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ABSTRACT
Lovász and Schrijver described a generic method of tight-
ening the LP and SDP relaxation for any 0-1 optimization
problem. These tightened relaxations were the basis of sev-
eral celebrated approximation algorithms (such as for max-
cut, max-3sat, and sparsest cut).

We prove strong inapproximability results in this model
for well-known problems such as max-3sat, hypergraph
vertex cover and set cover. We show that the relax-
ations produced by as many as Ω(n) rounds of the LS+

procedure do not allow nontrivial approximation, thus rul-
ing out the possibility that the LS+ approach gives even
slightly subexponential approximation algorithms for these
problems.

We also point out why our results are somewhat incom-
parable to known inapproximability results proved using
PCPs, and formalize several interesting open questions.
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F.1.3 [Computation by Abstract Devices]: Complexity
Measures and Classes
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1. INTRODUCTION
The past decade has seen a dramatic improvement of our

understanding of the approximation properties of many NP-
hard optimization problems. Many new approximation algo-
rithms were designed, especially using linear programming
(LP) or semidefinite programming (SDP) relaxations. For
many problems it was proved using probabilistically check-
able proofs (PCPs) that these algorithms are the best pos-
sible polynomial-time algorithms unless P = NP.

This paper is motivated by two nagging facts about the
state of the art. First, for some problems there is a large
gap between the approximation ratio achieved by the best
algorithms known and the approximation ratio ruled out
by PCP-based results. For instance, the two ratios are 1.5
and 1.02 respectively for metric TSP, and 2 and 1.36 . . . re-
spectively for vertex cover in graphs. Second, current
PCP-based results do not rule out the existence of slightly
subexponential-time approximation algorithms. This hap-
pens because they often use reductions that greatly increase
the instance size. For example, the reduction from 3sat
to vertex cover by Dinur and Safra [5] reduces 3sat in-
stances of size n to 1.36-approximation for vertex cover
on graphs of size nC where C is an astronomical constant.
Thus it does not rule out that 1.2-approximation to vertex

cover is possible in say 2n0.01
time—an interesting possi-

bility.
A recent paper of Arora, Bollobás, and Lovász [1] pointed

out both these issues. It also suggested a concrete approach
to study such questions: rule out good approximation algo-
rithms that use “standard methods” of writing LP and SDP
relaxations. After all, even though linear programming is
P-complete, and hence in principle capable of representing
arbitrary polynomial-time computations, current approxi-
mation algorithms are designed by writing LP relaxations
in a certain way. A lowerbound for “large” families of re-
laxations could thus be viewed as a lowerbound for a re-
stricted but important computational model (analogous to
lowerbounds for restricted circuit classes or proof systems).
Arora et al. proved that several families of relaxations can-
not achieve an approximation ratio better than 2 − o(1) for
vertex cover. Related work of this nature is described
below.

In this paper, we concentrate on lowerbounds for the ap-
proximation ratio of relaxations obtained by a general tech-
nique defined by Lovász and Schrijver [12]. (A related “lift
and project” technique was also proposed by Sherali and
Adams [14].) Given an arbitrary relaxation of a 0-1 opti-



mization problem, this gives two procedures LS and LS+

for obtaining tighter and tighter relaxations for the integral
polytope (formal definitions appear in Section 2). The re-

laxation obtained from r rounds is solvable in nO(r) time.
Thus though r = O(1) is the most interesting case, if we
are also interested in subexponential algorithms then any
value of r less than n/ log n is also interesting. In gen-
eral n rounds suffice to obtain the integral polytope, which
achieves an approximation ratio 1. But it is conceivable
that much fewer rounds suffice to get a very nontrivial ap-
proximation ratio. The well-known SDP relaxation in the
Goemans-Williamson [9] 0.878-approximation to max-cut
is obtained by using one round of LS+ on the standard LP
relaxation, and the SDP relaxation with triangle inequali-
ties used in the recent Arora-Rao-Vazirani [2] approximation
for sparsest cut is implied by three rounds of LS+. (See
Appendix B.)

We show that Ω(n) rounds of LS+ do not suffice to achieve
the following approximations for any ε > 0: (i) approximat-
ing max-3sat within a factor better than 7/8 − ε, (ii) ap-
proximating vertex cover in rank-k hypergraphs within a
factor better than k − 1− ε, (iii) approximating set cover
within a factor better than (1 − ε) lnn.

Note that there are inapproximability results in the PCP
setting where all the above factors appear [4, 10, 6, 13].
However, as mentioned already, those results use reductions
that greatly blow up the instance size, and hence imply the
above integrality gaps—under any complexity assumption at
all—for only nδ rounds (here δ > 0 is some small constant)
instead of for Ω(n) rounds. Moreover, for set cover the
PCP results are even weaker: an integrality gap of (1−ε) ln n

for is implied only for no(1) rounds [6]. (The PCP results for
set cover in [13] do imply an Ω(log n) gap for nδ rounds
for some constant δ > 0; however the gap given is at most
c log n for some small constant c.)

We further note a curious difference between the above
lowerbounds for LS+ and PCP-based inapproximability re-
sults. In the PCP world, once we have proved an inapprox-
imability results for “canonical” problems such max-3sat,
we can use reductions to prove inapproximability results for
many other problems. Proving integrality gaps via reduc-
tions in the LS world seems much harder if not impossible.
In general this should not be surprising, since reductions
use arbitrary polynomial-time computations, which may be
outside the purview of the limited “reasoning” available in
the LS+ system (note that LS+ is technically a proof sys-
tem). What is more surprising to us is that even the sim-
ple gadget-based reductions typically encountered in NP-
hardness proofs seem outside the purview of LS+ reasoning.
To give an example, approximating max-3sat within a fac-
tor better than 7/8 is reducible via a textbook reduction
(carried out entirely with local gadgets) to approximating
vertex cover in graphs within a factor better than 17/16.
Nevertheless, we are unable to rule out 17/16 − ε (or even
weaker) approximations to vertex cover in graphs, even
though we have ruled out 7/8 − ε approximations to max-
3sat. We describe the difficulties in Section 7.

This raises the tantalizing possibility that the familiar in-
terrelationships among approximation problems that have
emerged in the past decade breaks down when one consid-
ers subexponential time approximation algorithms. Only
further work can resolve such issues, and we list some inter-
esting open problems later. (We should mention that our

lowerbound results were motivated by a failure to prove up-
perbounds.)

1.1 Comparison with related results.
Goemans and Tunçel [8] show that that LS+ procedure

cannot derive some simple inequalities in Ω(n) rounds, show-
ing its limitations. Results relating to integrality gaps ap-
pear in more recent papers. Arora et al. [1] show that the
integrality for vertex cover remains 2− δ after Ω(

√
log n)

rounds of LS. Feige and Krauthgamer [7] show a large gap
remains for the maximum independent set problem after
Ω(log n) rounds of LS liftings.

Buresh-Oppenheim et al. [3] considered the problem of
proving integrality gaps from the angle of propositional proof
complexity. In the proof complexity setting, LS-type proce-
dures can be viewed as deduction systems with a prescribed
set of derivation rules. The axioms are the polytope con-
straints and the derivation rules give the inequalities implied
by one round of LS+ (for more details on the relation of refu-
tations and LS+ approximation algorithms see Section 7).
Their paper [3] shows a linear lower bound on the number of
LS+ rounds needed to refute an unsatisfiable linear system
for ksat and kxor-sat when k ≥ 5. In particular, for k ≥ 5
they prove that a linear number of rounds of LS+ is needed
to obtain an integrality gap better than (2k − 1)/2k − ε for
max-ksat. The cases when k ≤ 4 are left open.

With a couple of exceptions, lowerbounds in all prior pa-
pers use a simple “protection lemma” due to Lovász and
Schrijver (see the discussion after Lemma 2.1 in Section 2).
This lemma gives a sufficient condition for a point x outside
the integral hull to survive one round of lifting. More gener-
ally, the protection lemma shows that such a point survives r
rounds if some specific set T of points (given by the Lemma
statement) survives r − 1 rounds. In the Lovász-Schrijver
protection lemma, T is a set of 2n points that differ from
x in exactly one coordinate. (The lone exceptions are two
proofs in [12] and [1] where the set T is obtained by LP
duality and not explicitly described.) The simple protection
lemma fails to prove the integrality gaps that interest us,
and we introduce a new protection lemma that may be of
interest in subsequent work. One curious feature is that in
order for this protection lemma to work for even one round,
we need the underlying problem instance to have some ex-
pansion properties. In fact, expansion plays a key role in
our lowerbounds.

Note that expansion also played a big role in Buresh-
Oppenheim et al. [3], which was the inspiration for our work.
Their techniques allow integrality gaps (albeit loose ones) to
be shown for vertex cover on rank-k hypergraphs for big
values of k. However, their techniques seem to break down
for k = 3 and k = 4—the most interesting cases after k = 2,
which is of course vertex cover on graphs. For related
reasons their techniques also fail when trying to prove opti-
mal integrality gaps for max-3sat and max-4sat. To prove
our results we introduce, in addition to the above-mentioned
new protection lemma, a subtle expansion correction strat-
egy. We think that both ideas may prove useful in future
work.

2. RELAXATIONS, TIGHTENINGS AND
OUR METHODOLOGY

Using the vertex cover problem (for graphs) we ex-



plain relaxations and how to tighten them using LS+ lift-
ing. The integer program (IP) characterization for a graph
G = (V, E) is: minimize

�
i∈V vi such that vi + vj ≥ 1 for

all {i, j} ∈ G in the graph, where vi ∈ {0, 1}. The inte-
ger hull denoted I , is the convex hull of all solutions to this
problem. The standard LP relaxation is to allow 0 ≤ vi ≤ 1.
The value of the LP is no more than that of the IP. Let P be
the convex hull of all solutions vectors in [0, 1]n to the LP.
A linear relaxation is tightened by adding more and more
constraints that also hold for the integral hull; in general
this gives some polytope P ′ such that P ⊆ P ′ ⊆ I .

The quality of a linear relaxation is measured by the ratio
optimum value over I
optimum value over P

, usually called its integrality gap. For

the vertex cover relation, this ratio is 2. (Note: When
designing approximation algorithms, one also needs some
kind of rounding algorithm to convert fractional solutions to
integer ones in polynomial time, but we ignore this aspect.)

Lovász and Schrijver [12] present a so-called “lift-and-
project” technique for deriving tighter and tighter relax-
ations of a 0-1 integer program. The n dimensional relaxed
polytope is lifted to n2 dimensions, new constraints are in-
troduced, and then projected back into the original space.

The notation for these LS liftings (sometimes also referred
to as LS matrix cuts) uses homogenized inequalities. In
particular, given a polytope P ⊆ R

n for a linear relaxation,
let Q ⊆ R

n+1 be the cone {�a
�x

�
: �x/a ∈ P}. For example, if P

is the vertex cover polytope, then (x0, x1, . . . , xn) ∈ Q iff
the edge constraints xi + xj ≥ x0 hold for all edges {xi, xj}
in the graph. Denote by Nr(Q) and Nr

+(Q) the feasible
cone of all inequalities derivable in r rounds of the LS and
LS+ lifting procedure, respectively. Let N0(Q) = N0

+(Q) =
Q. The rth round polytope is then obtained by projecting
along the hyperplane x0 = 1. We will often abuse notation
and write Nr

+(P ) to indicate the polytope obtained after r
rounds of LS+ lifting. Lovász and Schrijver prove that if
there exists a polynomial time separation oracle for P then
one can optimize a linear function over Nr(P ) and Nr

+(P )

in time nO(r).
The following lemma from [12] characterizes the N and

N+ operators. (Note that in the lemma and the remainder
of this paper we will index columns and rows of a matrix
starting from 0 rather than 1.)

Lemma 2.1. Let Q be a cone as defined above. Then
y =

�
1
�x

�
is in N(Q) iff there is a symmetric matrix Y ∈

R
(n+1)×(n+1) such that:

1. Y e0 = diag(Y ) = y,

2. Y ei, Y (e0 − ei) ∈ Q, for all i = 1, . . . , n.

Condition 2 can be equivalently stated as:

2′. For each i such that xi = 0, Y ei = 0; for each i such
that xi = 1, Y ei = y; Otherwise Y ei/xi and Y (e0 −
ei)/(1 − xi) are both in P (i.e., the projection of Q
along x0 = 1).

Finally, y =
�
1
�x

�
is in N+(Q) iff in addition Y is positive

semidefinite.

It can be verified from the definition that Nr+1
+ (Q) ⊆ Nr

+(Q).

Notice, to prove that y ∈ Nr+1
+ (Q), we have to construct a

specific matrix Y and prove that the 2n vectors defined in
Lemma 2.1 are in Nr

+(Q). Choosing such a Y gives what

Buresh-Oppenheim et al. call a “protection lemma”: a point
survives one round of LS if the 2n vectors given by Y are
in the previous polytope.

The simplest Y one could conceive of is Yij = yiyj (this is
trivially positive semidefinite); however, this matrix satisfies
diag(Y ) = y only if y is a 0-1 vector. Indeed, this proves
that all polytopes resulting from LS-type liftings contain the
integral hull. The next simplest Y one could conceive is Y =
yyT + Diag(y − y2), that is, the matrix that has Yij = yiyj

except along the diagonal where Yii = yi. For y ∈ [0, 1]n this
is clearly positive semidefinite, and indeed, this matrix was
used in early results by Lovasz-Schrijver [12] and Goemans-
Tuncel [8], and more recently, Buresh-Oppenheim et al. [3].

With this choice of Y , the vectors Y ei/xi and Y (e0 −
ei)/(1 − xi) are obtained by changing one coordinate in y
to a 0 or a 1. However, for max-3sat and hypergraph ver-
tex cover, these vectors are not guaranteed to be in the
polytope. Thus other than for the set cover problem, this
simple protection lemma does not suffice for us.

Our response is to use a more complicated Y , such that
most entries satisfy Yij = yiyj , but some don’t. Then the
2n vectors generated above correspond to modifying Y in
a small number of entries. (A similar idea occurred in [1],
except the Y there was not explicit.) This is at the heart of
our new protection lemmas for max-3sat and hypergraph
vertex cover. To make this choice of Y work out, we need
certain expansion requirements to be met.

With our “protection lemma” in hand, the lowerbound
strategy will be as follows: Given our relaxed polytope P ,
we identify a point w ∈ P for which the ratio between the
integral optimum and the value of the objective function at
w is large. We will then prove the lowerbound by show-
ing that w survives many rounds of LS+. We do this via a
Prover-Adversary game where the Prover is trying to prove
that w ∈ Nr

+(P ) and the Adversary’s goal is to show the
opposite. For the Adversary to win, it will suffice for him to
exhibit a vector amongst the 2n vectors given by our “pro-
tection lemma” that is not in Nr−1

+ (P ). He picks such a vec-

tor x and “challenges” the Prover to show it is in Nr−1
+ (P ).

Things continue this way, and the Prover loses if she cannot
keep the game going for r steps. To keep the argument clean,
we need to maintain the vector x in a nice form through-
out the game. To this end, we borrow an idea from [3]:
during each round, to prove that a particular point x is in
a certain polytope, the Prover can also choose to express
the point as a convex combination

�
j ρjzj and claims that

every zj ∈ Nr−1
+ (P ) (and consequently so is x). To counter

this claim, the Adversary picks some zj which he thinks is
not in Nr−1

+ (P ), and the game continues for that vector. We
will show that if the constraints defining P satisfy certain
expansion requirements, then for appropriate w, the Prover
has a linear round strategy against any Adversary.

3. INCIDENCE GRAPHS OF CONSTRAINTS
AND THEIR PROPERTIES

Given a hypergraph G = (V, E), let HG be the bipartite
incidence graph on E × V where each each hyperedge is
connected to the vertices it contains. We will often use the
notion of expansion in a bipartite graph.

Definition 3.1. A bipartite graph G = (V1, V2, E) is an
(r, c)-expander if every subset S ⊆ V1, |S| ≤ r, satisfies



|Γ(S)| ≥ c|S|, where Γ(S) is the set of neighbours of S in
V2.

Throughout this paper we will deal with constraints of the
form

�
i vεi

i ≥ 1 where vεi
i represents vi if εi = 1 and vεi

i

represents 1 − vi if εi = 0. Say that a variable vεi
i occurs

negated in a constraint if εi = 0. Let C be a set of such
constraints on a set V of n variables. Given an assignment
vector x ∈ [0, 1]n for V , we define C(x) to be the set of
constraints obtained from C as follows: (a) If xi = 0, remove
all constraints containing vi negated; (b) if xi = 1, remove
all constraints containing vi unnegated; and (c) remove all
variables set to 0-1 by x from the remaining constraints.
Intuitively, C(x) is the set of simplified constraints in C not
trivially satisfied by x. In particular, if x satisfies C(x), then
x satisfies C.

Let V (x) be the set of those variables in V not set to
0-1 by x and let H(x) be the bipartite incidence graph on
C(x)×V (x); that is, for each constraint in C(x) there is an
edge to every variable it contains. Let H be the incidence
graph on C ×V . We will say that C(x) is an (r, c)-expander
if H(x) is an (r, c)-expander. We will say that the arity of
a constraint is t if it has t neighbours in H(x). For a subset
S ⊆ C(x) of constraints, denote the variables in S (i.e., the
neighbours of S in H(x)) by Γ(S).

Usually C(x) will have some expansion property, and in
particular will be at least a (2, k−1− ε)-expander. Then all
constraints in C(x) will have arity at least k − 1. Moreover,
whenever C(x) is an expander, constraints of arity k−1 will
enjoy some special properties of which we will take advan-
tage. For a vector x ∈ R

n, let R(x) denote the set of all
indices to non-integral coordinates of x.

Definition 3.2. Let 0 < ε < 1/2 and x ∈ {0, 1
k−1

, 1}n

and suppose C(x) is a (2, k − 1 − ε)-expander. Two indices
i, j ∈ R(x) are C(x)-equivalent (written i ∼C(x) j) if there
is a constraint in C(x) of arity k − 1 containing vi and vj .
Let E(x) ⊆ R(x) contain all indices i ∈ R(x) for which there
exists j ∈ R(x), j 	= i such that i ∼C(x) j.

The following proposition will be used repeatedly in our
lower bound proofs and follows easily from expansion.

Proposition 3.3. Let 0 < ε < 1/2 and x ∈ {0, 1
k−1

, 1}n

and suppose C(x) is (2, k − 1 − ε)-expanding.

Fact 1. A given variable can only occur in one arity k−1 con-
straint in C(x). Hence, each C(x)-equivalence class
has exactly k − 1 elements.

Fact 2. Any given constraint in C(x) (other than the arity
k − 1 constraint defining the equivalence) can contain
at most one variable from any given C(x)-equivalence
class.

4. LOWERBOUNDS FOR HYPERGRAPH
VERTEX COVER

Let G = (V, E), E ⊆ V k, be a k-uniform hypergraph.
The vertex cover problem for G is to find the smallest subset
S ⊆ V such that all hyperedges in G contain at least one
element from S. The problem is expressed by the following
integer program where variable vi ∈ {0, 1} corresponds to

vertex i in the graph:

min
�

vi∈V

vi

k�
j=1

vj ≥ 1, ∀(v1, . . . , vk) ∈ E.

Let us relax to 0 ≤ vi ≤ 1. Let VC(G) then be the poly-
tope consisting of all points w ∈ R

n satisfying the relaxed
constraints, that is, w ∈ R

n is in VC(G) if setting vi = wi

for all i results in all relaxed constraints being satisfied. It
is easy to see for the complete k-uniform hypergraph on n
vertices the optimal value of the integer program is n−k+1
while the optimum value of the relaxed linear program is
n/k. Therefore, the integrality gap between the integer and
linear programs is at least k − o(1).

We prove that even after a linear number of rounds of
LS+ tightenings of VC(G) there still exists some graph for
which the integrality gap is k − 1 − o(1).

Theorem 4.1. Let k ≥ 3. For all α > 0 there exist γ >
0 and a k-uniform hypergraph G such that the integrality
gap of any γn round LS+ relaxation of VC(G) is at least
(k − 1)(1 − α).

Given G = (V, E), let CG be the set of hyperedge con-
straints defining VC(G). Since the underlying graph G will
usually be clear, we omit the subscript unless extra pre-
cision is needed. In this section we will always have x ∈
{0, 1

k−1
, 1}n and C(x) will be at least a (2, k−1−ε)-expander.

Then all constraints in C(x) will have arity at least k − 1
and the following will hold:

Proposition 4.2. Let 0 < ε < 1/2, and x ∈ {0, 1
k−1

, 1}n,

and suppose that C(x) is (2, k − 1 − ε)-expanding. Then
x ∈ VC(G).

We now define the vectors that will appear in our “Pro-
tection Lemma” for vertex cover. For the remainder of
this section we will always assume 0 < ε < 1/2.

Definition 4.3. Given x ∈ [0, 1]n, for all i ∈ R(x) and

all a ∈ {0, 1} define x(i,a) to be identical to x except that

x
(i,a)
i = a.

Definition 4.4. Let x ∈ {0, 1
k−1

, 1}n, and suppose C(x)

is (2, k − 1 − ε)-expanding. For all i ∈ E(x) define x[i] to

be identical to x except that x
[i]
i = 1 and x

[i]
j = 0 for all

j ∼C(x) i. Let the set Tx ⊆ {0, 1
k−1

, 1}n equal the union

{x[i] : i ∈ E(x)} ∪ {x(i,a) : i ∈ R(x)\E(x), a ∈ {0, 1}}.

Lemma 4.5. Let x ∈ {0, 1
k−1

, 1}n, and suppose C(x) is

(2, k − 1 − ε)-expanding. Then R(x) ⊆ VC(G). Moreover,
for all y ∈ Tx, each constraint in C(y) has arity at least
k − 1.

Proof. There are two types of points in Tx: (1) x(i,a) for

i ∈ R(x)\E(x) and (2) x[i] for i ∈ E(x). Consider a point

x(i,a) in Tx where i ∈ R(x)\E(x). In this case, vi does not
belong to any arity k − 1 constraint in C(x). Hence, every

constraint in C(x(i,a)) has arity at least k − 1 in C(x(i,a)),

and is therefore satisfied by x(i,a).



Now consider a point x[i] in Tx such that i ∈ E(x). By

Fact 2 on equivalences and the definition of x[i], every con-
straint in C(x) that had arity k in C(x) has arity at least

k− 1 in C(x(i,a)), and hence is satisfied by x(i,a). By Fact 1
on equivalences, the only arity k − 1 constraint in C(x) for

which the values of any of its variables changes under x[i] is
the unique arity k − 1 constraint containing vi. But such a
constraint is satisfied by x[i] since vi is set to 1 in x[i].

Lemma 4.6. (“Protection Lemma” for Hypergraph
VC) Suppose C(x) is (2, k − 1 − ε)-expanding where x ∈
{0, 1

k−1
, 1}n. Suppose moreover that Tx ⊆ Nm

+ (VC(G)).

Then x ∈ Nm+1
+ (VC(G)).

Proof. Let y =
�
1
x

�
. The proof uses Lemma 2.1 and the

following choice of an (n + 1)× (n + 1) positive semidefinite
symmetric matrix Y that is yyT + Diag(y − y2) except that
Yij = 0 whenever i ∼C(x) j. Note that Y is symmetric and
that Y e0 = diag(Y ) = y. Moreover, by Proposition 4.7
below, Y is positive semi-definite. (This uses the expansion
properties of C(x).) So by Lemma 2.1, to show that x ∈
Nm+1

+ (VC(G)) it remains only to show that for all i ∈ R(x),
Y ei/xi and Y (e0 − ei)/(1 − xi) are in Nm

+ (VC(G)).
For i ∈ R(x)\E(x), Y ei/xi =

�
1

x(i,1)

�
and Y (e0 − ei)/(1−

xi) =
�

1
x(i,0)

�
and hence are both in Tx ⊆ Nm

+ (VC(G)). For

i ∈ E(x), Y ei/xi =
�

1
x[i]

�
which is in Tx ⊆ Nm

+ (VC(G)).

Finally, for i ∈ E(x), Y (e0 − ei)/(1 − xi) =
�
1
z

�
where

z =
1

k − 2

�
j∼C(x)i, j �=i

x[j].

In particular, Y (e0 − ei)/(1 − xi) is in the convex hull of
Tx ⊆ Nm

+ (VC(G)), and hence is also in Nm
+ (VC(G)).

Proposition 4.7. The matrix Y defined in the proof of
Lemma 4.6 is positive semidefinite (PSD).

Proof. By Fact 1 on C(x)-equivalences, there exist dis-
joint sets I1, . . . , It of indices such that (a) |Ij | = k − 1 for
all j ∈ [t], (b) all indices belonging to an equivalence are in
one of the Ij , and (c) for each j ∈ [t] all indices in Ij are
mutually equivalent. Then,

Y = yyT + Diag(y − y2) +
�
j∈[t]

�
Diag(y2

Ij
) − yIj yT

Ij

�
,

where yI equals y but is zero outside I .
To show Y is PSD, we show that zT Y z ≥ 0 for all z ∈

R
n+1. Note that zT (yyT )z = (yT z)2 ≥ 0 for all z ∈ R

n+1.
Moreover, Diag(w) is PSD for any w such that wj ≥ 0 for
all j. Hence, since the sum of PSD matrices is PSD, to
show that Y is PSD it suffices to show for each Ij that the
following quantity is non-negative:

zT (Diag(yIj − y2
Ij

) + Diag(y2
Ij

) − yIj yT
Ij

)z

= zT (Diag(yIj ) − yIj yT
Ij

)z.

Since the argument is identical for all Ij we drop the sub-
script j and assume I = [k − 1]. The above then simplifies
to
�

i∈[k−1](z
2
i xi)− (

�
i∈[k−1] zixi)

2. Since xi = 1
k−1

for all

indices in an equivalence, this further simplifies to

1

k − 1

�
i∈[k−1]

z2
i − 1

(k − 1)2

�
� �

i∈[k−1]

zi

	



2

,

which is non-negative since
�

i∈[�] a
2
i ≥ 1

�
(
�

i∈[�] ai)
2.

4.1 Proof of Theorem 4.1
Let α, ε > 0 be arbitrarily small. By Lemma A.1 in the

Appendix, there are constants β, δ > 0 such that a rank
k hypergraph G exists with n vertices and βn edges such
that the bipartite graph HG is a (δn, k − 1 − ε)-expander,
and every vertex cover of G has size at least (1 − α)n. We
show that the vector w = ( 1

k−1
, . . . , 1

k−1
), corresponding to a

fractional vertex cover of “size” n/(k− 1), is in Nr
+(VC(G))

where r = εδn
k−1

. It follows that this many rounds of LS+

cannot reduce the integrality gap below (k − 1)(1− α), and
Theorem 4.1 then follows for γ = εδ

k−1
. Note that HG is

isomorphic to H(w), and hence, C(w) is (δn, k − 1 − ε)-
expanding. This will be crucial for the lower bound.

The lowerbound will follow from a Prover-Adversary game
of the type discussed in Section 2. We describe the game
more formally. In round i there is a parameter 	i ≥ 2 and a
current point x ∈ {0, 1

k−1
, 1}n. For i = 0, x is some initial

point w′ ∈ {0, 1
k−1

, 1}n. At the beginning of round i, C(x)

will be an (	i, k− 1− 2ε)-expander. In round i the following
two moves are made.

1. Adversary Move: The Adversary selects z from Tx.

2. Expansion Correction: The Prover constructs a set
Y ⊆ {0, 1

k−1
, 1}n such that (1) z is in the convex hull

of Y , and (2) for all y ∈ Y , C(y) is an (	i+1, k−1−2ε)-
expander where 	i+1 ≤ 	i. The Adversary selects one
point y ∈ Y to be the new x.

The game ends when 	i+1 ≤ 1.
Intuitively, the Adversary fixes more and more fractional-

valued coordinates in the initial point w′ to 0-1 values by
replacing the current point x with a point z from Tx (note
that once a coordinate is set to 0-1 it remains fixed). The
Prover wants this to continue for as long as possible but
may run into trouble if C(z) is no longer a good expander.
The Prover therefore does Expansion Correction to obtain a
new x for which C(x) is a good expander. The next lemma
shows that a good Prover strategy implies w′ has high rank.

Lemma 4.8. Suppose w′ ∈ {0, 1
k−1

, 1}n is in VC(G). If

for w′ the Prover has an m round strategy against any ad-
versary, then w′ ∈ Nm

+ (VC(G)).

Proof. By induction on m. Since w′ ∈ VC(G) by as-
sumption, case m = 0 follows. So suppose the claim is
true for m and that the Prover has an m + 1 round strat-
egy against any adversary. Consider the first round of the
game and suppose the Adversary picks z ∈ Tx. Let Y be
the set subsequently constructed by the Prover in the Ex-
pansion Correction move. Since the game runs for m more
rounds regardless of which y ∈ Y the Adversary chooses,
Y ⊆ Nm

+ (VC(G)) by induction, and z ∈ Nm
+ (VC(G)) by

convexity. This holds no matter which z ∈ Tx the Adver-
sary chooses, and so Tx ⊆ Nm

+ (VC(G)). Lemma 4.6 then
implies w′ ∈ Nm+1

+ (VC(G)).

So to prove w = ( 1
k−1

, . . . , 1
k−1

) ∈ Nr
+(VC(G)) and com-

plete the proof of Theorem 4.1, it suffices to describe an r
round strategy for the Prover when the initial point is w.

Lemma 4.9. If C(w) is a (δn, k − 1 − ε)-expander, then
the Prover has an r round strategy against any Adversary,
where r = εδn

k−1
.



Proof. We start the game with x = w. Proposition 4.2
implies w ∈ VC(G). In round i of the strategy the parameter
	i will be defined such that for the current point x the Prover
can ensure C(x) is an (	i, k−1−2ε)-expander. At the start,
	1 = δn.

The strategy will work as follows: The two moves made
in each round of the game remove more and more variable
vertices from the incidence graph H(w) on C(w) × V (w).
In each round at most k − 1 variable vertices are removed
from H(w) by the Adversary choosing z ∈ Tx. As for the
Expansion Correction move, the Prover will “correct” ex-
pansion in round i by identifying a maximal non-expanding
set Si of constraints of size at most 	i and removing it and
its neighbours from H(x). Letting 	i+1 = 	i − |Si|, the re-
sulting graph would then be an (	i+1, k − 1− 2ε)-expander.
The Prover removes these constraints in Si by having the
assignments Y be 0-1 on Γ(Si) and equal to x outside Γ(Si).
If 	i+1 ≤ 1, the game ends; otherwise, the game continues.
The claim is that such a strategy results in at least r rounds:
Suppose the strategy lasts m rounds and consider S = ∪Si.
Then

|S| =
m�

i=1

|Si| =
m�

i=1

	i − 	i+1 = δn − 	m+1.

By expansion, S had at least (k − 1 − ε)|S| neighbours in
H(w). However, at the end of the game, S has no neigh-
bours. Expansion Correction removes at most (k−1−2ε)|S|
neighbours. Since the Adversary Move removes at most k−1
neighbours per round, there must be at least εδn/(k − 1)
rounds.

It remains to describe the Prover’s strategy in round i in
detail: If 	i ≤ 1 the game ends. Otherwise, Proposition 4.2
implies x ∈ VC(G) and the Adversary selects z ∈ Tx. Note
that Lemma 4.5 implies z ∈ VC(G) and that every con-
straint in C(z) has arity at least k − 1. We now describe
how the Prover constructs the set Y for Expansion Correc-
tion:

1. If C(z) is an (	i, k−1−2ε)-expander, the Prover takes
Y = {z} and sets Si = ∅.

2. Otherwise, let Si ⊆ C(z), |Si| ≤ 	i, be a maximal
subset of constraints with expansion less than k−1−2ε
in C(z). If |Si| ≥ 	i − 1, i.e., 	i+1 ≤ 1, the game ends,
and we let the final x be the same as z except it is 0
on Γ(Si).

3. Otherwise we claim that for all subsets S′ ⊆ Si of
constraints in C(z), |Γ(S′)| > (k − 2)|S′|: Either the

Adversary chose some x(j,a) ∈ Tx where j is not in any
C(x)-equivalence class (in which case S′ has expansion

greater than k − 2 in C(z)), or it chose x[j] where
vj occurs in some arity k − 1 constraint φ ∈ C(x).
Suppose φ shares t variables with Γ(S′). By expansion
of C(x),

|Γ(S′)| = |Γ(S′ ∪ {φ})| − k + 1 + t

≥ (k − 1 − 2ε)|S′| + t − 2ε.

Since S′ has exactly t fewer neighbours in C(z) than
in C(x), the claim follows.

4. Let Si = (e1, . . . , et). By Lemma A.3 in the appendix
there exists a mapping η : S → P(Γ(S)) such that

(1) for all i ∈ [t], |η(ei)| = k − 1, and (2) for all i ∈
[t], |η(ei) \

�
j<i η(ej)| ≥ k − 2. We construct k − 1

assignments y1, . . . , yk−1 inductively according to the
ordering e1, . . . , et. At the beginning all the yj equal
x outside C(z) and are undefined on Γ(Si). Assume
that at step t the values yj

i for all j ∈ [k − 1] and for
all i such that vi ∈ �i′<t η(ei′) have been defined so
that the constructed partial assignments satisfy all ei′ ,
i′ < t, and the assigned values y1

i , . . . , yk−1
i contain

exactly one 1 for each i. Consider et. Choose k −
2 vertices vi1 , . . . , vik−2 ∈ η(et) such that the values

yj
i1

, . . . , yj
ik−2

are undefined for all j ∈ [k − 1] (these

vertices exist by definition of η). Let vik−1 be the
other vertex in η(et+1). If the corresponding variables
y1

ik−1
, . . . , yk−1

ik−1
are undefined then set the last of these

variables to one and the rest to zeros. Assume without
loss of generality that yk−1

ik−1
= 1. For all other vertices

in η(et+1) we set yj
ij

= 1 and the rest to zeros. We

have extended our partial assignments for η(et) in a
way that satisfies the induction hypothesis. At the the
end, y1, . . . , yk−1 each satisfy Si and z is their average.
Let Y = {y1, . . . , yk−1}.

5. LOWERBOUNDS FOR MAX-3SAT
The arguments used to prove Theorem 4.1 can be adapted

to prove integrality gaps for max-3sat. Given a 3-CNF for-
mula φ, we convert its clauses to inequalities in the obvious
way, i.e., x1∨x2∨¬x3 becomes x1+x2+(1−x3) ≥ 1. Let Cφ

be the set of such inequalities corresponding to φ. Note that
the 0-1 solutions to these inequalities correspond exactly to
the satisfying assignments for φ. Relaxing to xi ∈ [0, 1]
yields a polytope SAT(φ) whose integral points are solutions
for φ.

Theorem 5.1. For any constant α > 0, there exist con-
stants β, γ > 0 such that if φ is a random βn clause 3-CNF
formula on n variables, then the integrality gap of any γn
round LS+ relaxation of SAT(φ) is at least 8

7
− α with high

probability.

Let w = ( 1
2
, . . . , 1

2
) and note that w ∈ SAT(φ) for any

formula φ. The proof of the above theorem will rely on the
following lemma:

Lemma 5.2. Let 0 < ε < 1
2
, and suppose Cφ(w) is a

(δn, 2 − ε)-expander. Then w ∈ N
εδn/2
+ (SAT(φ)).

Proof of Theorem 5.1. It is well-known that for all
α, ε > 0, there exist constants β, δ > 0 such that if we pick a
random 3-CNF φ with βn clauses, then with high probability
(1) no boolean assignment satisfies more than a 7

8
+ α frac-

tion of the clauses in φ and (2) Cφ is a (δn, 2− ε)-expander.
On the other hand, Lemma 5.2 says that w, which satisfies
all clauses in φ, is in Nr

+(SAT(φ)) where r = εδn/2.

The proof of Lemma 5.2 is identical to that of Lemma 4.9
with the only changes being in (1) the “protection lemma”
(Lemma 4.6) which must be altered to take into account
the negated variables now appearing in the constraints; and
(2) in the game, where the Prover’s Expansion Correction
strategy also has to accommodate negated variables. We



finish this section therefore by stating and proving the new
protection lemma used in the proof of Lemma 5.2 and by
sketching a proof of the new Expansion Correction strategy
used in the proof of Lemma 5.2.

Definition 5.3. Suppose x ∈ 1
2
Z

n and let i ∈ R(x), a ∈
{0, 1}. Let x[i,a] ∈ 1

2
Z

n be identical to x except

1. x
[i,a]
i = a, and

2. if there exists an arity 2 constraint vεi
i + v

εj

j ≥ 1 in

C(x), then x
[i,a]
j = 1 − a if εi = εj and x

[i,a]
j = a if

εi 	= εj .

The key observation is that if C(x) is (2, 2 − ε)-expanding,
then for all i ∈ R(x) and all a ∈ {0, 1}, each constraint in

C(x[i,a]) has arity at least 2 and hence x[i,a] ∈ SAT(φ). Let

Tx = {x[i,a] : i ∈ R(x), a ∈ {0, 1}}.

Lemma 5.4. (“Protection Lemma” for max-3sat)
Let ε > 0 be an arbitrarily small constant and suppose C(x)
is (2, 2 − ε)-expanding where x ∈ 1

2
Z

n. Suppose moreover

that Tx ⊆ Nm
+ (SAT(φ)). Then x ∈ Nm+1

+ (SAT(φ)).

Proof. Let y =
�
1
x

�
. The proof uses Lemma 2.1 and the

following choice of an (n + 1)× (n + 1) positive semidefinite
matrix Y that is yyT + Diag(y − y2) except that if xεi

i +
x

εj

j ≥ 1 is a constraint in C(x), then Yij = 0 if εi = εj

and Yij = 1
2

if εi 	= εj . Note that Y is symmetric and that
Y e0 = diag(Y ) = y. Moreover, by Proposition 5.5 below
it follows that Y is positive semidefinite. Finally, for all
i ∈ R(x), Y ei/xi =

�
1

x[i,1]

�
and Y (e0−xi)/(1−xi) =

�
1

x[i,0]

�
.

In particular, these vectors are in Nm
+ (SAT(φ)) since their

projections along the hyperplane x0 = 1 are in Tx.

Proposition 5.5. The matrix Y defined in the proof of
Lemma 5.4 is positive semidefinite (PSD).

Proof. Let I ⊆ {0, 1, . . . , n} be the set of indices not in
any C(x)-equivalence. For all i, j ∈ {1, . . . , n}, define (n +

1)× (n +1) matrices A(i,j) and B(i,j) that are 0 everywhere

except A
(i,j)
ii = A

(i,j)
jj = 1/4, A

(i,j)
ij = A

(i,j)
ji = −1/4, and

B
(i,j)
ii = B

(i,j)
jj = B

(i,j)
i,j = B

(i,j)
ji = 1/4. Note that A(i,j) and

B(i,j) are both PSD. Finally, let

C1 = {(i, j) : vεi
i + v

εj

j ≥ 1 ∈ C(x) and εi = εj},
C2 = {(i, j) : vεi

i + v
εj

j ≥ 1 ∈ C(x) and εi 	= εj}.
Since C(x)-equivalence classes are disjoint, it follows that

each k ∈ {0, 1, . . . , n} is either in I or appears in exactly one
pair from C1 ∪ C2. Hence, by definition of Y ,

Y = yyT + Diag(yI − y2
I ) +

�
(i,j)∈C1

A(i,j) +
�

(i,j)∈C2

B(i,j).

(Here yI is the vector equal to y on the coordinates indexed
by I but zero everywhere else.) Each of the terms in the
above sum is PSD and hence, so is Y .

We now sketch how the Expansion Correction Strategy
is altered. The overall argument goes the same way using
Lemma A.3 with the only difference being that for vi ∈
η(et), the yj

i , j ∈ {1, 2}, are set according to the signs the
variables have in clause et so as to satisfy et.

6. LOWERBOUNDS FOR SET COVER
An instance of set cover consists of a tuple (S, C) where

C is a collection of n subsets of a finite set S of size m. The
objective is to find a minimum size subset C′ ⊆ C such that
each element of S is in some set in C′. If for each set Si ∈ C
we have a variable xi indicating whether or not set Si is
included in the set cover, then the set cover problem is
expressed by the following integer program:

min

n�
i=1

xi

�
i:j∈Si

xi ≥ 1, ∀j ∈ [m].

The relaxed set cover polytope MSC(S, C) is the poly-
tope defined by the above constraints but where we allow
0 ≤ xi ≤ 1. Note now that if G = (V, E) is a k-uniform
hypergraph, and we let S = E and C = {Sv}v∈V where
Sv = {e ∈ E : v ∈ e}, then MSC(S,C) is identical to
VC(G). Hence, integrality gaps for the hypergraph VC poly-
tope yield integrality gaps for MSC.

Theorem 4.1 can therefore be used to obtain integrality
gaps for LS+ tightenings of the set cover polytope (in
fact an earlier version of this paper did just that). However,
stronger results can be obtained for set cover by using an
argument specifically tailored for hypergraphs with edges of
size Θ(log n)—this is what we do next.

Fix ε, δ, γ > 0 such that ε − δ > 0. By Lemma A.2 in
the appendix, there exists an (ε − δ)n-uniform hypergraph
G = (V, E) on n vertices with n edges such that the min-
imum vertex cover is at least log1+ε n. Consider the hy-
peredge constraints CG defining VC(G). Let w be the all-

1+γ
(ε−δ)n

point and note that w is in VC(G). Moreover, at

least � γ(ε−δ)n
1+γ

� coordinates of w can be changed to 0 or 1
with the resulting point still satisfying all the constraints
CG.

Let us recall the simple protection lemma proved by Goe-
mans and Tunçel [8] and described in section 2: For a re-
laxed polytope P , a point x is in N+(P ) if for all i ∈ R(x)

and all a ∈ {0, 1}, x(i,a) is in P . That is, x is in N+(P )
if whenever we change exactly one coordinate of x to 0 or
1, the resulting point is in P . So by induction, this simple
protection lemma together with the observation about w in
the previous paragraph prove the following:

Lemma 6.1. The point w is in Nr(VC(G)) where r =

� γ(ε−δ)n
1+γ

�.
Finally note that since the minimum vertex cover for G has

size log1+ε n, the integrality gap for w is (ε−δ) ln n
(1+γ) ln(1+ε)

which

approaches ln n from below as ε, δ, γ → 0. Thus we have
proved the following gap for set cover:

Theorem 6.2. For all ε > 0, there exists δ > 0 and an
instance (S, C), |S| = n, of set cover for which the inte-
grality gap of the δn round LS+ relaxation of MSC(S, C) is
(1 − ε) ln n.

7. RELATION TO PROOF COMPLEXITY
In this section we discuss our results from the proposi-

tional complexity point of view. In particular, we explain
the relation between proving integrality gaps and proving



lowerbounds on the rank of LS+ proof systems. In gen-
eral a propositional proof system is a polynomial time ver-
ifier V (P , φ) that checks whether P is a certificate of the
universal statement ∀x¬φ(x), i.e., φ is unsatisfiable. Many
(approximation) algorithms as a byproduct of their compu-
tation provide (explicitly or implicitly) a certificate that the
output value lies within a certain factor to the optimum;
this certificate may be considered a propositional proof that
the given NP-optimization problem has no solution that
achieves a certain optimization value. In the case of LS+

cuts, the inequalities that describe the polytope Nr
+(P ) re-

sulting after r rounds may be inferred from the set of ini-
tial inequalities in the Lovász-Schrijver proof system. Thus,
every proof of the integrality gap for a sequence of LS+

cuts may be considered as a lowerbound on the refutation
rank in an LS+ proof system of the tautology encoding that
there exists no good solution, and vice versa. So since the
propositional and computational complexity are similar for
LS round lowerbounds, we have presented our results in the
context of the latter in this paper. (Note that the classical
propositional complexity measure would be the number of
lines needed to do LS-style reasoning. However, no lower-
bounds are known for this measure.)

Looking at our results then from the proof complexity
angle it follows that there exist unsatisfiable random 3sat
instances for which an LS+ proof system requires a linear
number of rounds to refute, solving a problem left open
in [3]. Similarly, our results for hypergraph vertex cover
and set cover show that the constraints defined by certain
instances of these problems also require a linear number of
rounds to refute.

The proof complexity angle can also be used to shed some
intuition on the difficulties in proving integrality gaps via re-
ductions in the LS world. Consider the standard reduction
from 3sat to vertex cover where each clause is replaced
by a triangle of vertices. We could now add new auxiliary
variables for each triangle where each new variable is a func-
tion of the three variables from the triangle’s corresponding
clause. However, in general, when one introduces such auxil-
iary variables the proof complexity may change drastically.
For example, weak resolution turns into the powerful Ex-
tended Frege proof system. On the other hand, in our case
all auxiliary variables are locally specified so adding them
should intuitively not make a big difference. Nevertheless,
our arguments using protection lemmas seem to break down
and a newer lowerbound idea seems necessary.

8. OPEN PROBLEMS
It seems important to extend our inapproximability re-

sults to a variety of problems. (Or to prove that actu-
ally many important optimization problems do have good
slightly subexponential time approximation algorithms via
the LS+ procedure or other lift-and-project procedures.) As
we noted above, reductions are problematic in this regard.

Methods based on games over expanders do not seem to
help against the notoriously difficult vertex cover prob-
lem: there are no expanders of degree 2. This question seems
related to proving k − ε integrality gap for k-hypergraphs
(a similar picture with these problems is observed in the
PCP world). Moreover, the non-existence of appropriate
expanders means we are also unable to prove gaps for max-
2sat.

Our result for set cover is interesting in a different re-

spect: In [6] integrality gaps of (1−ε) ln n are only ruled out
under the assumption NP 	= DTIME(nlog log n). Since we
rule out (1− ε) lnn integrality gaps for Ω(n) rounds of LS+,
this strengthens the possibility that stronger PCP results
are possible for this problem. In particular, it further sup-
ports the conjecture that it should be possible to rule out
(1− ε) ln n integrality gaps under the weaker assumption of
NP 	= BPP or even NP 	= P.
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positive semidefiniteness constraint help in lifting
procedures. Mathematics of Operations Research,
26:796–815, 2001.

[9] M. X. Goemans and D. P. Williamson.
.878-approximation algorithms for MAX CUT and
MAX 2SAT. In Proceedings of the Twenty-Sixth



Annual ACM Symposium on the Theory of
Computing, pages 422–431, Montréal, Québec,
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APPENDIX

A. GRAPH THEORY LEMMAS
The following two lemmas use standard arguments from

the theory of random graphs.

Lemma A.1. Let Δ(ε, k, β) =
�

eε−k

5β(k−1−ε)1+ε

�1/ε

. Then

for all α, 0 < α < 1, and all ε > 0, there exists μ(α) such
that for all β ≥ μ(α)α−k and all δ, 0 < δ < Δ(ε, k, β), the
probability that a random k-uniform hypergraph G = (V, E)
on n vertices with βn hyperedges (1) has no vertex cover of
size smaller than (1 − α)n and (2) HG is a (δn, k − 1 − ε)
expander is at least 1/2.

Proof. Let β = μ(α)α−k and suppose the hypergraph
has βn randomly and uniformly chosen hyperedges where
μ(α) is chosen below. The probability that there exists a
vertex cover of size (1−α)n equals the probability that there
exists a set S ⊆ V , |S| = αn, such that no edge contains
only elements from S. This probability is bounded by�

n

αn


(1 − αk)βn ≤

� e

α

�αn

(1 − αk)βn

=
� e

α

�αn
�

1

e

�μ(α)n

.

Let μ(α) > 0 be such that the above is less than 1/4.
Now consider the bipartite graph HG mapping E to V .

Note that |E| = βn. The probability that a subset of s = δn
constraints of F does not have expansion more than c =
k − 1 − ε is�

βn

s

�
n

cs

� cs

n

�ks

≤
�

eβn

s

�s �en

cs

�cs � cs

n

�ks

=
�
δεβek−εc1+ε

�s

.

Let r = δεβek−εc1+ε. Then r < 1/5 when δ <
�

eε−k

5βc1+ε

�1/ε

.

Hence, the probability that some subset of E of size at most
δn fails to have expansion greater than k− 1− ε is bounded
by

δn�
s=1

rs ≤
�
s≥1

rs =
r

1 − r
<

1

4
.

So with probability at least 1/2, both G has no vertex cover
of size less than (1 − α)n and HG is a (δn, k − 1 − ε) ex-
pander.

Lemma A.2. For any constant ε, δ ∈ (0, 1) for all n there
exists an (ε − δ)n-regular hypergraph with n vertices and n
edges that has vertex cover greater than log(1+ε) n.

Proof. Let ε′ = ε − δ/2. Consider a random hyper-
graph G with n edges over n vertices in which every vertex
belongs to an edge independently with probability ε′. Let
k = log1+ε n. The probability that G contains a vertex cover
of size k is less than or equal�

n

k


·
�
1 − (1 − ε′)k

�m

≤ nke−m·(1−ε′)k

= o(1).

Finally, with high probability every edge in G contains at
least (ε′ − δ/2)n = (ε − δ)n elements. By removing vertices
from each edge we can assume each edge contains exactly
(ε − δ)n elements.

Lemma A.3. Let H = (V1, V2, E) be a bipartite graph and
let S ⊆ V1 be such that for for all S′ ⊆ S, |Γ(S′)| > k|S′|.
Assume S = {e1, e2, ..., e�}. Then there exists a mapping
η : S → P(Γ(S)) such that (1) for all i ∈ [	], |η(ei)| = k+1,
and (2) for all i ∈ [	], |η(ei) \�j<i η(ej)| ≥ k.

Proof. By the generalization of Hall’s theorem there ex-
ists a k-matching from S into Γ(S). Fix such a k-matching
ν once and for all. We construct η in the following recur-
sive way. By assumption, Γ(S) contains at least 	k + 1 ele-
ments. So by the pigeon-hole principle there exists a vertex
v ∈ Γ(S) which does not belong to

�
e∈S ν(e). Consider any

vertex e ∈ S that is adjacent to v (such a point exists be-
cause v ∈ Γ(S)) and let η(e) = {v} ∪ ν(e). Finally, denote
S′ = S \ {e} and repeat the process recursively for S′. The
vertices in S′ are ordered according to the way they were
ordered in S.

Clearly for all vertices ei in S, η(ei) is a k + 1 element
subset of Γ(S). To check the second required property for
η note that at each step of the inductive process, no vertex
of ν(e) may be joined to any of the η(e′) from earlier steps,
because η(e′) consists of ν(e′) and v′, v′ 	∈ ν(e). The lemma
follows.

B. LS+ DERIVATION OF POPULAR
SDP RELAXATIONS

To illustrate the power of the LS+ procedure, we sketch
how to use a few rounds of LS+ to derive popular SDP
relaxations used in famous approximation algorithms. (This
was suggested by the reviewers, who pointed out that this
is not very well-known.)

It will be more convenient to view LS+ as a method for
generating new inequalities. Given any relaxation

aT
r x ≥ b r = 1, 2, . . . , m (B.1)



(where the trivial constraints 0 ≤ xi ≤ 1 are assumed to
be included), one round of LS+ produces a system of in-
equalities in (n + 1)2 variables Yij for i, j = 0, 1, . . . , n. As
mentioned, the intended “meaning” is that Yij = xixj and
Y00 = 1, Y0i = xi = xix0, and Y00 = 1 so every quadratic
expression in the xi’s can be viewed as a linear expression
in the Yij ’s. This is how the quadratic inequalities below
should be interpreted.

(1 − xi)a
T
r x ≥ (1 − xi)b ∀i = 1, . . . , n, ∀r = 1, . . . , m

xia
T
r x ≥ xib ∀i = 1, . . . , n, ∀r = 1, . . . , m

xixi = xix0 ∀i = 1, 2, . . . , n

(The last constraint corresponds to the fact that x2
i = xi for

0/1 variables.) Finally, one imposes the condition that (Yij)
is positive semidefinite. Obviously, any positive combination
of the above inequalities is also implied, and the derivations
below will use this fact.

B.1 Deriving the GW relaxation
The Goemans-Williamson relaxation for max-cut [9] in-

volves finding unit vectors u1, u2, . . . , un so as to minimize�
{i,j}∈E

1

4
|ui − uj |2 .

This SDP relaxation can be derived by one round of LS+

on the trivial linear relaxation. This relaxation has 0/1 vari-
ables xi and dij . In the integer solution, xi indicates which
side of the cut vertex i is on, and dij is 1 iff i, j are on
opposite sides of the cut.

max
{i,j}∈E

dij (B.2)

dij ≥ xi − xj ∀i, j = 1, 2, . . . , n (B.3)

dij ≤ xi + xj ∀i, j = 1, 2, . . . , n (B.4)

dij ≤ 2 − (xi + xj) ∀i, j = 1, 2, . . . , n (B.5)

Then one round of LS+ generates the following inequali-
ties on dij :

xidij ≥ xi(xi − xj) (B.6)

(1 − xi)dij ≥ (1 − xi)(xj − xi). (B.7)

Adding these and simplifying using the fact that x2
i = xi

for 0/1 variables, one obtains dij ≥ (xi − xj)
2. Similarly

one can obtain dij ≤ (xi − xj)
2 whereby it follows dij =

(xi − xj)
2 = Yii + Yjj − 2Yij .

Now if (Yij) is any feasible solution then its Cholesky
decomposition v0, v1, . . . , vn ∈ �n+1 are vectors such that
Yij =< vi, vj >. Then dij = |vi − vj |2. Now define the set
of vectors u1, u2, . . . , un as ui = v0 − 2vi. These satisfy

dij = 1
4
|ui − uj |2 (B.8)

|ui|2 = |v0|2 − 4 < v0, vi > +4 |vi|2 = 1. (B.9)

Thus the ui’s are a feasible solution to the GW relaxation.
We conclude that one round of LS+ produces a relaxation
at least as tight as the GW relaxation (and in fact one can
show that the two relaxations are the same).

B.2 Deriving the ARV relaxation
Arora, Rao, and Vazirani [2] derive their

√
log n-approxi-

mation for sparsest cut using a similar SDP relaxation

whose salient feature is the triangle inequality:

|ui − uj |2 + |uj − uk|2 ≥ |ui − uk|2 ∀i, j, k.

(In other words, dij = |ui − uk|2 forms a metric space.) This
relaxation minus the triangle inequality is derived similarly
to the GW relaxation above (details omitted). The claim
is that the triangle inequality is implied after three rounds
of LS+. As shown in [12], r rounds of LS+ imply all in-
equalities on subsets of size r that are true for the integer
solution. In other words, the induced solution on subsets
of size r lies in the convex hull of integer solutions. Thus
after three rounds the dij variables restricted to sets of size
three lie in the cut cone. Since the cut cone is just the set of
	1 (pseudo)metrics, it follows that the dij variables form a
(pseudo)metric. Thus three rounds of LS+ give a relaxation
that is at least as strong as the ARV relaxation.


