicates that this solution involves fractional
values for x;), then clearly opT > orTs. Now we show that OPT < 2 x oPT;. Consider
the following rounding algorithm which converts a feasible solution to the LP to a feasible
solution to the ILP, and increases the objective function by at most a factor of 2: if z; < %,
set 2 = 0, else set 2} = 1, where {z;} is the solution to the LP, and {z}} a solution to the
ILP.

We observe that the factor of 2 above is fairly tight. This is illustrated by the problem
on a clique k,, where OPT =n — 1 and 0PT; = n/2 (by taking z; = 1 for all 7).

What we have shown is that the the integrality gap, oPT/OPT; < 2, and that this is
tight.

Note that if the integrality gap of the relaxation is « then solving the LP gives an a-
approximation to the optimum wvalue (in this case, the size of the smallest vertex cover).
Usually we want more from our algorithms, namely, an actual solution (in this case, a
vertex cover). However, known techniques for upperbounding the integrality gap tend to
be algorithmic in nature and yield the solution as well (though conceivably this may not
always hold).

To sum up, the smaller the integrality gap (i.e., the tighter the relaxation), the better.

9.3 Sparsest Cut

Our next example is Graph Expansion, or Sparsest-Cut problem. Given a graph G = (V, E)
define _ _
50— min (5.5 - E(S,3)

= min — S
scv min{|S|, |S|} ScVZIS\S‘zL‘ 5]

where E(S,S) is the number of edges between S and S. ! The Expansion problem is to
find a cut S which realizes (G¢.

!Compare this with the “Edge Expansion” problem we encountered in an earlier lecture: the Cheegar

constant was defined as B
E(S,S)

SV min{Vol(S), Vol(3)}
where Vol(S) = >~ s deg(v). Note that for a d-regular graph, we have Vol(S) = d|S| and hence he = fc/d.

hg =
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LP formulation

Leighton and Rao (1988) showed how to approximate (3¢ within a factor of O(logn) using
an LP relaxation method. The ILP formulation is in terms of the cut-metric induced by a
cut.

DEFINITION 27 The cut-metric on V, induced by a cut (S, S), is defined as follows: Ag(i, j) =

0ifi,j €S ori,jeS, and Ag(i,j) =1 otherwise.

Note that this metric satisfies the triangle inequality (for three points i, j, k, all three pair-
wise distances are 0, or two of them are 1 and the other 0; in either case the triangle
inequality is satisfied).

ILP formulation and Relaxation: It will be convenient to work with

o ESS)
scvisi< [S11S]

Be =

Since 5 < |S| < n, we have %BG < Ba < nfBq, and the factor “2” here will end up being
absorbed in the “O(logn).”

Below, the variables x;; for 4,7 € V are intended to represent the distances A(%, j)
induced by the cut-metric. Then we have >, ,z;; =[S ||S|. Consider the following ILP
which fixes |S||S]| to a value t:

inj =1 (scaling by 1/t)
i<j
Tij = Tji
Tij + Tjk = Tik
z;; € {0,1/t} (integrality constraint)
Minimize Z Tij
{i,j}eE

Note that this exactly solves the sparsest cut problem if we could take t corresponding to
the optimum cut. This is because, (a) the cut-metric induced by the optimum cut gives a
solution to the above ILP with value equal to 3g, and (b) a solution to the above ILP gives
a cut S defined by an equivalence class of points with pair-wise “distance” (values of z;;)
equal to 0, so that w < Z{ij}eE Tij.

In going to the LP relaxation we substitute the integrality constraint by 0 < z;; < 1.
This in fact is a relaxation for all possible values of ¢, and therefore lets us solve a single

LP without knowing the correct value of t.

Rounding the LP

Once we formulate the LP as above it can be solved to obtain {z;;} which define a metric
on the nodes of the graph. But to get a valid cut from this, this needs to be “rounded oft”
to a cut-metric- i.e., an integral solution of the form z;; € {0, a} has to be obtained (which,
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as we noted above, can be converted to a cut of cost no more than the cost it gives for the
LP). The rounding proceeds in two steps. First the graph is embedded into the ¢1-norm
metric-space ROUos”n) - This entails some distortion in the metric, and can increase the
cost. But then, we can go from this metric to a cut-metric with out any increase in the
cost. Below we elaborate the two steps.

LP solution — ROU°8*") metric: The n vertices of the graph are embedded into the
real space using Bourgain’s Lemma.

LEMMA 45 (BOURGAIN’S LEMMA, FOLLOWING LLR’94)
There is a constant ¢ such that Vn, for every metric A(-,-) on n points, 3 points z; €

RO(e*n) such that for all i, € [n],
A4, ) < ||z — 2|1 < clognA(i, j) (9.3.1)

Further such z; can be found using a randomized polynomial time algorithm.

ROUog* ) metric — cut-metric: We show that f1-distances can be expressed as a positive
combination of cut metrics.

LEMMA 46

For any n points z1,...,z, € R™, there exist cuts Sy,...,Sy C [n] and aq,...,any > 0
where N = m(n — 1) such that for all i,j € [n],

llzi — 2l =) arls, (4, 5) (9.32)
!

PRrROOF: We consider each of the m co-ordinates separately, and for each co-ordinate give
n — 1 cuts S, and corresponding ay. Consider the first co-ordinate for which we produce

cuts {Sk}7Z; as follows: let Ci(l) € R be the first co-ordinate of z;. w.l.o.g assume that the
n points are sorted by their first co-ordinate: dl) < Cél) <...< C,(ll). Let Sk, = {z1,...,2r}

and oy = ¢, = (1. Then S0} e (1,9) = 1¢/" = ¢{V).
Similarly defining S, oy for each co-ordinate we get,

m(n—1)

£) 4
3 arls, (i) Z\d = ¢ =l = 21k

k=1

E(Sy,Sk)
|Skl1Sk|
Now we shall argue that S* provides an O(logn) approximate solution to the sparsest

cut problem. Let OPT; be the solution of the LP relaxation.

The cut-metric we choose is given by S* = argming,

THEOREIYI 47
oPTy < g < clog noOPTy.
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PROOF: As outlined above, the proof proceeds by constructing a cut from the metric
obtained as the LP solution, by first embedding it in ROUog*n) and then expressing it
as a positive combination of cut-metrics. Let z;; denote the LP solution. Then orPT; =
Z{i,j}EExij

2iciTij

Applying the two inequalities in Equation (9.3.1) to the metric A(4, j) = 45,

clogny g inep Tij . >ger 1z — zlh
Ziq Lij N Ziq ||zi — 211

Now by Equation (9.3.2),

2pgrerlz =zl Ypijren 2 nBs (65) 2k 2oqijyen A (0:5)
>i<illzi =zl Dics 2k kDS, (1, ]) Dk Ok iy sy (45 7)
_ Zk akE(Ska_Sk:) > min E(Skv_‘gk?)

>k | S| [ S| ko |Sk||5k|
_ E(5*,5%)
|5*]5%|

where we used the simple observation that for a;,b; > 0, %’; Z: > miny ‘Z—:.

B(S*,5%)
|S*|1.5%| - B
LP is a relaxation of an ILP which solves (3¢ exactly, and therefore orT; < . O

Thus, clog nopT; > > Bg. On the other hand, we have already seen that the

COROLLARY 48
%OPTf < fBa < Clogn%OPTf.

The O(logn) integrality gap is tight, as it occurs when the graph is a constant degree
(say 3-regular) expander. (An exercise; needs a bit of work.)

9.4 Lift and Project Methods

In both examples we saw thus far, the integrality gap proved was tight. Can we design
tighter relaxations for these problems? Researchers have looked at this question in great
detail. Next, we consider an more abstract view of the process of writing better relaxation.

The feasible region for the ILP problem is a polytope, namely, the convex hull of the
integer solutions 2. We will call this the integer polytope. The set of feasible solutions of
the relaxation is also a polytope, which contains the integer polytope. We call this the
relaxed polytope; in the above examples it was of polynomial size but note that it would
suffice (thanks to the Ellipsoid algorithm) to just have an implicit description of it using
a polynomial-time separation oracle. On the other hand, if P # NP the integer polytope
has no such description. The name of the game here is to design a relaxed polytope that

2By integer solutions, we refer to solutions with co-ordinates 0 or 1. We assume that the integrality
constraints in the ILP correspond to restricting the solution to such points.
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as close to the integer polytope as possible. Lift-and-project methods give, starting from
any relaxation of our choice, a hierarchy of relaxations where the final relaxation gives the
integer polytope. Of course, solving this final relaxation takes exponential time. In-between
relaxations may take somewhere between polynomial and exponential time to solve, and it
is an open question in most cases to determine their integrality gap.

Basic idea

The main idea in the Lift and Project methods is to try to simulate non-linear programming
using linear programming. Recall that nonlinear constraints are very powerful: to restrict
a variable z to be in {0, 1} we simply add the quadratic constraint x(1 —x) = 0. Of course,
this means nonlinear programming is NP-hard in general. In lift-and-project methods we
introduce auxiliary variables for the nonlinear terms.

ExaMPLE 13 Here is a quadratic program for the vertex cover problem.

0<z;<1lforeachicV

(1 —2;)(1 —x;) =0 for each {i,j} € F

To simulate this using an LP, we introduce extra variables y;; > 0, with the intention
that y;; represents the product x;x;. This is the lift step, in which we lift the problem to
a higher dimensional space. To get a solution for the original problem from a solution for
the new problem, we simply project it onto the variables ;. Note that this a relaxation of
the original integer linear program, in the sense that any solution of that program will still
be retained as a solution after the lift and project steps. Since we have no way of ensuring
¥ij = x;x; in every solution of the lifted problem, we still may end up with a relaxed
polytope. But note that this relaxation can be no worse than the original LP relaxation (in
which we simply dropped the integrality constraints), because 1 —x; —x; +y;; = 0, y;; > 0
= x; +x; > 1, and any point in the new relaxation is present in the original one.

(If we insisted that the matrix (y;;) formed a positive semi-definite matrix, it would still
be a (tighter) relaxation, and we get a Semi-definite Programming problem. We shall see
this in the next lecture.)

9.5 Sherali-Adams Lift and Project Method

Now we describe the method formally. Suppose we are given a polytope P C R" (via a
separation oracle) and we are trying to get a representation for Py C P defined as the
convex hull of PN {0,1}". We proceed as follows:

The first step is homogenization. We change the polytope P into a cone K in R"*1. (A
cone is a set of points that is closed under scaling: if  is in the set, so is c-x for all ¢ > 0.) Ifa
point (aq,...,a,) € P then (1,a1,...,a,) € K. In terms of the linear constraints defining
P this amounts to multiplying the constant term in the constraints by a new variable xg
and thus making it homogeneous: i.e., > | a;z; > b is replaced by >, a;x; > bxg. Let
Ko C K be the cone generated by the points KN{0,1}"*! (29 = 0 gives the origin; otherwise
o = 1 and we have the points which define the polytope Py) For r = 1,2,...,n we shall
define SA"(K) to be a cone in R""+1(") where V;,11(r) = >7_, ("Jfl). Each co-ordinate

(2
corresponds to a variable y, for s C [n + 1], |[s| < r. The intention is that the variable ys

80



stands for the homogenuous term ([, x;) x acgfls‘. Let y™) denote the vector of all the
Vp+1(r) variables.

DEFINITION 28 Cone SA™(K) is defined as follows:

e SA"(K) The constraints defining SA"(K) are obtained from the constraints defining
SATV(K): for each constraint ay™=Y) >0, for each i € [n], form the following two
constraints:

(1—z;)xay®1 >0
z; xay™D >0

“wy

where the operator “¢” distributes over the sum ay*—1) = >
is a shorthand for ygu(qy-

sC[n):|s|<r sYs and ; *Ys

Suppose (1,21,...,2,) € K N {0,1}""!. Then we note that the cone SA"(K) contains
the points defined by y; = [[;c, #;. This is true for = 1 and is maintained inductively by
the constraints we form for each r. Note that if ¢ € s then z; * ys = ys, but we also have
x? = x; for x; € {0,1}.

To get a relaxation of K we need to come back to n + 1 dimensions. Next we do this:

DEFINITION 29 S"(K) is the cone obtained by projecting the cone SA"(K) to n+1 dimen-
sions as follows: a point u € SA"(K) will be projected to u\s:|s‘§1; the variable ug s mapped
to xg and for each i € [n] ug, to x;.

ExXAMPLE 14 This example illustrates the above procedure for Vertex Cover, and shows
how it can be thought of as a “simulation” of non-linear programming. The constraints for
S1(K) come from the linear programming constraints:

VieV,0 <y <y

Vi, 3} € E,yuy +ygy — Yo >0

Among the various constraints for SA%(K) formed from the above constraints for SA(K),
we have (1 — ;) * (yp — yg53) = 0 and (1 — ;) * (ygsy +yg5) — ¥g) = 0 The first one expands
to Y — Ygiy — g5y + Ygi,j) = 0 and the second one becomes to yrjy — yyi ) — Yo — Yy = 0,
together enforcing yy — yriy —ygj1 +ygi;3 = 0. This is “simulating” the quadratic constraint
1—2; —xj+x;x; = 0 or the more familiar (1 —z;)(1—x;) = 0 for each {i,j} € E. It can be
shown that the defining constraints for the cone S?(K) are the odd-cyle constraints: “for
an odd cycle C, 37, .o > (|C| +1)/2.” An exact characterization of SUK)r) for r > 2 is
open.

Intuitively, as we increase r we get tighter relaxations of Ky, as we are adding more
and more “valid” constraints. Let us prove this formally. First, we note the following
characterization of SA"(K).

LEMMA 49
u € SA™(K) iff Vi € [n] we have v, w' € SA""1(K), where Vs C [n], |s| <7—1, v' = ugq
and w' = ug — Uy} -
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PRrOOF: To establish the lemma, we make our notation used in defining SA"(K) from
SA™1(K) explicit. Suppose SA"~!(K) has a constraint ay*=1) > 0. Recall that from this,
for each i € [n] we form two constraints for SA”(K), say a'y(™ > 0 and a”y®) > 0, where
a'y™ = z; x ay™1 is given by

al, = 0 ifigs (9.5.1)
as +ag\ (i} ifies

and a"y™) = (1 — ;) xay™=Y by

"o ag if 2 ¢ s
% {_as\{i} ifics (9.5.2)

Then we see that

au=3 (a +aq ) u

531
= E agvy + E a;v, = av'
EE) sFi

where we used the fact that for s 3 i, uy = vi = vi\ e Similarly, noting that for s > i,

w, =0 and for s Z i, wi = us — u, g5, we have

a’u= Z —a,\ (i} Us -+ Z aglg

521 sFi
= Z (—asugupy + asu,) = aw’
sFi

Therefore, u satisfies the constraints of SA”(K) iff for each i € [n] v and w' satisfy the
constraints of SA™}(K). O

Now we are ready to show that S™(K), 1 < r <n form a hierarchy of relaxations of Kj.

THEOREM 50
Ko C S"(K) C S™Y(K) C K for every r.

PROOF: We have already seen that each integer solution Z in K gives rise to a corresponding
point in SA”(K): we just take yOs = [[,.. x;. Projecting to a point in S™(K), we just get
7 back. Thus Ky C S"(K) for each 7.

So it is left to only show that S"(K) C S""1(K), because S}(K) = K.

Suppose x € S"(K) is obtained as uly5<1, u € SA™(K). Let viwl € SA™HK) be
two vectors (for some i € [n]) as given by Lemma 49. Since SA""!(K) is a convex cone,
vl +w! € SA"™1(K). Note that for each s C [n], |s| <r —1, w’ + v = us. In particular
this holds for s, [s| < 1. Sox = (V! + w')[55<1 € S" HK). O

€S

THEOREM 51
S™(K) = Ky
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PRrROOF: Recall from the proof of Theorem 50 that if x € S"(K), then there are two points
v, wi € SA""Y(K) such that x = Vi’s:\SISI + Wi’s:\s|§1- It follows from the definition of
v' and w' that vy = Vin and Wiy = 0. So v*|js)<1 € ST_I(K)|y{Z.}:y¢ and wW'|,. <1 €
ST_.I(K)|y{Z.}:0. Hence, S™(K) C ST_I(K)|y{i}:y¢ + ST_I(K)|ym:O. Further, this holds for
all i € [n]. Thus,

S(K) € () (87 () lygy = + 57 (K)lyyy=0)

1€[n]

Repeating this for » — 1 and so on, we get

S"(K) C m Z K’(?J{il}v--'vy{ir}):T

{1, vir}Cln] \T€{0,y0}"

For » = n this becomes simply

TE{O,y¢}"

Along with Ky C S™(K) this gives us that S"(K) = K. O

Finally we note that for small  we can solve an optimization problem over S"(K)
relatively efficiently.

THEOREM 52
If there is a polynomial (in n) time separation oracle for K, then there is an nO) algorithm
for optimizing a linear function over S™(K).

PROOF: Note that using Lemma 49, a separation oracle for S™(K') can be formed by calling
the separation oracle for S”~!(K) 2n times (for v¢ and w’, i € [n]), and therefore, calling the
separation oracle for K n®() times. Given access to the separation oracle, the optimization
can be carried out using the ellipsoid method in polynomial time. O

Thus, on the one hand a higher value of r gives a tighter relaxation (a smaller integrality
gap) and possibly a better approximation (with r» = n giving the exact solution), but on
the other hand the time taken is exponential in r. So to use this method, it is crucial
to understand this trade-off. It has been shown by Arora, Bollobas and Lovasz that in
applying a related method by Lovasz and Schriver to the Vertex cover problem, even for
r = Q(y/logn) the integrality gap is as bad as 2 — o(1). Sanjeev conjectures that for
somewhat higher r the integrality gap may go down significantly. But this problem is open.
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Chapter 10

Semidefinite Programming

SCRIBE: Fdith Elkind

10.1 Introduction

Semidefinite programming (SDP) is an extension of linear programming that can be applied
to integer optimization problems even when linear programming itself is of little help.

In this method, in addition to linear constraints, the matrix formed by variables is
required to be positive semidefinite. As the feasible solution space becomes smaller, the
solution to the semidefinite program might be closer to the solution to the original integer
problem, as compared to the corresponding LLP solution.

Since SDP is a special case of convex programming, a semidefinite program can be
solved to an arbitrary precision in polynomial time using the ellipsoid method or a version
of Karmarkar’s algorithm.

10.2 Basic definitions

DEFINITION 30 A symmetric matriz M € R™™™ is positive semidefinite (note: this is often
written as A = 0) if any of the following conditions holds:

(i) M can be represented as AAT for some A € R"*";
(i) M has no negative eigenvalues;
(iii) T Mx >0 for any x € R™;

(w) Ivi,..., vy € R™ such that M;; = (v4,Vj).

THEOREM 53
Conditions (i)—(iv) are equivalent.

PROOF: An easy exercise. O

LEMMA 54
The set {M € R™*™ | M is a symmetric positive semidefinite matrix } is a convex cone.
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PRrROOF: From (ii), it follows that if M is positive semidefinite, then so is AM for any A > 0.
From (iii), it follows that if M;, My are positive semidefinite, then so is M; + Ms. Obviously,
symmetry is preserved, too. O

DEFINITION 31 A semidefinite program is formulated as follows:
minC - Y
Al Y Z b17

Ap - Y > by,
Y =0

DAY

where Y is an n - n-matriz of variables, C, Ay, ..., Apy € R™™ by,....0 €ER and X -Y is
interpreted as Y7y XijYij.

Such a convex program can be solved to an arbitrary precision (modulo some technical
requirements we do not go into) using the Ellipsoid method. As mentioned earlier this
method can solve a linear program to an arbitrary degree of precision in polynomial time
even if the number of constraints is non-polynomial (or infinite), so long as there is a
polynomial-time separation oracle for the set of constraints. In case of the above convex
program, we can replace the “Y = 0”7 by the infinite family of linear constraints z7 Yz > 0
for every x € R". Furthermore, given any Y that is not psd, there is a simple algorithm
(derived from the Cholesky decomposition) that gives an 2 € R" such that 27 Yz < 0; this
is the separation oracle.

10.3 An SDP for Graph Expansion

Last time, we wrote a linear program for Graph Expansion. Given a graph G = (V, E), for
every 4,j € V, we introduce a variable x;; and consider the following LP:

. Z{i,j}eE Lig
in——=>——
D icj Tij
xij + xj, < x4, for all i, j, k (triangle inequality)
Tij Z 0

m

Tij = Tji
In an effort to tighten the relaxation, we require the following constraint in addition:

J v, v9,...,0, € R such that Tij = (Ui — Uj) . (Ui — Uj).

We show that this constraint is not an unfair one, by shoing that the optimum integer
solution (and, more generally, any cut metric) satisfies it: simply pick an arbitrary vector
u and set v; = uif v; € § and v; = —u if v; € 5, so the optimum integer solution is still
feasible.



How can we optimize under this constraint using SDP? Consider the matrix M where
M;; =1and M;; =1— % if ¢ # j. The constraint amounts to saying this matrix to be psd
(see Theorem 30 part (iv)).

We leave it as an exercise to show that this SDP provides a lower bound that is at
least as good as the eigenvalue bound for d-regular graphs and no worse than Leighton-Rao
bound for the general case. Thus this approach combines the best of both worlds.

It is conjectured that the linearity gap for this program is O(1) (it is known to be
O(logn)). This would follow from another conjecture (by Goemans and Linial), namely,
that any metric d(i,7) that can be represented as |v; — v;||? for some {v;}!' |, can be

embedded into ! with O(1) distortion.

10.4 0.878-Approximation for Max Cut

Let us present the celebrated 0.878 approximation algorithm for Max Cut by Goemans and
Williamson (1993). Here the goal is to partition the vertices of a graph G = (V, E) into two
sets S and S so as to mazimize E(S,S).

The setup is almost identical to the previous case; the only difference is that now we

seek to maximize Y r; nep Tij = 2og; yer 1/4lVi —v;||? where |v;]| =1,i=1,...,n. (The
factor 1/4 is needed for renormalization: if v; = —v;, then ||v; — v;|* = 4.)
Denote by OPT the optimal fractional solution; the corresponding vectors are vy,...,vy.

Note that for any pair of vectors we can draw a 2-dimensional plane through them, so
|vi — VjH2 = (Vi —Vj,Vv; —Vj) =2 —2cos b, (10.4.1)

where 0;; is the angle between these two vectors in the plane.

This suggests the following algorithm: pick a random hyperplane H passing through
the origin. It divides the endpoints of {v;} ; into two sets; assign the vertices of the graph
to S or S accordingly.

For any {i,j} € E, the probability that {i,j} crosses the cut is 6;;/7, so the expected
value of (S, S)/OPT; is

4> tijyer bis . 0

2
> —— x —=0. 10.4.2
T X 2Z{i7j}eE(1 —cos ;) — T cos 0;; 7 0.878 (10-4.2)

Hence, this algorithm gives a 0.878-approximation.

10.5 Spectral Partitioning of Random Graphs

This part is based on a FOCS 2001 paper by Frank McSherry, which considers the task
of finding a solution to an NP-hard graph problem when the input graph is drawn from a
distribution over acceptable graphs.

For example, suppose that a graph on n vertices is constructed as follows: include each
edge with probability p; then pick k vertices out of n (uniformly over all sets of size k), and
complete the clique on these vertices.
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Given a graph constructed according to this procedure, can we find the planted clique
with high probability (over the coin tosses of the generating algorithm as well as our own
random choices)?

More generally, consider the following setup: for a graph on n vertices, there is a mapping
1 : [n] — [k] that partitions the vertices into k classes, and a matrix Py, 0 < P;; < 1. To
generate a random instance G on a vertex set V, |V | = n, include an edge between v; and
vj with probability Py ;). We would like to construct an algorithm that given G can
reconstruct ¢ with high probability. (Usually, after that it is possible to (approximately)
reconstruct P).

Note that for the clique problem described above, k =2, Pjgo=1, Pp1 = Pio=Pi1=p
and the planted clique can be described as ¥~1(0).

Denote the adjacency matrix of G by M. Note that M = EM gives us the corresponding
edge probabilities. Hence, for any two vertices that are in the same class with respect to
1, the corresponding columns are identical, so the rank of M is at most k. Obviously, if
we knew M, we could find % by grouping the columns; since M is obtained from M by
randomized rounding, let us try to use clustering.

Let E be the error matrix, £ = M — M. Suppose that P projects the space spanned by
the columns of M onto k dimensions. If both |[P(E)|| and ||P(M) — M]|| are small, then by
triangle inequality, P(M ) =~ M. Now, our goal is to find a suitable P.

Since M is a low-rank symmetric matrix, we can use singular value decomposition
(SVD).

It is known that an m x n-matrix A of rank r can be represented as ULV, where U is
an m X r orthogonal matrix, ¥ = diag(oy,...,0,), and V is an n X r orthogonal matrix.

This decomposition is unique up to a permutation of ¢;’s (and respective permutations
of rows and columns of U and V'), so we can assume o1 > ... > o,; for a symmetric A, 0;’s
are the eigenvalues.

By truncating U to k columns, ¥ to k values, and V7 to k rows, we obtain a matrix
Aj, which is known to be the best rank k& approximation of A in the spectral norm. The
columns of this matrix are projections of the corresponding columns of A onto the first &
eigenvectors of A. In what follows, we denote the projection X — X by Px, .

Instead of applying SVD directly, we will use a minor modification of this approach.
Namely, consider the following algorithm Partition(r):

e Randomly divide [n] into two parts; let us say that this division splits the columns of
G as [A| B].

Compute P; = Pp,, P> = Py,

Let H = [Pi(A)|Py(B)).

While there are unclustered nodes, choose one of them (say, u) and put all unclustered
vs such that |H, — H,| < 7 into u’s cluster; repaet.

Return the resulting partition.

Here 7 is a parameter (intercluster distance). Intuitively, since our partition is random, any
class is likely to be split evenly between A and B, so the projection computed for A should
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work for B and vice versa. By splitting the matrix into two parts we avoid some tricky
interdependency issues.
Suppose that for all u we have

|P1(Ay) — Au| <1 and [Py(Ay, — Au)| <7

|Py(By) — Bu| <71 and |Py(By — Bu)| < 72
and |Gy, — Gy| > 4(7 + 72) whenever ¢(u) # 1(v). Then our algorithm finds ¢ correctly
if 7 = 2(7y1 + 72). To see that, suppose that v and v ended up in the same cluster. As
|Gy — Hu| <71+ 72, |Go — Ho| < 71+ 72, and [Hy — Hy| < 2(71 + 72), it must be that

Gy = G,. Conversely, if G, = G, H, and H, cannot be too far apart.
To make use of this algorithm, we need a bound on v and ~s.

THEOREM 55
With probability at least 1 — 9,

|P;(By) — By| < 80v/nk/s,
|PA(Bu - Bu)| < \/W7

where o is the largest deviation of an entry in A and s, is the size of the part containing u,

Le., sy =[{v[¢(v) =¥(u)}.

For the proof, the reader is referred to the paper.
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PRINCETON UNIVERSITY F’02 COS 597D: A THEORIST’S TOOLKIT

Homework 1

Out: September 16 Due: September 23

You can collaborate with your classmates, but be sure to list your collaborators with your
answer. If you get help from a published source (book, paper etc.), cite that. Also, limit
your answers to one page or less —you just need to give enough detail to convince me. If
you suspect a problem is open, just say so and give reasons for your suspicion.

g1

§2

§3

For every integer k > 1 show that any graph with more than k* nodes has either a
clique or an independent set of size at least k. (Moral: A graph cannot be completely
disordered: there is always some local order in it.) Can you prove the same statement
for graphs with fewer than k* nodes?

A bipartite graph G = (V1, Vs, E) with |Vi| = |V3] is said to be an (o, 3) expander if
every subset S C Vj of size at most «|V1| has at least (S| neighbors in V3. Show
that for every a, 8 > 0 satisfying a8 < 1 there is an integer d such that a d-regular
expander exists for every large enough |V;].

A graph is said to be nontransitive if there is no triple of vertices 7, j, k such that all
of {i,7},{j,k},{k,i} are edges. Show that in a nontransitive d-regular graph, there
is an independent set of size at least nlogd/8d. (Hint: Suppose we try to pick an
independent set S randomly from all independent sets in the graph. For any vertex
v, suppose you have picked the portion of S except for v and the neighbors of v. How
would you pick the rest of S7)
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PRINCETON UNIVERSITY F’02 COS 597D: A THEORIST’S TOOLKIT

Homework 2

Out: October 7 Due: October 21

You can collaborate with your classmates, but be sure to list your collaborators with your
answer. If you get help from a published source (book, paper etc.), cite that. Also, limit
your answers to one page or less —you just need to give enough detail to convince me. If
you suspect a problem is open, just say so and give reasons for your suspicion.

§1

62

Let A be a class of deterministic algorithms for a problem and I be the set of possible
inputs. Both sets are finite. Let cost(A, z) denote the cost of running algorithm A on
input x. The distributional complezity of the problem is

max fn‘aeiﬁ E.eplcost(A, x)],

where D is a probability distribution on I. The randomized complexity is

min max E cost(A, x)],
P xzel AEP[ ( )]

where P is a probability distribution on .A. Prove Yao’s lemma, which says that the
two complexities are equal.

Does this result hold if the class of algorithms and inputs is infinite?

(The rent-or-buy problem) Your job requires you to take long trips by car. You can
either buy a car ($ 5000) or rent one whenever you need it ($ 200 each time).

If ¢ is the number of trips you end up making, clearly, it makes sense to buy if ¢ > 25.
(Let us ignore emotional factors, as well as the fact that a used car is still worth
something after a few years.) Furthermore the optimum expenditure as a function of
i is C'(i) = min {5000, 2007} .

However, you do not know ¢ ahead of time: in fact, you don’t learn about each trip
until the day before, at which time you have to rent or buy. (Such problems are
studied in a field called online algorithms.)

(a) Show that if you make the decision to buy or rent at each step using a deter-
ministic algorithm then there is a strategy whose cost is at most 2C(i) for any
i. Show that no deterministic algorithm can do much better for some i. (Alas,
life is suboptimal??)

(b) Does your answer change if you can use a randomized strategy, and try to
minimize your expected cost? (Hint: Lowerbounds can be proved using Yao’s
Lemma.)

83 Prove the Schwartz-Zippel Lemma: If g(z1,z2,..., %) is any nonzero polynomial

of total degree d and S C F is any subset of field elements, then the fraction of
(a1,a2,...,ay,) € S™ for which g(ai,as,...,ay,) =0 is at most d/|S].
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64 (Sudan’s list decoding) Let (a1,by), (az,b2),...,(an,by) € F? where F = GF(q) and
q > n. We say that a polynomial p(x) describes k of these pairs if p(a;) = b; for k
values of i.

(a) Show that there exists a bivariate polynomial Q(z, ) of degree at most [y/n]+1
in z and x such that Q(b;,a;) = 0 for each i = 1,...,n. Show also that there is
an efficient (poly(n) time) algorithm to construct such a Q.

(b) Show that if R(z,x) is a bivariate polynomial and g(x) a univariate polynomial
then z — g(z) divides R(z,x) iff R(g(x),x) is the 0 polynomial.

(c) Suppose p(x) is a degree d polynomial that describes k of the points. Show that
if d is an integer and k > (d + 1)([y/n] + 1) then z — p(x) divides the bivariate
polynomial Q(z, x) described in part (a). (Aside: Note that this places an upper-

bound on the number of such polynomials. Can you improve this upperbound
by other methods?)

(There is a randomized polynomial time algorithm due to Berlekamp that factors a
bivariate polynomial. Using this we can efficiently recover all the polynomials p of
the type described in (c). This completes the description of Sudan’s algorithm for list
decoding.)
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PRINCETON UNIVERSITY F’02 COS 597D: A THEORIST’S TOOLKIT

Homework 3

Out: October 21 Due: November 4

You can collaborate with your classmates, but be sure to list your collaborators with your
answer. If you get help from a published source (book, paper etc.), cite that. Also, limit
your answers to one page or less —you just need to give enough detail to convince me. If
you suspect a problem is open, just say so and give reasons for your suspicion.

§1 Show that rank A for an n x n matrix A is the least k£ such that A can be expressed
as the sum of k rank 1 matrices. (This characterization of rank is often useful.)

§2 Compute all eigenvalues and eigenvectors of the Laplacian of the boolean hypercube
on n = 2* nodes.

§3 Suppose A\i(=d) > A2 > .-+ > A, are the eigenvalues of the adjacency matrix of a

connected d-regular graph G. Then show that o(G) < —gﬁi‘\';

84 Let GG be an n-vertex connected graph. Let A2 be the second largest eigenvalue of
its adjacency matrix and x be the corresponding eigenvector. Then show that the
subgraph induced on S = {i : z; > 0} is connected.

92



PRINCETON UNIVERSITY F’02 COS 597D: A THEORIST’S TOOLKIT

Homework 4

Out: November 11 Due: November 25

You can collaborate with your classmates, but be sure to list your collaborators with your
answer. If you get help from a published source (book, paper etc.), cite that. Also, limit
your answers to one page or less —you just need to give enough detail to convince me. If
you suspect a problem is open, just say so and give reasons for your suspicion.

§1

§2

§3

Estimate the mixing time of the random walk on the lollipop graph, which consists of
a complete graph on n nodes and a path of length n attached to one of those nodes.

Give an efficient algorithm for the following task, which is used for dimension reduction
in many clustering algorithms. We are given n vectors x1,xs2,...x, € R"” and a
number k, and we desire the k dimensional subspace S of R which minimizes the
sum of the squared lengths of the projections of x1,xo,...,z, to S. You may assume
that eigenvalues and eigenvectors can be efficiently computed.

In this question you will prove that random walks on constant degree expanders mix
very rapidly: for any subset of vertices C' that is fairly large, the probability that
a random walk of length [ avoids C' is exp(—l). Let G = (V, E) be an unweighted
undirected graph and A be its adjacency matrix.

(a) Show that the number of walks of length [ is g7 Alg where g is the all-1 vector.

(b) Suppose now that G is d-regular and has n vertices. Suppose that each of the
eigenvalues of A except the largest (which is d) has magnitude at most \. Let
C be a subset of cn vertices and let A’ be the adjacency matrix of the induced
graph on V' \ C. Show that every eigenvalue of A’ is at most (1 — ¢)d + ¢\ in
magnitude.

(c) Conclude that if A < 0.9d (i.e., G is an expander) and ¢ = 1/2 then the probabil-
ity that a random walk of length [ in G (starting at a randomly chosen vertex)
avoids C' is at most exp(—1).
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