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Abstract

Semidefinite programming (SDP) relaxations appear in
many recent approximation algorithms but the only gen-
eral technique for solving such SDP relaxations is via inte-
rior point methods. We use a Lagrangian-relaxation based
technique (modified from the papers of Plotkin, Shmoys,
and Tardos (PST), and Klein and Lu) to derive faster al-
gorithms for approximately solving several families of SDP
relaxations. The algorithms are based upon some improve-
ments to the PST ideas — which lead to new results even for
their framework— as well as improvements in approximate
eigenvalue computations by using random sampling.

1. Introduction

Semidefinite programming (SDP) solves the following
general problem:

min c •X

Aj •X ≥ bj j = 1, 2, . . . ,m

X � 0 (1)

Here X ∈ Rn×n is a matrix of variables and
A1, A2, . . . , Am ∈ Rn×n. Here, forn × n matricesA and
B, A • B is their inner product treating them as vectors in
Rn2

, andA � 0 is notation for “A is positive semidefinite”.
The first polynomial-time algorithm (strictly speaking,

an approximation algorithm that computes the solution up
to any desired accuracyε in time polynomial inlog 1

ε ) used
the Ellipsoid method [16] but faster interior-point methods
were later given by Alizadeh [3], and Nesterov and Ne-
mirovskii [24]. The running time of Alizadeh’s algorithm
is Õ(

√
m(m + n3)L) whereL is an input size parameter.

∗Supported by David and Lucile Packard Fellowship, NSF grants CCR
0205594, CCR 0098180 and CCR 0514993.

Here and elsewhere in this paper, theÕ notation is used to
suppress polylog(mn

ε ) factors.
Much attention was focused on SDP as a result of the

work of Goemans and Williamson [15], who used SDP to
design new approximation algorithms for several NP-hard
problems such as MAX CUT, MAX 2-SAT, and MAX 3-
SAT. In subsequent years, SDP-based approximation algo-
rithms were designed for coloringk-colorable graphs, MAX

DICUT, etc. Then progress halted for a few years, until
recent work of Arora, Rao, Vazirani [8] that gave a new
O(
√

log n)-approximation for SPARSESTCUT. The ideas
of this paper have been quickly extended to derive similar
approximation algorithms for MIN 2CNF DELETION, M IN

UNCUT, DIRECTEDSPARSESTCUT, and DIRECTEDBAL -
ANCED SEPARATOR in [2] and NON-UNIFORM SPARSEST

CUT in [11, 7]. These new results rely on the so-called
triangle inequalityconstraints, which impose a constraint
for every triple of points. Thus the number of constraints
m = O(n3), and the time to solve such SDPs isÕ(n4.5).

In addition to these well-known approximation algo-
rithms, SDP has also proved useful in a host of other set-
tings. For instance, Linial, London, and Rabinovich [23]
observe that given ann-point metric space, finding its
minimum-distortion embedding intò2 is a SDP withm =
O(n2) constraints, which takes̃O(n4) time to solve. Recent
approximation algorithms forcut normof the matrix [4],
and for certain subcases of correlation clustering [10], use
a type of SDPs withm = O(n), and hence require time
Õ(n3.5). (An intriguing aspect of this work is that the
proof that the integrality gap of the SDP used in [4] isO(1)
uses the famousGrothendieck inequalityfrom analysis.)
Halperin and Hazan [17] showed that a biologicalproba-
bility estimation problem(HAPLOFREQ), which estimates
the frequencies of haplotypes from a noisy sample, can be
solved using SDP withm = O(n2). Chazelle, Kings-
ford, and Singh [12] use an SDP forside chain positioning
(SCP), a problem in genomics.

Given the growing popularity of SDP, it would be ex-
tremely useful to develop alternative approaches that avoid
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the use of general-purpose interior point methods. Even
problem-specific approaches would be very useful, but they
too seem hard to come by.

A similar situation developed in the past decade in the
case of linear programming, after LPs were used to de-
sign many approximation algorithms. Subsequent improve-
ments to running times for these algorithms fall into two
broad camps: (A) Eliminating use of LP in favor of a di-
rect, combinatorial algorithm that uses the same intuition
(in many cases, the same proof of the approximation ratio);
(B) Solving the LP approximately instead of exactly. Typ-
ically this uses some version of the classicalLagrangian
relaxationidea. Kleinet al [21] showed how to do this for
a specific multicommodity flow LP, and Plotkin, Shmoys,
and Tardos [25] generalized the method to the family of
packing/coveringLPs. Later, Garg and K̈onemann [14] and
Fleischer [13] improved the running times further for flow
LPs. A recent survey [6] by the authors of the current paper
points out that all such algorithms are a subcase of a more
general, widely useful, and older framework they called
Multiplicative Weights Update methodalgorithms. From
now on we refer to this as theMW framework.

Speedups of type (A) and (B) for SDP-based algorithms
are not easy. Speedups of type (A) have proved difficult
because unlike LP-based approximation algorithms, the ap-
proximation ratio of SDP-based algorithms is proved by an-
alyzing aroundingalgorithm rather than by comparing to
the dual. The lone exception we are aware of is the notion
of expander flowsstudied by Arora, Rao, and Vazirani (this
was presented as an alternative to their more well-known
rounding approach that proved useful in most subsequent
papers). However, the duality-based framework of ARV
also found one use: it was instrumental in the design of
a combinatorial,O(

√
log n)-approximation algorithm for

(uniform) SPARSESTCUT and ran inÕ(n2) time [5], a sig-
nificant improvement over thẽO(n4.5) running time for the
interior point algorithm. Interestingly, this algorithm was
also derived in the MW framework. However, the duality-
based framework from [8] has yet to be extended to prob-
lems other than uniform SPARSESTCUT, though this may
yet happen. Thus improvements of type (A) have not been
forthcoming for the other problems.

Klein and Lu [20] initiated study of algorithms of type
(B) for SDPs. They adapted the PST/MW framework
to approximately solve SDPs that arose in the algorithms
of Goemans-Williamson and Karger, Motwani, and Su-
dan. The Klein-Lu approach reduces SDP solving to a
sequence of approximate eigenvalue/eigenvector computa-
tions, which can be done efficiently using the well-known
power method.

Our work. While the Klein-Lu work seemed promising,
further progress then stalled. As we discuss in some de-

tail in Sections 1.1 and 2, the main reason has to do with
the width parameter, which is a valueρ > 0 such that
the linear functions appearing in the constraints take val-
ues in the range[−ρ, ρ]. Then the number of iterations in
the PST/MW framework is proportional toρ2. (Aside: In
the PST packing-covering framework, the range of values
was [0, ρ], in which case the number of iterations isO(ρ).
This issue is discussed in [6].) Unfortunately, the width is
large in most of the SDP relaxations mentioned above —
the SDPs considered by Klein-Lu happened to be among
the few where this problem is manageable.

Our first contribution is to modify the MW technique to
handle some of these high-width SDPs. Our technique is a
hybrid of the MW technique and an “exterior point” (i.e.,
Ellipsoid-like method) of Vaidya [26]; this lowers the de-
pendence on the width and is very efficient so long as there
only “a few” constraints with high width . (Actually the
Vaidya algorithm is overkill in most instances, where the
number of high-width constraints is a small constant, and
one can use simpler ideas, based on binary search, that are
reminiscent of fixed-dimension LP algorithms.) Formally
one needs a two-level implementation of the multiplicative
update idea, that combines the original constraints into new,
smaller number of constraints. While this makes intuitive
sense —MW methods excel at handling many low-width
constraints and exterior point methods excel at handling a
few, high-width constraints—this hybrid technique appears
to be new. (It is related though to the observation in [25] that
their packing-covering problems are solvable in polynomial
time using the dual ellipsoid method.)

The above ideas can be used to prove new results about
the general PST framework as well; these are described in
Section 5.

Our second contribution is to use a better technique
for eigenvalue/eigenvector computations than the power
method, namely, the Lanczos algorithm. This is the method
of choice among numerical analysts, but has not been used
in theory papers thus far because worst-case analysis for it
is hard to find in the literature. We adapt an analysis for
positive semidefinite matrices from [22] to our needs (see
Lemma 2).

Then we suggest further speeding up the Lanczos algo-
rithm by first sparsifyingthe matrix viarandom sampling.
Our sparsification is quite similar to that of [1], though we
get bounds that are more suitable to our applications. In
comparison to [1], our sampling performs better or worse
depending on some parameters of the input matrix. The de-
tails are in the full version of the paper and the sampling
itself may be useful for efficiently computing low rank ap-
proximations of matrices.
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1.1. Overview of our results

Our algorithms assume a feasibility version of the SDP
(1). Here, we implicitly perform a binary search on the op-
timum and the objective is converted to a constraint in the
standard way. We also assume an additional constraint, a
bound on the trace of the solution:

Aj •X ≥ bj j = 1, 2, . . . ,m∑
i

Xii ≤ R

X � 0 (2)

The upper bound on the trace,Tr (X) =
∑

i Xii, is usu-
ally absent in the textbooks, but is natural for relaxation
SDPs. For instance, in combinatorial optimization, usu-
ally we have some unit vectorsv1, v2, . . . , vn associated
with, say, the nodes in a graph, andXij = vi · vj . Then
Tr (X) = n. In any case,Tr (X) for the optimumX can
usually be “guessed” by binary search.

We wish to solve the SDP approximately up to a given
toleranceε, by which we mean that either we find a solution
X which satisfies all the constraints up to an additive error
of ε, i.e. Aj •X−bj ≥ −ε for j = 1, 2, . . . ,m, or conclude
correctly that the SDP is infeasible.

As in the case of LP solving (PST, etc.), the Multiplica-
tive Weights Update idea for solving SDPs is to perform
several iterations, indexed by “time”t, of the following. As-
sociate a non-negative weightw

(t)
j with constraintj, where∑

j w
(t)
j = 1. A high current weight for a constraint in-

dicates that it was not “satisfied” too well in the past, and
is therefore should receive higher priority in the next step.
The optimization problem for the next step is to

max
∑

j

w
(t)
j (Aj •X − bj)

X � 0∑
i

Xii ≤ R

This is actually an eigenvalue problem in disguise, since the
optimum is attained at anX that has rank1. Thus the La-
grangian relaxation idea would be to solve this eigenvalue
problem, and update the weightswi according to the usual
multiplicative update rule, for some constantβ:

w
(t+1)
i ← w

(t)
i (1− β(AjXt − bj))/Zt

whereXt was the solution to the eigenvalue problem (ex-
pressed as a rank1 positive semidefinite matrix) at timet,
andZt is the normalization factor to make the weights sum
to 1. Then ifβ is small enough, the average1T

∑T
t=1 Xt

is guaranteed to converge to a near-feasible solution to the
original SDP (assuming a feasible solution exists).

Problem
Previous best This paper Improvement

MAX QP

Õ(n3.5) Õ(n1.5

ε2.5 ForN = o(n2)
×min{N, n1.5

εα∗ }) or α∗ = ω( 1√
n
)

HAPLOFREQ

Õ(n4) Õ
(

n2.5

ε2.5

)
Ω(n1.5)

SCP

Õ(n4) Õ
(

n1.5N
ε4.5

)
Ω(n3.5

N )

EMBEDDING

Õ(n4) Õ
(

n3

d2.5
min ε3.5

)
Fordmin = ω(n−0.4)

SPARSESTCUT

Õ(n4.5) Õ(n3

ε2 ) Forε = ω(n−0.75)
M IN UNCUT, BALANCED SEPARATOR, ETC.

Õ(n4.5) Õ
(

n3.5

ε2

)
Forε = ω( 1√

n
)

Figure 1. Summary table of results.

Our new contributions to this approach, including the
issue of managing the high-width constraints, and of fast
eigenvalue computations, were already discussed earlier.
Now we describe our main new results. The main point to
stress is that in practice our algorithm may run even faster
than the worst-case estimates we provide later on. Through-
out the paper we carefully list times in terms of num-
ber of eigenvalue/eigevector computations required, and
these tend run much faster than our worst-case estimate in
Lemma 2. By contrast, each iteration of Alizadeh’s SDP
solver requiresCholesky decomposition, i.e. a factorization
of a positive semidefinite matrixX asX = V V T for some
matrix V . The fastest algorithms for this requireO(n3)
time.

The SDPs we apply our approach to include four
relaxations of graph partitioning problems: MAX QP,
SPARSEST CUT, M IN UNCUT and BALANCED SEPA-
RATOR, two SDPs arising from computational biology:
HAPLOFREQ,SCP, and a metric embedding formulation
EMBEDDING. The running times we obtain are shown in
Figure 1. We use the notationα∗ for the optimum of a
given SDP. In this extended abstract we detail only some
of the applications, the rest appear in the full version.

The worst-case running time is a function ofε. In some
cases, there are also dependencies upon other problem para-
meters. For instance, inEMBEDDING, where one is seeking
the minimum distortion embedding intò2, theε is benign,
say0.1. However, there is a dependence on the aspect ra-
tio; in other words, minimum squared internode distance
dmin, where sum of squares of all

(
n
2

)
internode distances is

normalized ton2. Our algorithm provides a speedup when
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dmin is at leastn−0.4. (This is still an interesting set of
metrics.) Likewise, our algorithm for MAX QP provides
speedups when either of the following two conditions are
true: (a) the number of nonzero entries in the matrixA is
N = o(n2) or (b) the optimumα∗ is at least 1√

n
with the

normalization
∑

i,j |Aij | = 1. Again, this is an interesting
class of matrices.

For problems such as (uniform) SPARSESTCUT, BAL -
ANCED SEPARATOR, and MIN 2CNF DELETION, the
current approximation algorithms require a very smallε,
namely,α∗/ |E|. We improve upon existing SDP solvers
when this is at least1/

√
n.

As already noted, in practice our algorithms may run
faster.

2. An illustration of the method

In this section, we give more details of the method by il-
lustrating its application to the SDP (MAX QP) given below.
This SDP arises in many algorithms such as approximating
MAX CUT, maximizing the correlation in correlation clus-
tering, approximating the CUTNORM of a matrix, approxi-
mating the Grothendieck constant of a graph, etc. See [10]
for a discussion.

maxA •X

Xii ≤ 1 i = 1, 2, . . . , n

X � 0 (MAX QP)

We assume here that diag(A) ≥ 0. Let N ≥ n be the num-
ber of non-zero entries ofA. We wish to get a multiplicative
1 − O(ε) approximation to the optimum value of the SDP.
Note that Alizadeh’s interior point method solves the SDP
in Õ(n3.5) time.

Step I: Bounding the optimum and trace. We compute
bounds on the optimum of the SDP,α∗. For simplic-
ity, assume

∑
ij |Aij | = 1, this amounts to scaling the

optimum by a fixed quantity. LetX∗ be the optimum
solution. SinceX∗ is positive semidefinite, for any
i, j, (X∗

ij)
2 ≤ X∗

iiX
∗
jj ≤ 1, so |X∗

ij | ≤ 1. Thus,
α∗ = A • X∗ =

∑
ij AijX

∗
ij ≤

∑
ij |Aij | = 1. Con-

versely, the solutionX specified byXij = sgn(Aij)
n and

Xii = 1 is positive semidefinite, and achieves an objective
value of 1

n . This gives a lower bound onα. We also
compute a bound onTr (X). In this case, this is simply∑

i Xii ≤ n.

Step II: Reduction to feasibility problem. We “guess”
the value ofα using binary search in the range computed
in Step I. Letα be our current guess. Define a convex set

P = {X � 0,
∑

i Xii ≤ n}. We rewrite the SDP as a
feasibility problem for the binary search as follows:

1
α

A •X − 1 ≥ 0

1−Xii ≥ 0 i = 1, 2, . . . , n

X ∈ P (3)

We now need to estimate thewidth of each constraint. This
is defined as the maximum absolute value it can take for
X ∈ P. More specifically, for a generic constraint of the
typeA • X − b ≥ 0 whereX ∈ P, assume that the range
of values thatA •X − b can take is[−`, ρ] or [−ρ, `] where
1 ≤ ` ≤ ρ. Thenρ is called the width of the constraint. In
(3), the range of the constraint1

αA •X − 1 ≥ 0 for X ∈ P
is [−n

α , n
α ], so the width isn

α . The range of the constraint
1−Xii ≥ 0 for X ∈ P is [−n, 1], so the width isn.

Note that an additive error ofε translates to a multiplica-
tive error of1−O(ε) to the objective, assuming the binary
search guessed the value of the optimum to within a factor
of 1 + ε.

Step III: The Multiplicative Weights Update algorithm.
Lagrangian relaxation algorithms assume that there is an al-
gorithm, ORACLE, to solve the following relaxed feasibility
problem: given non-negative weightsw0, w1, w2, . . . , wn

on the constraints such that
∑n

i=0 wi = 1, consider the
weighted combination of constraintsw0( 1

αA • X − 1) +∑n
i=1 wi(1 − Xii). Then ORACLE either finds anX ∈ P

which makes this combination≥ − ε
2 or declares correctly

that noX ∈ P makes the combination non-negative.
In the latter case, we declare infeasibility of (3) since

otherwise any feasible solution would make the weighted
combination of constraints non-negative, a contradiction. If
the former case holds whenever the ORACLE is presented a
set of weights, then we can get anε approximate solution
to (3), as given in the following theorem, proved in the full
version of the paper:

Theorem 1 Consider the general SDP (2). LetP = {X �
0,
∑

i Xii ≤ R}. Assume that for anyj, Aj •X − bj lies
in one of the ranges[−`, ρ], [−ρ, `]. Also, assume that there
is an algorithm,ORACLE, which runs in timeToracle, and
given any set of non-negative weightsw1, w2, . . . , wm on
the constraints summing to 1, either finds anX ∈ P which
makes the weighted combination

∑m
j=1 wj(Aj •X − bj) ≥

− ε
2 or declares correctly that noX ∈ P makes this combi-

nation non-negative. Then there is an algorithm which runs
in O( `ρ

ε2 (Toracle+m)) time and either gets anε approximate
solution to (2) or concludes that it is infeasible.

Step IV: ORACLE from eigenvector computations.Note
that the ORACLE of Theorem 1 needs to maximize the
weighted combination of constraints

∑m
j=1 wj(Aj •X−bj)
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over the setP of all positive semidefinite matricesX whose
trace is bounded byR. We show in section 3 that this
amounts to approximately computing the largest eigenvec-
tor of the matrixC =

∑m
j=1 wj(Aj − bj

R I) up to tolerance
δ = ε

2R . DefineTev(C, δ) to be the time needed for this. In
Lemma 1, we show thatToracle= Õ(Tev(C, δ)).

Getting back to our example, SDP (MAX QP), we have
the following parameters:̀ = ρ = n

α , m = n + 1,
R = n. The running time from Theorem 1 is
Õ( n2

ε2α2 (Toracle + n)) which is worse than Alizadeh’s
algorithm for α = o(n−0.25) even without factoring in
Toracle. We show how to improve the running time in the
next step.

Step V: Inner and Outer SDPs. Now we indicate our
width reduction technique. Observe that there is a single
constraint,1αA•X−1 ≥ 0, which has high width (nα ). The
other constraints have width bounded byn. This happens in
all our applications: we will find a constant sized set of con-
straints of high width and the rest will have low width. We
devise a hybrid algorithm, using the multiplicative update
method to handle the low width constraints and an exterior
point algorithm to handle the (few) high width constraints.

The idea is to push the high width constraint,1
αA •X −

1 ≥ 0, into the convex set, to create a new convex set
Q = {X ∈ P, 1

αA • X − 1 ≥ 0}, and run the Mul-
tiplicative Weights Update algorithm of Theorem 1 on the
other constraints overQ. We call this theouter SDP.

The ORACLE now gets a weighted combination of the
constraints,

∑n
i=1 wi(1−Xii), and needs to find anX ∈ Q

which makes this≥ − ε
2 or declare that no suchX makes

the combination non-negative. This can be achieved by ap-
proximately solving the 2 constraint SDP of the form

n∑
i=1

wi(1−Xii) ≥ 0

1
α

A •X − 1 ≥ 0

X ∈ P

We call this theinner SDP. The ORACLE for this SDP needs
to optimize a weighted combination ofall constraints over
P, this is identical to the one we had in Step IV.

We solve the inner SDP using an exterior point algo-
rithm. The observation is that the ORACLE yields a separa-
tion hyperplane for the dual problem, and so we can apply
Vaidya’s algorithm. Recall thatm is the number of con-
straints. LetM(m) = O(m2.36) be the time needed to
multiply two m×m matrices.

Theorem 2 With the setup as in Theorem 1, there is an al-
gorithm which produces anε approximate solution to the
general SDP (2) or declares correctly its infeasibility in

time

Õ(m log(ρ) · Toracle + m log(ρ)M(m log(ρ)))

Note that this algorithm has poor dependence on the
number of constraints but handles high width very well. In
our example, the number of constraints in the inner SDP
is just 2, and the width is poly(mn) from the trace bound.
Thus, the algorithm of Theorem 2 solves it iñO(Toracle) =
Õ(Tev(C, ε

2n )) time.
In all our applications, we have a constant sized set of

constraints with much higher (yet, polynomial) width than
the rest. Let the other, low width, constraints take values in
the range[−`L, ρL] or [−ρL, `L].

Corollary 1 With the given setup, the hybrid algorithm
which composes an outer and inner SDP runs in time

Õ

(
`LρL

ε2

[
Tev

(
C,

ε

2R

)
+ m

])

For SDP (MAX QP), this yields the following theorem,
which will be proved in section 4.1:

Theorem 3 A multiplicative 1 − O(ε) approximation to
SDP(MAX QP)can be obtained in time

Õ

(
n1.5

ε2.5
·min

{
N,

n1.5

εα∗

})

This running time is never worse than thẽO(n3.5) running
time of Alizadeh’s interior point algorithm. It is asymptoti-
cally faster if the matrixA is not dense, i.e.N = o(n2), or
if α∗ = ω( 1√

n
).

We note here the special case of the MAX CUT SDP. For
this problem, the matrixA is the combinatorial Laplacian
of the input graph, divided by4m. We note that the bound
α∗ ≥ 1

8 is easily obtained from the greedy algorithm. Thus,
our algorithm runs in timẽO(n1.5 ·min{N,n1.5}).

The best algorithm for solving the MAX CUT SDP is due
to Klein and Lu [20], with running timeÕ(nN). Our al-
gorithm is a

√
n factor worse whenN = o(n2). How-

ever, our algorithm solves the much more general problem
(MAX QP) and the approach of [20] does not extend to this
general problem.

3. Implementing ORACLE using the approxi-
mate eigenvector computations

In this section, we present lemmas which describe how
to efficiently implement the ORACLE of Theorem 1 using
approximate eigenvector computations. The proofs appear
in the full version.
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Lemma 1 Suppose we have a procedure that given a ma-
trix C ∈ Rn×n and a toleranceδ > 0, computes a unit
vectorx which satisfiesxT Cx ≥ −δ, in timeTev(C, δ), or
declares correctly thatC is negative definite. Then using
this procedure once withC =

∑m
j=1 wi(Aj − bj

R I) and
δ = ε

2R we can implementORACLE.

Thus, we need to approximately compute the top eigen-
vector of the matrix which represents the weighted combi-
nation of the constraints. The Lanczos algorithm with a ran-
dom starting vector is the most efficient algorithm for find-
ing extreme eigenvectors. The running time for the Lanczos
algorithm used in our context is the following:

Lemma 2 Let C ∈ Rn×n be a matrix withN non-zero
entries and eigenvaluesλ1 ≥ λ2 ≥ . . . ≥ λn. Let δ > 0
be a given error parameter. Letγ = max{ λ1

λ1+|λn| ,
δ

|λn|}.
Then the Lanczos algorithm with a random start applied to
the matrixC +ΛI yields with high probability a unit vector
x which satisfiesxT Cx ≥ −δ or declares correctly thatC
is negative definite in timeTev(C, δ) = Õ( N√

γ ).

The parameterγ in Lemma 2 is unknown of course, but
in applications we will derive lower bounds for it. The
lemma shows that the running time of the ORACLE depends
on the sparsity ofC, i.e. the number on non-zero entries in
it. We provide a randomized sparsification procedure with
the following guarantee:

Lemma 3 Let C ∈ Rn×n be a matrix withN non-zero
entries and letS =

∑
ij |Cij |. Let δ > 0 be a given error

parameter. Then there is a randomized procedure which
runs in Õ(N) time and with high probability produces a

matrix C ′ such thatA′ hasO(
√

nS
δ ) non-zero entries and

for all unit vectorsx ∈ Rn, we have|xT Cx − xT C ′x| ≤
O(δ).

Thus,C ′ can be used in place ofC in the Lanczos algo-
rithm, if it turns out to be sparser: the decision for specific
applications depends on the relative values ofN and

√
nS
δ .

4. Applications

In this section, we describe applications of the method
to the following representative problems: MAX QP and
HAPLOFREQ, EMBEDDING, and SPARSEST CUT. More
applications of the method to SCP, MIN UNCUT, M IN

2CNF DELETION and related problems can be found in the
full version of the paper.

These examples demonstrate the strengths and limita-
tions of the method. It should be noted that the method does
not automatically yield faster algorithm; additional fine-
tuning (mostly in terms of bounding large negative eigen-
values) is necessary for specific applications.

4.1. SDP relaxations of Quadratic Programs

Our first application is the SDP (MAX QP) that we used
to illustrate the method, and we complete the proof of The-
orem 3.

PROOF: [Theorem 3]
We apply Corollary 1. The range of the constraints of

the outer SDP, viz.1 − Xii ≥ 0 for 1 ≤ i ≤ n, is [−n, 1]
for X ∈ Q. Thus`L = 1, ρL = n. Now we bound the
running time of the eigenvector computation procedure for
the ORACLE.

Given non-negative weightsw0, w1, . . . , wn which sum
to 1, the matrixC from Lemma 1 in this case isw0( 1

αA −
1
nI) +

∑n
i=1 wi( 1

nI − eie
T
i ), whereei is the ith standard

basis vector, andδ = ε
2n .

To apply Lemma 2, we need to bound the most negative
eigenvalue,λn, of C. Observe thatTr (C) = w0( 1

αTr (A)−
1) ≥ −1. Since Tr (C) =

∑
i λi, we conclude that

(n − 1)λ1 + λn ≥ −1. This implies that if|λn| ≥ 2, then
λ1

λ1+|λn| ≥
1
4n . Otherwise, if|λn| ≤ 2, then δ

|λn| ≥
ε
4n .

Thus,γ = max{ λ1
λ1+|λn| ,

δ
|λn|} ≥

ε
4n , and by Lemma 2,

the eigenvector procedure takesÕ(N
√

n√
ε
) time.

If we apply the sparsification procedure of Lemma
3, then the relevant parameters areS =

∑
ij |Cij | =

O( 1
α

∑
ij |Aij |) = O( 1

α ) (recall
∑

ij |Aij | = 1). Thus

the sparsification procedure yields a matrixC ′ with O(n1.5

εα )
non-zero entries. Overall, the running time of the Lanczos
algorithm becomes̃O(min{N, n1.5

εα } ·
√

n
ε ) as stated.

Putting everything together, the final running time of the
algorithm becomes

Õ

(
n1.5

ε2.5
·min

{
N,

n1.5

εα∗

})
2

4.2. SDP relaxations of biological probability esti-
mation problems

The following SDP arises in the context of certain bio-
logical probability estimation problems, such as in finding
haplotype frequencies. See [17] for a discussion.

max A •X∑
ij

Xij = 1

Xij ≥ 0 1 ≤ i, j ≤ n

X � 0 (HAPLOFREQ)

We assume here thatA is a non-negative matrix. This SDP
is a natural relaxation in certain problems where a proba-
bility distribution is required. Intuitively, we want to find a
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probability distribution{p1, p2, . . . , pn} which maximizes
the objective

∑
ij Aijpipj . In the SDP relaxation, theXij

variables representpipj .
We apply our method to this problem. Step I requires

that we bound the optimum and the trace. Let the optimum
to this SDP be denotedα∗. We claim thatα∗ is in the range
maxij{Aij} · [ 14 , 1]. The upper bound is trivial since the
objective is a convex combination of theAij values. Let
Akl be the maximalAij . Then the lower bound is obtained
by taking the unit vectoru = 1

2 (el + ek), whereei is the
ith standard basis vector, and lettingX be the positive semi-
definite matrixuuT . Since allAij are non-negative, this
solution has value at least1

4Akl.
The trace ofX is trivially bounded by1 from the first

constraint. Note also that w.l.o.g. we can relax the first
constraint to be

∑
ij Xij ≤ 1, in the optimum the sum ob-

viously equals1 since all the quantities are non-negative.
Let N be the number of non-zero entries ofA.

Theorem 4 SDP (HAPLOFREQ) can be approximated up
to a multiplicative error of1−O(ε) in Õ(n2.5

ε2.5 ) time.

PROOF: According to step II, we “guess”α using binary
search and write the following feasibility SDP. Here,P is
the convex set{X � 0 ,

∑
i Xii ≤ 1}.

1
α

A •X − 1 ≥ 0

1−
∑
ij

Xij ≥ 0

Xij ≥ 0 1 ≤ i, j ≤ n

X ∈ P

The width of the first constraint is( 1
α

∑
ij |Aij |)2 = O(n4).

This is the high width constraint which we will put into the
inner SDP. The width for the rest of the constraints isO(1),
these constitute the outer SDP. Thus,`L = ρL = 1, and
δ = ε

2 . Let C represent the weighted combination of the
constraints for the ORACLE. According to Corollary 1, the
SDP can beε approximately inÕ( 1

ε2 · [Tev(C, ε
2 ) + n2])

time.
It remains to estimateTev(C, ε

2 ). The matrixC is of the
form w0( 1

αA − I) + w1(I − J) +
∑

ij wijEij , whereJ
is the all 1’s matrix, andw0, w1, wij for 1 ≤ i, j ≤ n are
non-negative weights summing to 1.

To bound the most negative eigenvalue,λn, of C, we
use the Gershgorin circle theorem [18], which implies that
|λn| ≤ maxi{

∑
j |Cij |}. For the matrixC, the domi-

nant contributors to this maximum are the matrices1
αA

andJ . For anyi, we have
∑

j
1
α |Aij | ≤ 4n sinceα ≥

1
4 maxij Aij . Also, for any i,

∑
j |Jij | = n. Thus, the

bound on|λn| is O(n).
Thus, the γ of Lemma 2 is≥ Ω( ε

n ), and hence

Tev(C, ε
2 ) = Õ(n2.5

√
ε

) becauseC is a dense matrix. Since

∑
ij |Cij | can be as large asΩ(n2), sparsification does not

help here.
Finally, the total running time comes tõO(n2.5

ε2.5 ). 2

For comparison, the best known interior point algorithm
solves this SDP iñO(n4) time.

4.3. Embedding of finite metric spaces intò2

Given a finite metric space onn points specified by the
pairwise distances{Dij}, embedding intò2 with minimum
distortion amounts to solving the following mathematical
program. For convenience of notation, letdij = D2

ij .

min α

dij ≤ ||vi − vj ||2 ≤ α · dij 1 ≤ i < j ≤ n

vi ∈ Rn 1 ≤ i ≤ n
(EMBEDDING)

By Bourgain’s theorem [9] the minimum distortion is
O(log n). Thus, the optimum valueα∗ of SDP EMBED-
DING is O(log2 n). We assume that the distances are scaled
so that

∑
ij dij = n2. We claim that this implies that

there is an optimal solutionv1, v2, . . . , vn which satisfies∑
i ||vi||2 ≤ α∗n: we may assume that the optimal solu-

tion satisfies
∑

i vi = 0, otherwise we can shift the origin
to the sum of the vectors; this does not change the pairwise
distances||vi − vj ||2. Thus we haveα∗n2 = α∗

∑
ij dij ≥∑

ij ||vi − vj ||2 = n
∑

i ||vi||2. The claim follows.

Theorem 5 SDP (EMBEDDING) can be approximated up
to a1 + O(ε) multiplicative factor inÕ( n3

d2.5
min ε3.5 ) time.

PROOF: Guessα using binary search, and formulate
the following SDP. Define the convex setP = {X �
0 |
∑

i Xii ≤ αn}.

α

dij
(Xii − 2Xij + Xjj)− 1 ≥ 0 1 ≤ i < j ≤ n

1− 1
dij

(Xii − 2Xij + Xjj) ≥ 0 1 ≤ i < j ≤ n

X ∈ P (4)

SinceX � 0, the expression(Xii − 2Xij + Xjj) is al-
ways positive. The bound on the trace implies that these
terms are bounded byαn. Hence the width of the con-
straints of SDP (4) is bounded byρL ≤ O(nα

dij
) = Õ( n

dmin
),

wheredmin = minij{dij}. Also, `L = 1, m = 2n2,
and δ = ε

2αn . Let C be the matrix representing the
weighted combination of all the constraints. Thus, anε
approximate solution to the SDP can be found in time
Õ( n

dminε2 ·
[
n2 + Tev

(
C, ε

2αn

)]
).

The most negative eigenvalue ofC, λn, can be bounded
in absolute value byO( 1

dmin
). This is because all constraints
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have onlyO(1) terms, each bounded in absolute value by
O( α

dmin
) = Õ( 1

dmin
). SinceC is a convex combination of

the constraints, we conclude that for allj,
∑

ij |Cij | =
Õ( 1

dmin
), and this bounds|λn| by the Gershgorin circle the-

orem. Thus, by Lemma 2,Tev(C, ε
n ) can be bounded by

Õ( N
√

n√
εdmin

), whereN is the number of non-zero entries inC.
Sparsification could potentially reduce the number of

matrix entries. SinceS =
∑

ij |Cij | = Õ( 1
dmin

), so
by Lemma 3 the number of entries could be reduced to
Õ( n1.5

εdmin
).

Thus the total running time comes to

Õ

(
min

{
n3

d2.5
minε

3.5
,

n3.5

d1.5
minε

2.5

})
For comparison, interior point methods can solve this

SDP in timeÕ(n4). Note that in order to improve over the
running time of interior point methods, the first expression
is always better.

2

4.4. SDP relaxation of Sparsest Cut

For a graphG = (V,E) with V = {1, 2, . . . , n}, the
following SDP arises as a relaxation for the Sparsest Cut
problem in [8]:

min
∑

{i,j}∈E

||vi − vj ||2

||vi − vj ||2 + ||vi − vk||2 − ||vj − vk||2 ≥ 0 i, j, k ∈ [n]∑
i<j

||vi − vj ||2 = n

(SPARSESTCUT)

Note that the RHS of the last constraint isn rather than
1 as in [8]. This effectively scales the range of the opti-
mum,α∗, to be[0, n]. We desire an additiveε approximate
solution.

Theorem 6 SDP (SPARSEST CUT) can be approximated
up to an additive errorε in Õ(n3

ε2 ) time.

PROOF: As usual, we guessα using binary search, and
write the following SDP, with the convex setP = {X �
0,
∑

i Xii = 1}:

α−
∑
ij∈E

(Xii − 2Xij + Xjj) ≥ 0

(Xii − 2Xij + Xjj) + (Xii − 2Xik + Xkk)
−(Xjj − 2Xjk + Xkk) ≥ 0

X ∈ P

Here, just as in the embeddings problem from the pre-
vious section, we make the assumption that

∑
i vi = 0

w.l.o.g. Then the constraint
∑

ij ||vi − vj ||2 ≤ n is equiva-
lent to

∑
i ||vi||2 ≤ 1.

Since
∑

i Xii = 1, for anyi, j, |Xij | ≤
√

XiiXjj ≤ 1.
Thus, the width of the first constraint isO(n2). The width
for the rest of the constraints isO(1). Since there aren3

constraints anyway, for the ORACLE we solve the eigenvec-
tor problem up to arbitrary precision using a standard algo-
rithm such as QR, which runs inn3 time as well. Finally,
using the inner and outer SDPs of Corollary 1,the SDP can
be approximated up toε in time:

Õ(
1
ε2
·
[
Toracle+ n3

]
) = Õ

(
n3

ε2

)
2

5. Extensions to the PST framework

In this section we outline how the techniques discussed
earlier can be applied to extend and in some cases improve
running times for algorithms in the PST framework. In the
PST framework, we have the following kind of feasibility
problem:

GENERAL FEASIBILITY : ∃?x ∈ P such that
Ax ≥ b, whereA ∈ Rm×n andP is a convex set.

We assume that we have an algorithm, ORACLE, which
given non-negative weightsw1, w2, . . . , wm summing to1,
finds anx ∈ P which makes the weighted combination∑m

j=1 wj(Ajx − bj) ≥ − ε
2 or declares correctly that no

suchx makes the combination non-negative. LetToracle

be the running time of the oracle. We wish to devise an
algorithm which finds anx ∈ P that satisfies all the con-
straints up to an additive error ofε or declares correctly
that the system is infeasible. If for everyx ∈ P, each
Ajx ∈ [−ρ, ρ] then the PST algorithm solves this in time

Õ(ρ2

ε2 (Toracle + m)).

5.1. Composition of Lagrangian Relaxation Algo-
rithms

Now we consider systems where “a few” of the con-
straints have high width and the rest do not.

We can extend the MW algorithm to this setting without
incurring a high penalty for the high width constraints. We
separate the few,mH , high width constraints, which have
width ρH . These constitute the inner feasibility problem as
in Step V of Section 2. The rest of themL = m − mH

constraints have low widthρL and take values in one of the
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ranges[−`L, ρL] or [−ρL, `L]. These constitute the outer
feasibility problem.

The outer problem will be solved using the Multiplica-
tive Weights Update algorithm while the inner problem will
be solved using Vaidya’s exterior point algorithm. We get
the following theorem:

Theorem 7 Then there is an algorithm which either gets
an ε approximate solution toGENERAL FEASIBILITY or
declares correctly its infeasibility in time

Õ

(
`LρL

ε2

[(
mH log(ρH)Toracle

+ mH log(ρH)M(mH log(ρH))

)
+ mL

])

5.2. Mixed packing and covering constraints

Mixed packing and covering problems are defined as fol-
lows. The widthρ is defined as above.

M IXED PACKING-COVERING ∃?x ∈ P such that
Ax ≤ b andÂx ≥ b̂, whereA ∈ Rm̂×n, Â ∈ Rm−m̂×n,
b, b̂ > 0 andP is a convex set such thatAx, Âx ≥ 0 for
x ∈ P.

The original PST paper showed how toε-approximately
solve (i.e. RHS of constraints violated by a at most a factor
of 1± ε) mixed packing and covering formulations in time
proportional to the width squared. For the special case of
linear programming, Young [27] provides an algorithm that
is independent of the width completely. Recently Jansen
[19] obtained an approximation algorithm for general frac-
tional mixed covering and packing problems that is inde-
pendent of the width, at the expense of an extra factor ofm,
the number of constraints, in the running time.

Our generalized proof for the multiplicative weights up-
date method in [6] allows us to reduce the dependance on
the width in the general setting from quadratic to linear. The
following theorem gives an algorithm with faster running
time than Jansen’s algorithm provided the width is no more
than the number of constraints. This is the case in many of
our applications where the number of constraints isO(n2)
(eg. HAPLOFREQ) or O(n3) (eg. SPARSESTCUT).

Theorem 8 A ε-approximate solution to M IXED

PACKING-COVERING can be computed in time

Õ
( ρ

ε2
(m + Toracle)

)

6. Conclusions and Future Work

We have designed new hybrid Lagrangian relaxation al-
gorithms for solving SDPs. Our ideas are general though we
customize them for some interesting SDPs. Each iteration
step is an approximate eigenvector computation, which is
very efficient in practice, even though the theoretical worst
case bounds listed here do not show this. (Even so, our
worst-case bounds provide speedups for specific SDPs over
interior point methods.) In every iteration of the interior
point algorithm, one needs to compute the Cholesky de-
composition of a positive semidefinite matrix. This takes
much asO(n3) time, whereas the top eigenvector of a ma-
trix can be computed much more efficiently. This is where
our method gets an edge over interior point methods.

Another advantage of our method is that the Cholesky
decomposition of the final solution is obtained automati-
cally because the solution is a convex combination of many
rank 1 matrices. Typically, the first step of rounding in ap-
proximation algorithms relying on SDP is to compute the
Cholesky decomposition of the optimal solution, and this
step comes for free as noted.

The chief limitation of this method is from the polyno-
mial dependence on1ε . Some applications (such as general
SPARSEST CUT) requiresε to be very tiny and then this
method is rendered useless. The main goal of future work
will be to reduce the dependence on1

ε . It is expected that
ideas which helped us reduce the dependence on the width
may help here.

Our hybrid approach for the PST/MW framework may
also be useful for other convex optimization problems.
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