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Abstract

Motivated by applications in combinatorial optimization, we initiate a study of the extent to
which the global properties of a metric space (especially, embeddability in �1 with low distortion)
are determined by properties of “small” sets. We prove both positive and negative results.

1 Introduction

The study of metric spaces has come to occupy a central place in theoretical computer science.
Finite �1 metrics have attracted special attention, since in computational settings they seem more
complex and interesting than say �2. One reason is that �1 metrics correspond exactly to metrics
that lie in the cut cone, and cuts are important graph-theoretic objects (see the book [10]). Approx-
imation algorithms for NP-hard cut problems such as SPARSEST CUT are derived by embedding
general metric spaces into �1 [17, 5] (and more recently, negative type metrics into �1 [4, 8, 3]).
Furthermore, �1 metrics also seem to possess a richer structure than �2. For instance, deciding
whether a finite metric space embeds isometrically into �2 is decidable in polynomial time whereas
it is NP-hard for �1. Similarly, dimension of �2 spaces can be reduced to O(log n/ε2) while distorting
distances by at most 1+ ε, whereas such dimension reduction is impossible in �1 without significant
distortion [7].

When a class of metrics exhibits such complex behavior, one may try to understand how does
this complex behavior arise. Specifically, this paper studies questions of the following type: To
what extent can the properties of the finite metric space be inferred from looking at the induced
metric on all “small” subsets? To give one concrete example, can the embeddability of a finite
metric space into �1 be inferred by checking the embeddability of all “small” subsets? (We list
many other such questions later.)

A main reason to consider such questions is design of algorithms for cut problems. SDP relax-
ations for these problems involve finding points in Rn such that square of the interpoint distances
satisfy constraints such as triangle inequality, or more generally, k-gonal inequalities. The lat-
ter correspond to requiring that locally, the submetrics “look” like �1 metrics on subsets of size k.
One could conceive of more complicated SDPs that impose constraints on larger and larger subsets.
Could this lead to progressively tighter relaxations? A more ambitious way to tighten the relaxation
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would be to do k rounds of a lift-and-project method such as Lovasz-Schrijver or Sherali-Adams.
These yield metrics in which the induced metric on all subsets of size k is isometrically embeddable
in �1. Relaxations obtained by k rounds of lift-and-project are solvable in nO(k) time, so if the
relaxation becomes very tight for say k = log n then one would obtain a nO(log n) time approxima-
tion algorithm. (Such observations were made in a recent paper [2], where it was observed that
studying such questions leads to study of “local versus global” structure. That paper restricted
attention to vertex cover, however.) Note that to prove the tightness of such a relaxation, it would
suffice to show that if subsets of size k embed isometrically in �1, then the entire metric embeds in
�1 with low distortion. One of the results in this paper is that this is false for general metrics for
k = ω(1) (see Section 3.2 for exact results, including related results about negative type metrics,
a generalization of �1), while it is indeed true when k = Θ(n) (see Section 3.1). Presumably the
second statement can not be improved significantly. We give some evidence to support this, by
showing that the property “embeddable in �1 with O(1) distortion” cannot be locally inferred. We
describe an n-point metric which requires distortion Ω(log n) into �1 but whose every subset of size
n1−ε embeds into �1 (or even weaker subclasses of �1) with distortion O(1/ε2) (Section 3.2). We
note that such constructions are nontrivial precisely because we need a fairly strong property to
hold for every subset.

General comments. “Local versus global” is an old theme in mathematics. The subject initiated
here is sometimes similar in spirit to past work, and sometimes not. The field of Helly-type theorems
(e.g., in a family of bounded convex sets in Rn, if every subset of n+1 has a nonempty intersection,
then so do all) shows that sometimes local properties do determine global properties. Our positive
results fit in this tradition: assuming local order exists in all subsets of a certain size, we try to
infer some global order. Ramsey theory is another field that seems related: its main lesson is that
in midst of global “disorder,” there is always a significant subset exhibiting “order.” (Ramsey
phenomena exist even for metric spaces; see [6].) In this phrasing, our positive results (phrased
contrapositively) can be seen as assuming global “disorder,” and giving a lowerbound on the size
of the smallest “disordered” subset. (For �1 embeddability this lowerbound matches some results
in [6].) Our negative results on the other hand give examples where every small subset has “order”
and nevertheless globally there is “disorder.”

We would like to point out that in areas such as PCPs, program checking, property testing,
etc, the “local versus global” questions also play an important role, but in those settings the local
property only has to hold for many local neighborhoods, not all.

In context of metric spaces, a classical result of local versus global nature is Menger’s theo-
rem [19], which shows that if every subset of size n + 3 of a metric space embeds isometrically into
�n
2 , then the entire space embeds isometrically into �n

2 . For �n
1 it is not even known if n + 3 can be

replaced by any finite size. Another well known result of this kind is that a metric is a tree-metric
iff every submetric of size 4 is a tree-metric.

A significant aspect of our work is a new insight into shortest-path metrics derived from random
graphs of bounded degree, which are used in most of our negative results. These metrics were shown
to be extremal for many metric-theoretic properties in the past. Surprisingly, their local structure
turns out to be rather simple, even when the size of the submetrics is as large as m = n1−ε. Based
on this, we conclude that there exist metrics whose distortion in �1 is the largest possible one for
n, while all their submetrics of size m = n1−ε embed into �1 with a constant distortion.

It should be stressed that the most important open problem arising from our work is that we
failed to construct metrics that require large distortion in �1, but where every subset of size at
most say nε (or even Ω(log n)) embeds isometrically (as opposed to embedding with low distortion)
into �1. Thus the possibility remains of improving the recent

√
log n-approximations for many cut
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problems via the lift-and-project approach outlined above.
To emphasize the distinction between isometric and almost isometric embeddings, we show

that for the class of ultrametrics the former assumption is much more powerful than the latter.
Ultrametrics are metrics satisfying ∀x, y, z d(x, z) = max{d(x, y), d(z, y)}; thus if every subset of
size three is an ultrametric, then so is the whole metric. On the contrary, we show for every c and ε
that if every subset of cardinality nε embeds into an ultrametric with distortion bounded by c, then
the whole metric on n points may still require distortion c1/ε for embedding into an ultrametric.
(On the optimistic side, we show that this lower bound is tight by a establishing a matching upper
bound; see Section 4.)

Our final contribution has to do with a notion of a normal class of metrics, obtained by postu-
lating some properties shared by many metric classes that are extensively used in approximation
algorithms. First, we establish a general positive local vs. global result for any normal class of
metrics. Second, we separate any nontrivial normal class of metrics from general metrics. This
opens a door to a potential use of various normal classes of metrics in approximation algorithms.

2 Preliminaries

We use dist(d, d′) to denote the distortion between two distance functions d and d′ on the same set
of points. For a class C of distance functions, we use dist(d ↪→ C) to denote the minimum distortion
between d and d′ ∈ C. (This assumes, of course, that C contains distance functions on the same set
of points as d.)

Let d be a distance function (on an underlying point set P ), and let f : R → R be a mono-
tonically non-decreasing function with f(0) = 0. We denote by f(d) the distance function where
∀p, q ∈ P , f(d)(p, q) = f(d(p, q)). Notice that if d is a metric and f is concave, then f(d) is a
metric. The power scale f(x) = xc, c ∈ [0, 1] plays an important role in this paper. It is worth
noting the following simple fact:

dist(dc, (d′)c) =
(
dist(d, d′)

)c
.

Let d be a distance function, and let Q be a subset of the points on which d is defined. We use dQ

to denote the restriction of d to the pairs of points in Q.
A set of metrics C is called normal if it has the following properties, shared e.g., by the classes

neg,hyp, and Mk to be discussed later (see Section 3.2):

1. It is symmetric, i.e., for every d ∈ C, any metric d′ derived from d by permuting the underlying
set of points is also in C.

2. It is a closed cone, i.e., for every d, d′ ∈ C on the same set of points, for every a, a′ ≥ 0, also
a · d + a′ · d′ ∈ C.

3. It is hereditary, i.e., for every d ∈ C, for every subset of points Q on which d is defined, also
dQ ∈ C.

4. For every d ∈ C, consider a metric d′, obtained from d by performing the following cloning
operation: Pick a point p, add a “clone” q, and set d′(q, x) = d(p, x) for all points x. Then,
d′ ∈ C.

Observe that every normal set of metrics includes all cut metrics, and therefore all metrics that
embed isometrically in �1. Further notice that if C is a normal set of metrics, then for every γ ≥ 1,
the set of metrics

Cγ = {d : dist(d ↪→ C) ≤ γ}
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is also normal.

3 Normal Sets of Metrics

3.1 Upper Bounds

This section is devoted to the proof of the following theorem.

Theorem 3.1. Let m,n ∈ N, m ≤ n, let c ≥ 1, and let C be a normal set of metrics. Let d be a
metric on n points such that every m-point subspace Q has dist(dQ ↪→ C) ≤ γ. Then,

dist(d ↪→ C) = O

(
γ ·

( n

m

)2
)

.

We require a definition. Let d be a distance function. A tree-like extension of d is a distance
function d′ which is obtained from d by repeatedly performing the following attachment operation:
Pick a point p and a weight w ≥ 0, “attach” to p a new point q, and set d′(q, x) = d′(p, x) + w for
all points x.

Lemma 3.2. Let C be a normal set of metrics, let d ∈ C, and let d′ be a tree-like extension of d.
Then d′ ∈ C.

Proof. Clearly, it suffices to prove this for a single attachment operation. Let dp be the metric
obtained from d by adding a clone q of a point p. Let δ be the cut metric defined by δ(x, y) = 1 if
exactly one of the points x, y is q, and δ(x, y) = 0 otherwise. Both dp and δ are in C (the former by
definition, the latter because C must contain all cut metrics). Attaching q to p at distance w gives
the metric d′ = dp + w · δ. As C is a closed cone, d′ ∈ C. �

Next, we introduce the construction that will be used in the proof of Theorem 3.1. Let d be
a metric on the finite set of points P = {p1, p2, . . . , pn}. Let m ∈ {1, . . . , n}, and let σ ∈ Sn be a
permutation on {1, 2, . . . , n}. We define the metric dσ

m as follows. Let P σ
m = {pσ(1), pσ(2), . . . , pσ(m)}.

The metric dσ
m is a tree-like extension of dP σ

m , generated by attaching, for i = m + 1, . . . , n, the
point pσ(i) to pji at distance wi, where ji ∈ {1, 2, . . . , i − 1} minimizes d(pσ(i), pσ(j)), and wi =
d(pσ(i), pσ(ji)). We now average over σ. For every p, q ∈ P put

d∗
m(p, q) =

1
n!

·
∑
σ∈Sn

dσ
m(p, q).

The proof of Theorem 3.1 now follows.
Proof of Theorem 3.1. Let Tn,m denote the supremum over all n-point metrics d of dist(d, d∗

m).
Clearly, Tm,m = 1. Notice that for every p, q ∈ P , dσ

m(p, q) ≥ d(p, q). On the other hand,

d∗
m(p, q) = Eσ[dσ

m(p, q)] =
2
n

·Eσ [dσ
m(p, q) : σ(n) ∈ {p, q}]+

(
1 − 2

n

)
·Eσ [dσ

m(p, q) : σ(n) �∈ {p, q}] .

Notice that
Eσ [dσ

m(p, q) : σ(n) �∈ {p, q}] = Tn−1,m · d(p, q).

Consider the case that σ(n) = p. As d(p, tn) ≤ d(p, q), so d(tn, q) ≤ 2d(p, q), we have that

Eσ[dσ
m(p, q) : σ(n) = p] = d(p, tn) + Eσ[d∗

m(tn, q) : σ(n) = p] ≤ d(p, q) + Tn−1,m · 2d(p, q).
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The case that σ(n) = q is analogous. Therefore,

Tn,m ≤
(

1 +
2
n

)
· Tn−1,m +

2
n

.

Solving the recurrence, we get that

Tn,m = O

(( n

m

)2
)

.

Notice that Cγ is a normal set of metrics. By the conditions of the theorem, for every m-point
subset Q, dQ ∈ Cγ . Therefore, by Lemma 3.2, for every permutation σ, dσ

m ∈ Cγ . As Cγ is a closed
cone, also dm∗ ∈ Cγ . As dist(d, d∗

m) ≤ (
n
m

)2, the theorem follows.

3.2 Lower Bounds

The main result in this section is the following theorem which implies a nearly tight counterpart
to some of the upper bounds from the previous section.

Theorem 3.3. Let d be the shortest path metric of a random n-node 3-regular graph G = (V,E),
and let 0 ≤ ε ≤ 1. Then, with high probability, for every S ⊆ V with |S| ≤ n1−ε, the corresponding
dS can be embedded in �1 (in fact, even into a distribution over dominating tree-metrics) with
distortion O(1/ε2).

Corollary 3.4. For every ε > 0 and for every integer n ≥ 2, the following statements hold.

1. There is an n-point metric d such that for every n1−ε-point subspace Q, dist(dQ ↪→ �1) =
O(1/ε2) yet dist(d ↪→ �1) = Ω(log n). 1

2. There is an n-point metric d such that for every n1−ε-point subspace Q, dist(dQ ↪→ �2) =
O(1/ε), yet dist(d ↪→ �2) = Ω(

√
log n).

Proof. It is well-known that the distortion of embedding the shortest path metric of an n-node
bounded degree expander into �1 is Ω(log n), so the metric d from Theorem 3.3 satisfies the first
statement. To see the second statement, use the metric

√
d, keeping in mind that the square root

of an �1 metric is an �2 metric. �

To prove the theorem we will use three properties of random graphs. The first two are standard
and well known: (1.) The girth is Ω(log n). (N.B. More correctly, the high girth property holds
only after deleting o(n) edges, but this will not affect the other properties, and in what follows we
shall gloss over this point.) (2.) The diameter is O(log n). The 3rd property is about sparsity of
subgraphs of a random graph, and it is not hard as well (see [2]).

Lemma 3.5. [2] With high probability, the subgraph induced by any subset S of size at most n1−ε

has at most (1 + c
ε log n)(|S| − 1) edges where c is an absolute constant.

Before starting with the proof of Theorem 3.3, let us establish some preparatory lemmas.
Let H = (U,F ) be a subgraph of G of with O(n1−ε′

) vertices. We define two polytopes in R|F |.
The first polytope, P , will be the spanning tree polytope of H, i.e., the set of all vectors that are

1In fact, the lower bound holds even for embedding into neg, the class of negative type metrics (for definition —
see below).
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convex combinations of incidence vectors of spanning trees of H. The second polytope, B, will be
the following axis-parallel box with one corner being the vector of all 1’s.

Bα = {v ∈ R|F ||∀e : α ≤ ve ≤ 1}. (1)

Keeping in mind Lemma 3.5, define p = Θ(ε′ log n) so that for every X ⊆ U , the subgraph of
H induced by X has at most |X| (1 + 1/p) edges. In addition, assume w.l.o.g. that the girth of G
exceeds p.

The following Lemma is key:

Lemma 3.6. Let α ≤ p/(p + 1). Then, P ∩ Bα �= ∅.
Proof. By Farkas’ Lemma, it suffices to show that for any w ∈ R|F |, there exists a vector v ∈ B
such that

max
x∈P

w · x ≥ w · v. (2)

Note that since the extreme points of P are spanning trees of H, the LHS is always maximized by
the incidence vector of some spanning tree. We consider two extreme cases:

1. w ≤ 0: In this case we set vij = 1 for every edge (i, j). The inequality follows.

2. w ≥ 0: In this case we set vij = α for every edge. Suppose the LHS of (2) is maximized by
the spanning tree T . We will prove that the total weight of all the edges in H is only slightly
larger than the weight of T . For this consider the following bipartite graph. The left side of
the bipartition has a point corresponding to each edge of T . The right side has a point for
each edge of H that is not in T . There is an edge (e, f) if e ∈ T belongs to the fundamental
cycle of f �∈ T . Note that the optimality of T implies that we ≥ wf . Let the girth of G be g.
Recall g ≥ p. Thus the degree of each vertex in T is at least p. We claim that this bipartite
graph has a a p-matching: a subgraph with degree 1 for points on the left and degree p for
points on the right. Suppose not. Then there is some minimal subset X on the right side
whose neighborhood N(X) has size |N(X)| < |X|p. Now consider the subtree of T induced
by N(X) (if the edges corresponding to N(X) do not form a connected component, then X is
not minimal). This subtree has |N(X)| + 1 vertices and the subgraph of H induced by these
vertices has at least |N(X)|+ |X| > |N(X)|(1+ 1/p) edges. But this contradicts Lemma 3.5.

The existence of the p-matching implies that the edges of T can be partitioned into p subsets
such that the weight of each subset is more than the weight of all the edges not in T . Thus,

∑
ij

wij ≤
(

1 +
1
p

) ∑
ij∈T

wij .

This implies that inequality (2) holds for any α ≤ p/p + 1.

3. For the general case, take an arbitrary vector w and set cij = 1 for wij ≤ 0 and cij = α if
wij > 0. Consider the connected components induced by the nonnegative edges. For each
component the inequality is implied separately by the second case above. Now shrink all the
components to single vertices. The inequality on the induced graph follows from the first
case. Summing up, (2) is proved.

�
The second preparatory result is about truncated tree-metrics. It is well-known that metrics

induced by trees are isometrically embeddable in �1. We show that truncated tree metrics are
embeddable with a constant distortion.
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Claim 3.7. Given a tree metric t and a number M ≥ 0, let t′ij = min{tij ,M}. Then t′ can be
embedded into �1

2 with constant distortion.

We give two alternative proofs. The first embeds into �1 with distortion at most 2 and the
second into a distribution of dominating tree metrics with distortion O(1).

First proof: We describe a probabilistic embedding φ from the vertices of the tree into �1 with
expected distortion at most 2. This will prove the result since a convex combination of �1 metrics
is itself an �1 metric.

The embedding will have D coordinates. Let u1, u2, . . . , uD be the D axis vectors. Label each
edge of the underlying tree with one of the D axis vectors, chosen at random.

Next, fix a root vertex and embed it in the origin. Every other vertex i is mapped to the point∑
k bku

k where bk ∈ {0, 1} is 1 iff uk occurs an odd number of times as a label of the edges on the
path from the root to i.

Clearly, |φ(i) − φ(j)| ≤ d′
ij always.

For the lower bound, we consider the expected distance between two vertices i and j. We
are choosing dij vectors independently from D possibilities at random (with replacement). The
expected value of |φ(i) − φ(j)| is the expected the number of vectors that are chosen an odd
number of times. This is at least 1

2 min {dij ,D}.

Second proof: Let T be the tree corresponding to t. Build a (weighted) graph T ′ by introducing
a new vertex u, and connecting it to every vertex of T by an edge of length M/2. Observe that the
shortest-path metric of T ′ restricted to V (T ) is precisely t, and that T ′ happens to be 2-outerplanar.
By [9], this implies that t′, and hence t, can be embedded into a distribution of dominating tree
metrics (and thus into �1) with constant distortion.

We are now ready to prove Theorem 3.3.
Proof of Theorem 3.3: Fix a subset S with at most n1−ε vertices, and consider the corresponding
induced metric dS . Recall the definition of a spanner of (S, dS): it is a graph Y = (S,L) on the
vertex set S, such that the weight of an edge (i, j) ∈ L is dS(i, j). By [1], there exists a spanner Y
of (S, dS) such that |L(Y )| ≤ n1−ε ·nε/2 = n1−ε/2, and the shortest-path metric of Y approximates
dS up to a factor O(1/ε).

Let H = (U,F ) be the subgraph obtained by including all the edges on the shortest paths
between pairs of vertices i, j ∈ S, such that (i, j) ∈ L(Y ). Since the diameter of G is O(log n), H
has O(n1−ε/2 log n) vertices.

We will show that the shortest-path metric dH induced by H can be embedded into a distribution
of dominating tree metrics with distortion O(1/ε). Hence, dS embeds into such a distribution with
distortion 1/ε · 1/ε, and the theorem follows.

Indeed, applying Lemma 3.6 to H, we conclude that there is a probability distribution on
spanning trees {Ti} of H such that each edge of H occurs with probability at least α = p/(p + 1),
where p = Θ(ε log n). Let D = O(log n) be the diameter of H.

For each Ti in the distribution, consider the corresponding metric ti = min{D, dTi}. Define a
metric t =

∑
witi , where wi is the weight of Ti in the distribution. Clearly, t dominates dH . To

upper-bound dist(t, dH), consider an edge of H. It’s t−length is at most

1 · α + D · (1 − α) ≤ 1 + D

1 + p
=

1 + O(log n)
Θ(ε log n)

= O(1/ε) .

2In fact, �1 can be replaced by a distribution of dominating tree-metrics, a more restricted class of metrics.
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Thus, dist(t, dH) = O(1/ε) .
To conclude the proof, recall that by Claim 3.7, every ti, and hence t can be embedded in a

distribution of H-dominating tree metrics with a constant distortion.

We now turn our attention to the case where subspaces embed isometrically into an interesting
class of metrics. Our lower bounds in this case are much weaker. In order to state our results, we
need a few definitions.

A distance function d is k-gonal iff for every two sequences of points p1, p2, . . . , p�k/2� and
q1, q2, . . . , q�k/2� (where points are allowed to appear multiple times in each sequence) the following
inequality holds:

�k/2�∑
i=1

�k/2�∑
j=1

d(pi, qj) ≥
�k/2�∑
i=1

�k/2�∑
i′=1

d(pi, pi′) +
�k/2�∑
j=1

�k/2�∑
j′=1

d(qj , qj′).

We use Mk denote the class of all k-gonal distance functions. Clearly, M3 is simply all metrics.
Also, for every k ∈ N, k ≥ 2, Mk+2 ⊂ Mk and Mn

2k−1 ⊂ Mn
2k. On the other hand, for every

k ∈ N, k ≥ 1, distance functions in Mn
2k are not necessarily metrics. The class of all negative type

distance functions is

neg =
∞⋂

k=2

M2k.

Schoenberg showed that d ∈ neg iff
√

d embeds isometrically into �2. The class of all hypermetrics
is

hyp =
∞⋂

k=2

M2k−1.

Thus, all hypermetrics are negative type metrics. It is known that all �1 metrics are hypermetrics.
All classes of metrics discussed above (except for �2 metrics) are normal.

A theorem in [11], combined with an argument similar to the proof of Corollary 3.4 gives the
following theorem. The proof is omitted from this extended abstract.

Theorem 3.8. For every integer n ≥ 2 and for every k ∈ N, k ≤ n, the following statements are
true:

1. There exists an n-point k-gonal metric d such that dist(d ↪→ neg) = Ω
(
(log n)log2(1+1/(�k/2�−1))

)
.

2. There exists an n-point metric d such that every k-point subspace is hypermetric, yet dist(d ↪→
neg) = Ω

(
(log n)log2(1+1/(k−1))

)
.

3. There exists an n-point metric d such that every k-point subspace embeds isometrically in �2,
yet dist(d ↪→ neg) = Ω

(
(log n)

1
2 log2(1+1/(k−1))

)
.

4 Ultrametrics

The set of ultrametrics is the set of metrics

ult = {d : d(p, q) ≤ max{d(p, r), d(q, r)}, ∀p, q, r} .

All ultrametrics embed isometrically into �2. Notice that ult is not normal, so the results from
the previous section do not apply to this set. We use the following basic fact about ultra-
metrics. Consider a metric d. Given two points x, y, an xy-path P is a sequence of points

8



(x = p0, p1, p2, . . . , pm = y) of arbitrary length. We say that p, q ∈ P iff there exists j ∈ {1, 2, . . . ,m}
such that p = pj−1 and q = pj. For every two points x, y put

u(x, y) = min
xy-paths P

{max{d(p, q) : pq ∈ P}} .

Theorem 4.1 (Farach-Colton [12]). The distance function u is an ultrametric which is dom-
inated by d (i.e., u(x, y) ≤ d(x, y), for every x, y ∈ X). Moreover, every ultrametric u′ that is
dominated by d is also dominated by u.

As an immediate corollary we get the following criterion.

Corollary 4.2. Let c ≤ 1 be the maximum value such that for every x, y ∈ X, every xy-path P
contains pq ∈ P such that d(p, q) ≥ c · d(x, y). Then, dist(d ↪→ ult) = c−1.

Using this criterion we establish the following theorem.

Theorem 4.3. Let c ≥ 1, and let ε > 0. Let d be an n-point metric such that for every nε-point
subspace Q, dist(dQ ↪→ ult) ≤ c. Then,

dist(d ↪→ ult) = c�1/ε�.

This bound is essentially tight.

Proof. For the upper bound, it suffices to show that for n = mk − mk−1 + 1, k ∈ N, it holds that
dist(d ↪→ ult) ≤ ck. The proof is by induction on k. For k = 1 the theorem is trivially true. For
k > 1, by Corollary 4.2, it suffices to show that for every x, y ∈ X, any simple xy-path P contains
pq ∈ P with d(p, q) ≥ d(x, y)/ck . Let P = (x = v1, v2, . . . , vr = y), r ≤ n, be such a path. Consider
the xy-path P ′ = (v1, vm, v2m−1, v3m−2, . . . , vr). As P ′ has at most 1+n−1

m = mk−1−mk−2+1 points,
the induction hypothesis implies that there exists vj−1vj ∈ P ′ with d(vj−1, vj) ≥ d(x, y)/ck−1.
Consider the segment of P (vj−1, . . . , vj) containing at most m points. By the base case of the
induction, there exists pq ∈ (vj−1, . . . , vj) such that d(p, q) ≥ d(vj−1, vj)/c ≥ d(x, y)/ck .

For the lower bound, consider the metrics dc
n, where dn is the shortest path metric of the n-node

cycle and c ∈ [0, 1]. The reader can verify easily using Corollary 4.2 that dist(dc
n ↪→ ult) = Ω(nc),

whereas for every subspace on nε points, the restriction d′ of dc
n to this subspace has dist(d′ ↪→

ult) = O(nεc). �

Remark 4.1. The metrics dc
n are, in fact, Ω(nc) far from the more set of general tree metrics (by

the argument from [21, Corollary 5.3]). Hence, the lower bounds hold for tree metrics as well.

5 Separating a Normal Metric Class from �∞

Let C be a normal metric class such that there exists a metric µ �∈ C. How well can the metrics from
C approximate general metrics? The following purely existential result of Matousek [18] implies a
separation between the class of all metrics and C, i.e., for every γ > 1 there exists a metric D such
that dist(D ↪→ C) ≥ γ.

Theorem 5.1. For every finite metric µ and any constants ε > 0, γ > 1, there exists a (larger)
finite metric D such that, for any metric M on the same set of points as D, if dist(D,M) ≤ γ,
then M contains a submetric µ′ with dist(µ, µ′) ≤ (1 + ε) .

We conjecture that a much stronger separation holds.
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Conjecture 1. For any n ∈ N, there exists an n-point metric dn such that dist(dn ↪→ C) ≥
Ω(logα n) for some constant α > 0.

In what follows, we produce a supporting evidence for this conjecture by proving its analogue
for normed spaces. Unlike in the rest of the paper, we assume here that C contains not only
finite metrics, but also metrics whose underlying space is the entire Rn or Zn, and, in particular
{�n

1}∞
n=1 ∈ C.

Theorem 5.2. Let C be a normal metric class, and assume that there exists a metric µk on k
points such that dist(µk ↪→ C) = β > 1. Then, for any C-metric d on Rn, it holds

dist(d, �n
∞) = Ω(nα), where α ≈ 1

2
β − 1
β + 1

1
ln k

.

Observe that the gap between the two may not exceed
√

n, the gap between �n∞ and �n
2 ⊂ C.

The proof of the theorem uses the following lemma.

Lemma 5.3. For any d ∈ C on Rn, there exists a norm ‖ ∗ ‖ ∈ C on Rn, such that

dist(�n
∞, ‖ ∗ ‖) ≤ dist(�n

∞, d) . (3)

The proof of this lemma appears in the Appendix.
Next, we need the following quantitative version of a theorem by James [15], communicated to

us, together with an outline of its proof, by W.B. Johnson and G. Schechtman:

Theorem 5.4. Assume that γ = (1 + δ)2
r
, and n ≥ k2r

, where r, k ∈ N, and 0 ≤ δ < 1. Then, if
an n-dimensional norm ‖ ∗ ‖ is γ-close (in the sense of metric distortion) to �n∞, then there exists
a subspace L of Rn of dimension dim(L) = k, such that the restriction of ‖ ∗ ‖ to L is 1+δ

1−δ -close
to an �∞ norm on L.

The theorem as stated follows from a lemma from [20], pp.74-75, which establishes L of dimen-
sion k, such that the restriction of ‖ ∗ ‖ to L satisfies

‖
∑

i

αivi‖ ≤ (1 + δ) · max
i

|αi| · ‖vi‖ ,

and a simple claim [W.B. Johnson and G. Schechtman, private communication] that

‖
∑

i

αivi‖ ≤ (1 + δ) · max
i

|αi| · ‖vi‖ ⇒ ‖
∑

i

αivi‖ ≥ (1 − δ) · max
i

|αi| · ‖vi‖ .

Finally, we directly approach Theorem 5.2. Assume for simplicity that n is of the form n = k2r
.

Since the metric µk �∈ C, being a metric on k points, isometrically embeds into �k∞, we conclude by
Theorem 5.4 that for any C-norm ‖ ∗ ‖ on Rn it holds

dist(‖ ∗ ‖, �n
∞) ≥

(
1 +

β − 1
β + 1

)2r

.

The same estimate holds, by Lemma 5.3, for any metric d ∈ C on Rn. Thus, for such n, the theorem
holds with constant α = logk

(
1 + β−1

β+1

)
.

If n is not of the form k2r
, take the largest such power ≤ n, at the cost of paying an extra factor

1/2 in the above α. This concludes the proof of Theorem 5.2.
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6 Concluding remarks

We already mentioned the main open problem in the introduction, namely, to understand to what
extent we can understand metrics whose small sets embed isometrically into �1. Theorem 3.8
provides a good starting point for a further research.

Approximating general (or special) metrics by metrics from some nontrivial normal class C
may have interesting algorithmic applications. We conjecture that for any n ∈ N, there exists an
n-point metric dn such that dist(dn ↪→ C) ≥ Ω(logα

n) for some constant α > 0 depending on C.
A corresponding upper bound with α < 1 would be most interesting. Regarding special metrics,
it would be interesting to show, e.g., that any planar metric can be approximated by a metric in
M6 with constant distortion. This is closely related to the famous question about �1-embeddability
of planar metrics (see, e.g., [14]). Gupta [13] showed that planar metrics embed with constant
distortion into neg, and hence into M2k.

It might be of interest to study the implications of a local property on a different global property.
For example, the extremal metrics constructed in the proof of Theorem 4.3, while far from being
ultrametrics, are essentially very simple metrics. In particular, they are outerplanar and, up to
a factor of π/2, Euclidean. It makes sense to ask, for example, if metrics that are locally almost
ultrametric are globally almost �1 metrics.

The findings of this paper and other results indicate that the shortest path metrics of random
k-regular graphs have a surprisingly simple local structure. Further research leading to a better
understanding of this local structure, may prove useful for constructing lower bounds.
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A Proof of Lemma 5.3:

W.l.o.g., in what follows we restrict our attention to d’s dominating �n∞, and respectively, speak of
(supremum) stretch incurred by d instead of speaking of distortion. It will be convenient to bring
the discussion back to the realm of discrete metric spaces. Instead of proving (3) for Rn, we shall
prove it for Zn. Clearly, this is a fully equivalent statement. Observe that a norm on Zn is just a
translation-invariant scalable metric.

First, we construct a translation-invariant metric d∗ ∈ C on Zn, such that the stretch incurred
by d∗ is no more than that of d. The construction is as follows. Given d and a point p ∈ Zn, define
a metric d+p on Zn by

d+p(x, y) = d(x + p, y + p) .

12



Observe that by the symmetry of C, d+p(x, y) ∈ C. Moreover, it dominates Zn equipped with the
�n∞ metric, and has the same stretch as d.

Consider a sequence of metrics d = d0, d1, d2, . . . defined by:

di =
1

|[−i..i]n|
∑

p∈[−i..i]n
d+p .

Clearly, di ∈ C, it dominates the �n∞ metric, and the stretch incurred by di is no more than that
incurred by d. Observe also that For every x, y ∈ Zn we have

lim
i→∞

|di(x, y) − di(0, y − x)|

= lim
i→∞

∣∣∣∣∣∣
1

(2i + 1)n
∑

p∈{−i,...,i}n

d(x + p, y + p) − 1
(2i + 1)n

∑
p∈{−i,...,i}n

d(p, y − x + p)

∣∣∣∣∣∣
≤ lim

i→∞
1

(2i + 1)n
∑

p∈({−i,...,i}n�({−i,...,i}n−x))

d(x + p, y + p)

≤ lim
i→∞

1
(2i + 1)n

· 2n · ‖x‖∞ · (2i + 1)n−1 · dist(�n
∞, d)‖x − y‖∞

= 0.

Next, we employ the following standard procedure. Order all vectors of Zn in some order v1, v2, v3, ....
Consider an infinite subsequence of {di} such that the value of di(0, v1) converges on it; call this
limit ν(v1). Do the same with the latter subsequence to obtain ν(v2) and a sub-subsequence, and
continue in the same manner ad infinitum. Finally, for each x, y ∈ Zn, define

d∗(x, y) = ν(y − x) .

The above observation implies that d∗ is indeed a translation-invariant metric. Clearly, d∗ ∈ C, it
is �n∞-dominating, and the stretch incurred by it is bounded by the stretch incurred by d.

Second, we use d∗ to construct d∗∗ ∈ C with the same properties, which is not only translation-
invariant, but also scalable. The construction is similar to the previous one, but is a bit simpler.
Consider a sequence of translation-invariant metrics d(0), d(1), d(2), . . . defined as follows:

d(r)(x, y) = 2−r d∗(2r · x, 2r · y) .

Observe that d(r)’s are (pointwise) monotone non-increasing with r, since for any a ∈ N+, and for
a = 2 in particular, d∗(ax, ay) ≤ ad∗(x, y) due to translation-invariance of d∗.

Taking the limit of d(r)’s we obtain the desired d∗∗. It is easy to check that d∗∗ has all the
required properties. E.g., the scalability holds, since, by the previous observation, the limit
limr→∞ a−1d(r)(ax, ay) exists for every natural a. Therefore d∗∗ is scalable with respect to all
a ∈ N+, and hence with respect to all a ∈ Q+, as required.
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