
SIAM J. COMPUT. c© 2010 Society for Industrial and Applied Mathematics
Vol. 39, No. 5, pp. 1748–1771

O(
√
logn) APPROXIMATION TO SPARSEST CUT IN Õ(n2) TIME∗

SANJEEV ARORA† , ELAD HAZAN‡, AND SATYEN KALE§

Abstract. This paper shows how to compute O(
√
logn)-approximations to the Sparsest Cut

and Balanced Separator problems in Õ(n2) time, thus improving upon the recent algorithm of
Arora, Rao, and Vazirani [Proceedings of the 36th Annual ACM Symposium on Theory of Comput-
ing, 2004, pp. 222–231]. Their algorithm uses semidefinite programming and requires Õ(n9.5) time.
Our algorithm relies on efficiently finding expander flows in the graph and does not solve semidef-
inite programs. The existence of expander flows was also established by Arora, Rao, and Vazirani
[Proceedings of the 36th Annual ACM Symposium on Theory of Computing, 2004, pp. 222–231].

Key words. graph partitioning, expander flows, multiplicative weights

AMS subject classification. 68W25

DOI. 10.1137/080731049

1. Introduction. Partitioning a graph into two (or more) large pieces while
minimizing the size of the “interface” between them is a fundamental combinatorial
problem. Graph partitions or separators are central objects of study in the theory of
Markov chains and geometric embeddings, and they are a natural algorithmic primi-
tive in numerous settings, including clustering, divide and conquer algorithms, PRAM
emulation, VLSI layout, and packet routing in distributed networks. Since finding
optimal separators is NP-hard, one is forced to settle for approximation algorithms
(see [29]).

The following are some of the basic problems in this class. We are given a graph
G = (V,E) with specified capacities ce for every edge e. Let n

.
= |V |, m .

= |E|.
For any cut (S, S̄) where S̄ = V \ S and |S| ≤ n/2, the edge expansion of the cut
is E(S, S̄)/ |S|, where E(S, S̄) is the total capacity of the edges crossing the cut. In
the Sparsest Cut problem we wish to determine the cut with the smallest edge
expansion:

(1) α(G) = min
S⊆V,|S|≤n/2

E(S, S̄)

|S| .

A cut (S, S̄) is c-balanced if both S, S̄ have at least cn vertices. We will assume
throughout this paper that c ≤ 1/3. In the minimum c-Balanced Separator

problem we wish to determine αc(G), the minimum expansion of c-balanced cuts. In
the Graph Conductance problem we wish to determine

∗Received by the editors July 24, 2008; accepted for publication (in revised form) September 14,
2009; published electronically January 22, 2010.

http://www.siam.org/journals/sicomp/39-5/73104.html
†Department of Computer Science, Princeton University, 35 Olden St., Princeton, NJ 08540

(arora@cs.princeton.edu). This author’s research was supported by the David and Lucile Packard
Fellowship and NSF grants CCR 0205594, CCR 0098180, and MSPA-MCS 0528414.

‡IBM Almaden, 650 Harry Rd, San Jose, CA 95120 (hazan@us.ibm.com). This work was done
while this author was at Princeton University.

§Yahoo! Research, 4301 Great America Parkway, Santa Clara, CA 95054 (skale@yahoo-inc.com).
This work was done while this author was at Princeton University.

1748

FAST APPROXIMATIONS TO SPARSEST CUT 1749

(2) Φ(G) = min
S⊆V,E(S)≤E(V)/2

E(S, S̄)

E(S)
,

where E(S) denotes the sum of degrees (in terms of edge capacities) of nodes in S.
Efforts to design good approximation algorithms for these NP-hard problems

have spurred the development of many subfields of theoretical computer science. The
earliest algorithms relied on spectral methods introduced—in the context of Rieman-
nian manifolds—by Cheeger [12] and improved by Alon and Milman [3] and Alon [2].
Though this connection between eigenvalues and conductance yields only a weak ap-
proximation (the worst-case approximation ratio is n), it has had enormous influence
in a variety of areas, including random walks, pseudorandomness, error-correcting
codes, and routing.

Leighton and Rao [22] designed the first true approximation by giving O(log n)-
approximations for Sparsest Cut and Graph Conductance and O(log n)-
pseudoapproximations for the minimum c-Balanced Separator. They used a lin-
ear programming relaxation of the problem based on multicommodity flows proposed
in [28]. Leighton, Rao, and others used similar ideas to design approximation algo-
rithms for numerous NP-hard problems; see the surveys [29, 30]. Furthermore, efforts
to improve these ideas led to progress in other areas, such as fast computations of
multicommodity flows and packing-covering linear programs [31, 27, 16] and efficient
geometric embeddings of metric spaces [23]; see also [7].

Recently, Arora, Rao, and Vazirani [6] designed an O(
√
logn)-approximation al-

gorithm. They use semidefinite programming (SDP), a technique introduced in ap-
proximation algorithms by Goemans and Williamson [17]. The running time of the
Arora–Rao–Vazirani (ARV) algorithm is dominated by the solution of this SDP, which
takes Õ(n9.5) time1 using interior point methods [1]. (Here and in the rest of the paper
Õ(·) notation is used to suppress polylogarithmic factors.) New techniques in high-
dimensional geometry introduced by their analysis have already found use in several
recent manuscripts, most significantly in one that makes progress on a longstanding
open question about the embeddability of �1 spaces into �2 [11].

The ARV paper also outlined an alternative approximation algorithm using ex-
pander flows. These are multicommodity flows in the graph whose demand graph (i.e.,
the weighted graph with weights dij on edge {i, j}, where dij is the flow shipped be-
tween nodes i, j) is an expander. This flow can be seen as an embedding of the demand
graph in the host graph, and thus this idea is descended from the work of Leighton
and Rao, who showed how to approximate Sparsest Cut by embedding the com-
plete graph (which, in particular, is an expander) in the host graph. The important
difference here is the edge congestion, i.e., maximum amount of flow using an edge.
The flows exhibited by Arora, Rao, and Vazirani are efficient enough to work with
a
√
logn factor lower congestion than Leighton–Rao flows. Thus these flows can be

used to certify that the expansion is Ω(α(G)/
√
logn). (Note that determining graph

expansion is coNP-complete [9], so we cannot expect to have succinct certificates that
prove that the expansion is exactly α(G).)

In addition to being an interesting graph theoretic fact—analogous to, say, the
approximate max-flow min-cut theorem that underlies Leighton and Rao’s result—

1The earlier version of this paper, which appeared in FOCS 2004, incorrectly stated the running
time of the interior point solver as Õ(n4.5). The correct running time bound, as stated here, is
deduced as follows: a typical interior point solver takes Õ(

√
n) iterations, and in each iteration, the

running time is dominated by solving an m×m system of linear equations, where m = O(n3) is the
number of constraints. This takes Õ(n9) time. See [10, pp. 618–619] for details.

1750 SANJEEV ARORA, ELAD HAZAN, AND SATYEN KALE

the existence of such expander flows seems to hint at a faster version of the ARV
approximation algorithm for Sparsest Cut. After all, computation of multicom-
modity flows is a highly developed area today. Thus an approximation algorithm for
Sparsest Cut could try to route a multicommodity flow in the graph and modify it
using eigenvalue computations that check if the current demands form an expander.
If an expander flow exists (given a certain upper bound on congestion), then the final
multicommodity flow would converge to it. If the expander flow does not exist, the
algorithm would presumably find a very sparse cut that “proves” this fact. The au-
thors of [6] suggested this approach for designing faster algorithms, though the best
algorithm they could come up with used the ellipsoid method, and hence it was even
less efficient than the SDP-based one.

This paper presents an Õ(n2)-time randomized algorithm that uses expander
flows to compute an O(

√
logn)-approximation to Sparsest Cut. This essentially

matches the running time of the best implementations of Leighton and Rao’sO(log n)-
approximation (due to Benczúr and Karger [8], the last paper in a long line of work).
Our algorithm computes an expander flow in a sparse weighted graph that is obtained
by Benczúr and Karger using a (nontrivial) random sampling on the original graph.
This expander flow suffices to certify the expansion of the original graph. Furthermore,
the algorithm produces, in addition to expander flows, a distribution on O(log n)
balanced cuts, which can be viewed as an �1 metric and thus can be embedded in
�22. Then we use the ideas of Arora, Rao, and Vazirani to obtain the O(

√
logn)-

approximate sparsest cut from this metric. Our algorithm can also yield expander
flows in any weighted graph on m edges in Õ(m2) time.

We note that the ideas of Arora, Rao, and Vazirani [6] have led to O(
√
logn)-

approximation using SDPs for many other problems. Recently, Arora and Kale [5]
gave a more general primal-dual schema for SDPs which they use to design a variety
of fast approximation algorithms for many of these problems. They cannot improve
the running time below Õ(n2) for Sparsest Cut and Balanced Separator if
one insists on O(

√
logn)-approximation. But they can get Õ(n1.5 + m) time for

O(log n)-approximation, which improves upon the best running times known for the
Leighton–Rao approach. Khandekar, Rao, and Vazirani [19] had earlier achieved
Õ(n1.5 + m) time for O(log2 n)-approximation, which was improved by Orecchia et
al. [26] to O(log n)-approximation with the same running time.

Overview of methodology. As mentioned, we find sparse cuts by finding ex-
pander flows. We first use the sparsification technique of Benczúr and Karger to
transform our graph to a sparse weighted graph in which m = Õ(n). The value of the
sparsest cut is essentially unchanged, so we find expander flows in the sparse graph.

The ARV approach to finding expander flows involves solving a linear program
(LP), which has exponentially many constraints to stipulate the condition that the
demand graph be an expander. Specifically, if the amount of flow leaving each node
is D, then for each cut (S, S) one has a constraint stating that the amount of flow
crossing that cut (i.e., whose source and sink are on opposite sides) is proportional
to D · min

{|S| , ∣∣S∣∣}. Though the separation problem for this LP is NP-hard, one
can use the eigenvalue approach to design an approximate separation oracle. Thus
the ARV algorithm consists of using this efficient separation oracle and the ellipsoid
method to find a feasible flow.

The main idea in our paper is to use a primal-dual framework instead of the
ellipsoid method. We note that the LP for finding expander flows also has both
packing and covering constraints (i.e., linear inequalities with nonnegative coefficients

FAST APPROXIMATIONS TO SPARSEST CUT 1751

and right-hand sides with both less than and greater than constraints). While many
papers have efficient algorithms for packing and covering problems, we do not see how
to solve it efficiently using conventional approaches such as [27]. We choose to go with
an unconventional choice, the Freund–Schapire method [15] for approximately solving
a two-person zero-sum game. It is possible that our results can be derived using more
standard analyses, especially that of Young [31] or Garg and Könemann [16]. However,
the advantage of the game theoretic setting is that it naturally allows us to introduce
nonlinearity in the payoff function, as explained in the few lines around (7). Besides,
we find the game theoretic setting more natural. (We have a longer survey article
on such “multiplicative weights update” algorithms [4] that explains the relationships
among these different algorithms and gives a single meta-algorithm that generalizes
all of them.)

One has several choices for how to represent expander flows in the zero-sum
game, and the obvious ones do not result in fast algorithms (for some failed ideas
see section 3). The correct choice is to ignore the flow and to instead maintain
the demands. The game is defined so that near-optimal solutions yield demands
corresponding to an expander flow—more precisely, a “pseudoexpander flow,” which is
“almost” an expander flow. The need for considering pseudoexpander flows arises from
a lack of precision, which comes from two sources. First, we are using approximate
flow algorithms and eigenvalue computations anyway. Second and more importantly,
we design the game by paying careful attention to its “width” parameter to ensure
a quick convergence. For both these reasons, the final solution to the game is fairly
coarse, but an expander flow is such a robust object that anything even remotely
resembling it can easily be turned into a true expander flow.

We design our algorithm by giving efficient strategies for both players and proving
that repeatedly playing these strategies causes them to converge to the optimum
value of the game in O(log n) rounds. To make our strategies for the players run in
Õ(n2) time, we use a combination of random sampling (above and beyond the use of
the Benczúr–Karger technique at the very start), approximate min-cost concurrent
multicommodity flow computations, and approximate eigenvalue computations. The
outline appears in section 3, and subsequent sections fill in the details. We note that
when the game fails to result in an expander flow, one can produce an approximately
optimum sparsest cut; this part relies on [6].

Our algorithm uses some well-known ideas not explained in the literature in the
exact form needed here. Therefore we have included the proofs in the appendix.

2. Freund–Schapire technique. We start by describing Freund and Schapire’s
method for adaptively solving a two-person zero-sum game. (As they note, the method
itself is quite old.) The game has two players, the row player and the column player,
who choose their moves from sets R, C, respectively. We let N denote |R|; the size
of C will play no role. For i ∈ R, j ∈ C let M(i, j) denote the payoff from the row
player to the column player when they play these moves. If the row player chooses
his strategy i from a distribution D = {p1, p2, . . . , pN} over R, the expected payoff to
the column player is

∑
i∈R piM(i, j), which we denote by M(D, j). We assume that

M(i, j) ∈ [�, u] for some parameters �, u. Let ρ = u−�; this is called the width of theM;
it will affect the running time of the algorithm above. Define μ(i, j) = (M(i, j)−�)/ρ,
so μ(i, j) ∈ [0, 1]. Similarly, for a distribution D = {p1, p2, . . . , pN} on R, define
μ(D, j) =∑i∈R piμ(i, j). Consider the following algorithm:

1752 SANJEEV ARORA, ELAD HAZAN, AND SATYEN KALE

The Multiplicative Weights Algorithm

Fix an ε < 1
2 . For all i ∈ R, initialize the weights wi

(1) = 1. In every round
t, for t = 1, 2, . . . , T :

1. The row player chooses strategy i ∈ R with probability pi
(t) =

wi
(t)/Φ(t), where Φ(t) =

∑
iwi

(t). Let this distribution be D(t).
2. The column player chooses a strategy j(t) ∈ C and obtains the ex-

pected payoff M(D(t), j(t)).
3. The row player updates the weights as

wi
(t+1) = wi

(t) · (1− ε)μ(i,j
(t)).

The following theorem gives guarantees on the total expected loss to the row
player in terms of the total expected loss of the best fixed row strategy in hindsight.
The proof appears in Appendix D.

Theorem 1. For any δ > 0, let ε = δ/2ρ, T = 4ρ2 ln(N)/δ2. Then the Multi-
plicative Weights Algorithm guarantees that, for any distribution D over R,

(3)
1

T

T∑
t=1

M(D(t), j(t)) ≤ 1

T

T∑
t=1

M(D, j(t)) + δ.

By von Neumann’s min-max theorem, the zero-sum game has an associated game
value. Call it λ∗. Let D∗ be the row player’s optimum distribution, namely, the D that
minimizes maxj∈C M(D, j). Then the value of the game is λ∗ = maxq∈C M(D∗, q). By
definition, for every distribution D overR, we have maxj∈C M(D, j) ≥ λ∗. An optimal
play for the column player for a given distribution D for the row player is a j ∈ C
which achieves this maximum. We have the following easy corollary to Theorem 1.

Corollary 2. If the column player plays optimally in each round, then

λ∗ ≤ 1

T

T∑
t=1

M(Dt, jt) ≤ λ∗ + δ.

This holds even if we assume that the column player plays near optimally, i.e., always
ensures that the payoffs are ≥ λ∗.

Proof. The fact that 1
T

∑T
t=1 M(D(t), j(t)) ≥ λ∗ follows because in each round t,

the payoff M(D(t), j(t)) is at least λ∗. Now, consider the distribution P on C which
assigns a probability measure of 1

T to each j(t) for t = 1, 2, . . . , T (aggregating measure

for repeated j(t)’s). By von Neumann’s min-max theorem, there is a strategy i ∈ R
for the row player such that the expected payoff to the column player if he chooses
his strategy j ∈ C using the distribution P is at most λ∗; i.e., for some i ∈ R,
1
T

∑T
t=1 M(i, j(t)) ≤ λ∗. Choosing the distribution D to be the one that chooses i

with probability 1, we get that the right-hand side of inequality (3) is at most λ∗ + δ,
as required.

3. Expander flows and algorithm overview. This section defines expander
flows and outlines the main ideas in our algorithm for finding them.

All weighted graphs in this paper are symmetric; that is, dij = dji for all node
pairs i, j. We call di =

∑
j dij the degree of node i. We emphasize that degrees can

be fractions (i.e., less than 1).

FAST APPROXIMATIONS TO SPARSEST CUT 1753

A multicommodity flow in an unweighted graph G = (V,E) is an assignment of
a demand dij ≥ 0 to each node pair {i, j} such that we can route dij units of flow
between i and j and can do this simultaneously for all pairs without violating any
edge capacities. We refer to the weighted graph (dij) as the demand graph of the flow.
All weighted graphs in this paper are symmetric; that is, dij = dji for all node pairs
i, j. We call di =

∑
j dij the degree of node i. We emphasize that degrees can be

fractions (i.e., less than 1). Given a subset S ⊆ V the demand crossing the cut (S, S̄)
is the capacity of the cut (S, S̄) in the demand graph, i.e., d(S, S̄) =

∑
i∈S,j∈S̄ dij .

Definition 1. A demand graph of a set of demands {dij} is a D-regular β-
expander if it has maximum degree at most D and for any subset S ⊆ V such that
|S| ≤ n/2 the demand crossing the cut (S, S̄) satisfies

d(S, S̄) ≥ βD|S|.
Note that we have relaxed D-regularity and require only maximum degree D; this

is without loss of generality [6] since one could add self-loops to raise all degrees to
D.

Lemma 3. If a graph G admits a multicommodity flow whose demand graph is a
D-regular β-expander, then its expansion is at least βD.

Proof. Let dij be the demands in the D-regular β-expander flow. Then for any
S ⊆ V with |S| ≤ n/2, the capacity of the cut (S, S̄) must be at least the demand
crossing it. Thus,

E(S, S̄) ≥ d(S, S̄) ≥ βD|S|,

which implies that E(S,S̄)
|S| ≥ βD. Thus, the expansion of G is at least βD.

We will refer to such a flow as an expander flow for short. Another notion we will
need is that of a pseudoexpander flow.

Definition 2. A demand graph of a set of demands {dij} is a D-regular (c, β)-
pseudoexpander if it has maximum degree at most D and for any subset S ⊆ V such
that cn ≤ |S| ≤ n/2 the demand crossing the cut (S, S̄) satisfies

d(S, S̄) ≥ βD|S|.
Notice that a D-regular β-expander flow is, in particular, a D-regular (γ, β)-

pseudoexpander flow for each γ. Just like expander flows, pseudoexpander flows can
be used to obtain lower bounds on the expansion of balanced cuts.

Lemma 4. If a graph G admits a multicommodity flow whose demand graph is a
D-regular (c, β)-pseudoexpander, then the expansion of all c-balanced cuts is at least
βD.

This lemma is proved just as before. The following theorem of Arora, Rao, and
Vazirani [6] shows that the notions of expander flows and pseudoexpander flows allow
us to obtain O(

√
logn)-approximations to the expansions of the Sparsest Cut and

minimum c-Balanced Separator, respectively.
Theorem 5 (see [6]). There is a constant β0 > 0 such that every graph G =

(V,E) admits a D-regular β0-expander flow, where D = Ω(α(G)/
√
log n). Fur-

ther, every graph G admits a D-regular (c, β0)-pseudoexpander flow, where D =
Ω(αc′(G)/

√
logn) for some c′ ≤ c.

The essence of our work is to show how to efficiently compute such expander
flows. To understand this algorithm it helps to first look at an LP whose feasibility
is implied by the above theorem. Let D be the degree of interest; think of it as a

1754 SANJEEV ARORA, ELAD HAZAN, AND SATYEN KALE

“constant” in the LP, not as a variable. Let β be an expansion parameter to be set
later.

For all simple paths p in the graph, we have a nonnegative variable fp. Let Pij be
the set of paths connecting node pair {i, j}, Pi∗ be the set of paths originating from
node i, and PS,S̄ be the set of paths having end points on either side of the cut S, S̄.
In the following LP, we use the notation “∀S” to refer only to subsets of vertices of
size at most n/2. The task of routing a D-regular β-expander flow can be expressed
as checking feasibility of the following Primal LP:

∀i :
∑

p∈Pi∗

fp ≤ D,

∀e :
∑

p: e∈p

fp ≤ ce,

∀S :
∑

p∈PS,S̄

fp ≥ βD|S|.(4)

The LP for D-regular (c, β)-pseudoexpander flows is the same as the one above
except that the third set of constraints is over only subsets of vertices S such that
cn ≤ |S| ≤ n/2. We give a unified treatment of both LPs, and in the following sections,
whenever a subset of vertices S occurs, it is implicitly assumed that |S| ≤ n/2, and,
in the case of the c-Balanced Separator problem, |S| ≥ cn. We will need to use
the constant c even in the context of Sparsest Cut, and in this case we set c = 1

3 .
As outlined in [6], the Primal LP can be solved to near optimality in polynomial

time by an ellipsoid-like method, using an eigenvalue computation as a separation
oracle. To design a better algorithm we aim to associate a zero-sum game with it and
use the Freund–Schapire framework. Since the algorithm in that framework maintains
a distribution on all pure row strategies, it is important to work with games where the
number of pure row strategies is polynomial. In particular, we need a polynomial-size
representation of the flow. The standard representation uses variables fije for each
demand pair (i, j) ∈ V × V and edge e ∈ E. We do not know how to formulate our
algorithm using this representation, and even if we did, the number of variables (i.e.,
number of pure strategies for the row player) would be Ω(n2m), which would be a
lower bound on the running time.2 The idea instead is to not use any representation
of the flows at all and to maintain only the demands dij . Now the number of variables

is
(
n
2

)
, and so we at least have a prayer of achieving Õ(n2) running time.

The design of the zero-sum game is inspired by the Dual LP to (4). In this
Dual LP we have nonnegative variables si, we, zS corresponding to vertex i, edge e,
and subset S ⊆ V , respectively:

min D
∑
i

si +
∑
e

cewe − βD
∑
S

|S|zS

∀ij, ∀p ∈ Pij : si + sj +
∑
e∈p

we −
∑

S: i∈S,j∈S̄

zS ≥ 0.(5)

The Primal is feasible iff the optimum of the Dual LP is nonnegative. Repre-
sent the Primal LP in matrix form as Af̄ ≤ b, f̄ ≥ 0, where f̄ is a vector of flow

2Note that it is possible to use random sampling to reduce the number of nonzero demands
to O(n logn); in fact this is done during every iteration of our algorithm while computing the best
response for the column player. However, the Freund–Schapire update rule seems to require updating
the distribution on all row strategies, and indeed we update all n2 demands at every iteration.

FAST APPROXIMATIONS TO SPARSEST CUT 1755

assignments to paths. Then, given a candidate flow f̄ , one could show that it is in-
feasible if (by Farkas’ lemma, iff) one demonstrates a vector x̄ = 〈s̄, w̄, z̄〉 of Dual

variables such that x̄�Af̄ ≥ 0 but x̄�b < 0. In other words, a candidate flow f̄ will
be infeasible if one demonstrates Dual variables x̄ such that the linear combination

∑
p

fp

⎛
⎝si + sj +

∑
e∈p

we −
∑

S: i∈S,j∈S̄

zS

⎞
⎠ ≥ 0

but the Dual objective

D
∑
i

si +
∑
e

cewe − βD
∑
S

|S|zS < 0.

The crucial observation is that the set of paths in the constraints of (5) can be re-
stricted to just the shortest paths between the {i, j} pairs under edge weights we. In
this case, all the flow between a pair of nodes {i, j} can be aggregated into a demand
dij .

The above discussion leads naturally to the following two-person zero-sum game
(our algorithm will use a modified version of this game). The row player’s strategy
set contains the node pairs {i, j}, and he tries to show feasibility of the Primal LP
by producing a set of candidate demands dij corresponding to node pairs {i, j}, such
that

∑
i<j dij = 1

2nD. Thus { dij
1
2nD
}ij is a distribution on pure strategies, which

will be updated using the Freund–Schapire rules. As already mentioned, these dij ’s
correspond to demands for a multicommodity flow problem; we emphasize that the
demands need not correspond to a routable flow; in other words, routing them could
require gravely exceeding edge capacities.

The column player tries to foil the row player in his task of showing feasibility by
picking dual variables x̄ = 〈s̄, w̄, z̄〉 such that the following hold:

1. The Dual objective

D
∑
i

si +
∑
e

cewe − βD
∑
S

|S|zS < 0:

We ensure this by making him choose x̄ from the polytope P1 of 〈s̄, w̄, z̄〉
satisfying

(6) D
∑
i

si +
∑
e

cewe ≤ βnD;
∑
S

|S|zS = n.

Note here that we have replaced the strict inequality by a nonstrict one; in
the analysis of the algorithm this will not matter. Intuitively, this is because
for points x̄ ∈ P1, the Dual objective with any larger expansion parameter
β′ > β is strictly negative.

2. The linear combination

∑
ij

dij

⎛
⎝si + sj + min

p∈Pij

{∑
e∈p

we

}
−

∑
S: i∈S,j∈S̄

zS

⎞
⎠ ≥ 0:

We make this linear combination the payoff of the game, so the column player
always tries to get a nonnegative payoff. The payoff for the pure row strategy

1756 SANJEEV ARORA, ELAD HAZAN, AND SATYEN KALE

{i, j} and a column strategy x̄ ∈ P1 is fij(x̄)
.
= si+sj+lij(x̄)−

∑
S:i∈S,j∈S̄ zS ,

where lij(x̄)
.
= minp∈Pij{

∑
e∈p we} is the length of the shortest path from i

to j with respect to weight function we. Given a set of demands d̄ = {dij}ij ,
define the payoff function

(7) v(d̄, x̄)
.
=
∑
ij

dijfij(x̄) =
∑
i

disi +
∑
ij

dij lij(x̄)−
∑
S

d(S, S̄)zS .

Note that the payoff function is nonlinear due to the presence of lij . Thus,

the expected payoff to the column player for the mixed strategy { dij
1
2nD
}ij is

v(d̄,x̄)
1
2nD

.

We will show that if a D-regular β′-expander flow exists, then the value of the
game is ≤ −2(β′ − β). Thus, if β′ > β, then the value of the game is negative. Thus,
to play near optimally, the column player need only choose x̄ so that the payoff 7
is nonnegative. We will also show that at each step a near-optimal response for the
column player can be computed—using a combination of min-cost concurrent flow,
eigenvalue computations, and random sampling—in Õ(n2) time. The width of the
game is O(n), which implies that the game converges to an approximately optimal
value after Õ(n2) rounds. In fact, we can stop the game as soon as the current
demands are such that the column player cannot force a positive payoff, at which
point the demands are “close enough” to an expander flow and can easily be extended
to a bona fide expander flow (though with expansion somewhat less than β). Thus
the overall running time would be Õ(n2 × n2) = Õ(n4). This is only slightly better
than solving SDPs or LPs.

To achieve a better running time we redesign the game—as well as the column
player—carefully so that the width is actually O(1). Then Theorem 1 implies that
convergence occurs in O(log n) rounds, and the running time is Õ(n2).

4. Implementing the game: Details. Now we give a more detailed analy-
sis. To present the Õ(n2) algorithm we will need a modified game, but first let us
understand the game from the previous section whose payoff is given by (7).

Let the value of this game be λ∗ = mind̄maxx̄
v(d̄,x̄)
1
2nD

. We begin by showing that

if a D-regular β′-expander flow can be embedded in G, for β′ > β, then λ∗ is highly
negative.

Lemma 6. If D-regular β′-expander flow can be embedded in the graph, then the
value of the game is at most −2(β′ − β).

Proof. Let the expander flow assign flow fp ≥ 0 to every path p. We define
d∗ij =

∑
p∈Pij

fp. Since the flow is D-regular, the demands sum to at most 1
2nD. Now

for every x̄ ∈ P1 we have

v(d̄∗, x̄) =
∑
i

d∗i si +
∑
ij

d∗ij lij(x̄)−
∑
S

d∗(S, S̄)zS

≤
∑
i

∑
p∈Pi∗

fpsi +
∑
ij

∑
p∈Pij

fp
∑
e∈p

we −
∑
S

∑
p∈PS,S̄

fpzS

=
∑
i

∑
p∈Pi∗

fpsi +
∑
e

∑
p	e

fpwe −
∑
S

∑
p∈PS,S̄

fpzS

≤
∑
i

Dsi +
∑
e

cewe −
∑
S

β′D|S|zS

≤ −(β′ − β)nD.

FAST APPROXIMATIONS TO SPARSEST CUT 1757

The payoff, being negative, reduces even further if we scale the demands to sum to

exactly 1
2nd, so λ∗ ≤ − (β′−β)nD

1
2nD

= −2(β′ − β).

The same result holds if we consider D-regular (c, β′)-pseudoexpander flows in-
stead in the corresponding game.

It is easily checked that the width of the game is O(n), so convergence may take
Õ(n2) rounds. Now we describe a related game in which the payoffs are truncated, and
so the width is O(1). Then convergence happens in O(log n) rounds, but converting
the near-optimal dij ’s into an expander flow is more difficult.

To reduce width to O(1), we must truncate the payoffs. Let us first truncate
the lij ’s: redefine lij(x̄) = min{minp∈Pij

∑
e∈p we, 1/ε}, where ε is a small constant

defined in section 6. The definitions of fij , v(d̄, x̄) are the same except that they use
this new lij .

Next, we restrict the strategy set of the column player. Let P2 be the polytope
of x̄ = 〈s̄, w̄, z̄〉 satisfying the following:

1. si ≤ 1/ε for all i.
2. zS = 0 whenever |S| < cn.

Then the polytope corresponding to allowable pure strategies for the column player
will be P = P1 ∩ P2, where P1 was defined in (6). Since zS > 0 only for |S| ≥ cn,
and

∑
S |S| zS = n, we have

∑
S zS ≤ 1/c. Now from the definition of fij we see

that for any x̄ ∈ P, −1/c ≤ fij(x̄) ≤ 3/ε. Thus, the width is 1/c+ 3/ε = O(1), and
the Freund–Schapire game played against a near-optimal column player converges in
T = O(log n) iterations.

The final algorithm of Theorem 8 will use binary search on D, and so for the next
few paragraphs assume that D is such that a D-regular β′-expander flow exists. Since
the truncation of the �ij ’s and restriction of the strategy space for the column player
only decreases payoffs (note that the column player is trying to maximize the payoff),
the game value can only decrease. Thus, Lemma 6 still holds for the new game, and
the value of the game is very negative.

This leaves the issue of describing a near-optimal column player that runs in
Õ(n2) time and to show that near-optimal row strategy d̄ can be used to construct an
expander flow. Both issues are addressed in the next theorem (proved in section 6),
which describes a specific column player, Oracle. If d̄ ever is such that Oracle

cannot enforce nonnegative payoff (which must happen close to convergence), then d̄
“almost” represents an expander flow; in fact we obtain a pseudoexpander flow. A
pseudoexpander flow can be used to find either an expander flow or a cut of expansion
O(D).

Theorem 7. There is a randomized procedure, Oracle, which, given a set of
demands d̄, runs in Õ(n2) time and does one of the following:

1. Oracle produces an x̄ ∈ P with v(d̄, x̄) ≥ 0 in which exactly one set S ⊆ V
with at least cn vertices has a nonzero zS.

2. Else, Oracle fails. In this case, a pseudoexpander flow can be constructed
from d̄.

The core of the algorithm runs the Freund–Schapire procedure starting with the
uniform demand vector where dij = 1

2nD/
(
n
2

)
for all pairs {i, j} and using Oracle

as column player. The implementation of Oracle will ensure that, when it fails, the
demands dij must correspond to a pseudoexpander flow, which can be turned into an
expander flow or a cut of low expansion. If Oracle never fails, then we solve the
game to near optimality; in this case we will show that we can efficiently obtain a cut
of low expansion. Thus, we have the following theorem.

1758 SANJEEV ARORA, ELAD HAZAN, AND SATYEN KALE

Theorem 8 (main). For some universal constant β, there is a procedure that,
given a graph G and a value D, finds either

1. a D-regular β-expander flow or
2. a cut of expansion at most O(

√
logn ·D).

Furthermore, this procedure runs in time Õ(n2).
If f̄ is a D-regular β-expander flow, then it is easy to check that for any D′ ≤ D,

D′
D · f̄ is a D′-regular β-expander flow. Thus, by starting with a low value of D
and doubling it every time, we can find a value D∗ such that the algorithm finds a
D∗-regular β-expander flow and a cut of expansion at most O(

√
logn · D∗). Thus,

by Lemma 3 we have D∗ ≤ α(G) ≤ O(
√
logn · D∗), and so we have the desired

O(
√
logn)-approximation to the Sparsest Cut.
Theorem 8 makes use of the following analogous theorem concerning pseudoex-

pander flows. This theorem enables us to obtain an O(
√
logn)-pseudoapproximation

to the minimum c-Balanced Separator just as before.
Theorem 9. For some universal constant β, there is a procedure that, given a

graph G and a value D, finds either
1. a D-regular (c, β)-pseudoexpander flow or
2. a c′ balanced cut of expansion at most O(

√
logn ·D) for some c′ ≤ c.

Furthermore, this procedure runs in time Õ(n2).
The algorithm of Theorem 8 actually runs the algorithm of Theorem 9 with

c = 1
3 . At any point where it obtains a D-regular (c, β)-pseudoexpander flow, it

runs the algorithm given by the following lemma (the stipulation on the number of
nonzero demands will be met by random sampling), which shows that we can pass
from a pseudoexpander flow to an expander flow (and when we fail to do so, we can
obtain a reason for the failure in the form of a sparse cut). This lemma is proved in
Appendix B.

Lemma 10. Let fp be a D-regular (c, β)-pseudoexpander flow on a graph G for
c ≤ 1/3. Assume that the flow has nonzero demand on only O(n log n) pairs of
vertices. Then, there is a procedure that in time Õ(n2) finds either

1. a D-regular β2

500 expander flow or
2. a cut of expansion at most 2D.

5. Running time. We make a few remarks on the Õ(n2) running time, which
occurs many times in this paper and, in particular, in the implementation of Oracle.
First, one can reduce the number of nonzero demands to Õ(n) by random sampling.
This is a known technique from existing sparsest cut implementations (see, e.g., [20,
8]), though we occasionally need to add a few simple ideas.

In many places we need to find cuts (S, S̄) where the demand graph fails to expand
(i.e., d(S, S̄) = o(nD)) and the cut is large, namely, |S| = Ω(n). Using the well-known
results of Cheeger and Alon we can do this using approximate eigenvalue computations
on the Laplacian of this sparse graph, which takes Õ(n) time by repeated matrix-
vector products. (This idea has been repeatedly rediscovered, but one reference is
[21].) Using the eigenvector and Theorem 16 we can find cuts (if any exist) where
the demand graph does not expand. Repeating the eigenvector method O(n) times
we try to aggregate these small cuts to have size Ω(n). If this aggregation fails to
produce any large cuts that do not expand, then we can throw away o(n) of the graph
such that in the remaining graph all cuts expand well. (In other words, we have a
pseudoexpander flow already.) Thus the total time is Õ(n2).

The Oracle procedure performs a min-cost concurrent multicommodity flow
computation using the algorithm of Fleischer [14], which also takes time Õ(n2) since

FAST APPROXIMATIONS TO SPARSEST CUT 1759

the number of demands has been reduced to Õ(n) by random sampling.
Finally, we repeat the algorithm of Theorem 9 for successively doubling values of

D. Thus overall, the algorithm for approximating Sparsest Cut takes Õ(n2 · log(UL))
time, where [L,U] is a range of values for α(G).

We can bound U
L by O(n) as follows. Let the global min-cut value in the graph

G be C (this value can be approximated to a constant factor in O(m+ n) time using
Matula’s algorithm [24]). Then, for any cut (S, S̄) in the graph with |S| ≤ n/2,
E(S,S̄)

|S| ≥ C
n/2 , so α(G) ≥ 2C

n . On the other hand, the expansion of the min-cut is at

most C, so α(G) ≤ C. Thus, we can take the range of α(G) to be [2Cn , C], so that the

O(
√
logn)-approximation algorithm for Sparsest Cut takes Õ(n2) time overall.
Similarly, for c-Balanced Separator, by removing and aggregating minimum

cuts recursively as long as the total size of the removed subgraph is less than cn, we
get an O(n)-approximation to αc(G). This is because of the following. Let (S, S̄)
be the minimum c-Balanced Separator with cn ≤ |S| ≤ n/2, and let C be its
capacity. As long as the aggregate number of nodes removed is less than cn, we do
not have all of S. Thus, if Ci is the capacity of the minimum cut removed in the ith
step of the recursion, then Ci ≤ C. Note that the final cut has size between cn and
cn+(1−c)n/2 and is thus c-balanced since c ≤ 1/3. Let (S′, S̄′) be this final cut with
cn ≤ |S′| ≤ n/2, and let its capacity be C′ and expansion be α′. Clearly αc(G) ≤ α′.
Furthermore, we have C′ ≤∑iCi ≤ cn ·C, since there are at most cn recursive steps.
Finally, we have

α′ =
C′

|S′| ≤
C′

cn
≤ C ≤ n

2
· C|S| =

n

2
αc(G),

which gives us the desired n/2-approximation.
Since we may have to aggregate O(n) minimum cuts, the total amount of time

needed to obtain the O(n)-approximation is O(mn) = Õ(n2). Thus, the O(
√
logn)

pseudoapproximation algorithm for the c-Balanced Separator takes Õ(n2) time
as well.

6. Implementing ORACLE. In this section we prove Theorem 7. Let ε1, ε2
be suitably chosen small constants, and set ε = min{ε1, ε2} for the truncated payoff.
Recall that given the demand vector (i.e., distribution on row strategies) d̄ we are
trying only to build a response (i.e., pure column strategy) x̄ such that the payoff
v(d̄, x̄) ≥ 0. When we fail to build such a response we have to use d̄ to exhibit a
pseudoexpander flow.

In each of the following cases, Oracle attempts to exploit certain characteristics
of the demands to find a suitable x̄; if it fails, execution falls through to the next
case. To facilitate the search, Oracle may temporarily neglect part of the demands;
however, the final x̄ it finds gives payoff ≥ 0 even with the original demands.

Case 1: Many large degrees.
Sort the vertices in decreasing order by di.
Case 1a. If the largest ε1βn degrees account for more than ε1nD demand, then

we can find a x̄ ∈ P with nonnegative payoff by setting si = 1/ε1 for all these vertices.
Set zS = 2 for any S with n/2 vertices. All other variables are 0. Since d(S, S̄) ≤ 1

2nd,
we have

v(d̄, x̄) ≥ ε1nD · (1/ε1)− d(S, S̄) · 2 ≥ nD − nD ≥ 0.

Case 1b. Otherwise, Oracle modifies the demand graph. Vertices with the top
ε1βn degrees have their demands set to 0. The remaining degrees must be at most

1760 SANJEEV ARORA, ELAD HAZAN, AND SATYEN KALE

D
β : otherwise, the removed demands sum up to at least ε1βn · Dβ = ε1nD, which we
assume is not the case. The total demand discarded is at most ε1nD. Execution falls
through to the next case.

Case 2: A large nonexpanding cut.
First, Oracle applies the Benczúr–Karger reduction to the (modified) demand

graph to reduce it to a set of O(n log n) nonzero demands such that all cuts (in
particular, degrees too) are approximately preserved. Let Gd be the demand graph

obtained this way. Oracle runs the procedure FindLargeCut(Gd,
D
β ,

c
2 ,

β2

2) (see

Lemma 19 in Appendix A). This runs in Õ(n2) time since there are only O(n log n)
nonzero demands in Gd.

Case 2a. Suppose it gives c
2 -balanced cut S with expansion at most β2

2 · Dβ = β
2D.

The demand discarded in Case 1 is at most ε1nD ≤ 2ε1
c |S|D = β

2D|S| if we set

ε1 = βc
4 . Even including this discarded demand we have d(S, S̄) ≤ βD|S|. Oracle

constructs an x̄ ∈ P with nonnegative payoff by setting zS = n/ |S|, all si = β, and
all other variables are 0. The payoff is

v(d̄, x̄) ≥ nD · β − d(S, S̄) · (n/|S|) ≥ βnD − βnD ≥ 0.

Case 2b. Otherwise, FindLargeCut returns a graph on at least (1− c
2)n nodes

such that the induced demand graph has expansion least β4

32 · Dβ = β3

32D. The demand
on the nodes left out is discarded. On the entire graph, all c-balanced cuts still expand

by at least β1D for β1 = β3

64 . Execution falls through to the next case.
Case 3: Unroutable demands.
First, Oracle performs random sampling on the demands so that the number of

nonzero demands is Õ(n). In Appendix C, we prove the following lemma via simple
applications of the Chernoff–Hoeffding bounds.

Lemma 11. We can randomly sample the demands to produce new demands, d̃ij ,
of which at most O(n log2 n) are nonzero, so that for any δ > 0, with probability at
least 1− n−Ω(logn), we have

∀i : d̃i ≤ di +D,

∀S, n/2 ≥ |S| ≥ cn : d̃(S, S̄) ≥ (1− δ)d(S, S̄),

∀x̄ ∈ P :
∑
ij

dij lij(x̄) < nD =⇒
∑
ij

d̃ij lij(x̄) < 7nD.

Now, Oracle sets all si = 0, and since lij(x̄)’s are truncated, the optimum choice
of we’s corresponds to solving the following LP:

Maximize
∑
ij

d̃ij lij subject to

∀ij, ∀p ∈ Pij : lij ≤
∑
e∈p

we,

∀ij : lij ≤ 1/ε2,∑
e

cewe ≤ βnD.(8)

We show how to approximately solve the above LP by considering the dual. This
can be thought of as a min-cost max-concurrent flow problem, which can be solved

FAST APPROXIMATIONS TO SPARSEST CUT 1761

in sparse graphs in Õ(n2) time using the algorithm of Fleischer [14]. Consider the
following instance of a min-cost max-concurrent flow problem: for every pair {i, j} we
associate demand d̃ij . We also associate a pseudoedge between every pair {i, j} with
infinite capacity and cost b = 1/(βε2nD). Any real edge e has cost 0 and its original
capacity ce. We impose the budget constraint 1 on the total cost of the flow. We get
the following LP and its dual:

max t, min
∑
e

cew
′
e + φ′

∀ij :
∑

p∈Pij

y′p + t′ij ≥ d̃ijt, ∀ij : l′ij ≤ bφ′,

∀e :
∑
p	e

y′p ≤ ce, ∀ij, ∀p ∈ Pij : l′ij ≤
∑
e∈p

w′
e,

b
∑
ij

t′ij ≤ 1,
∑
ij

d̃ij l
′
ij ≥ 1.(9)

Oracle solves this LP using Fleischer’s algorithm to within a constant multiplicative
factor, say 2. The algorithm runs in Õ(n2) time since there are only O(n log2 n)
nonzero demands.

The algorithm also yields the weights we such that 2t ≥ ∑e cew
′
e + φ′. We also

get a flow yp with congestion C by setting C = 1/t and scaling all y′p and t′ij by C to
get yp and tij . This routes all but

∑
ij tij of the demands with congestion C.

Next, we get a feasible solution we and lij for LP (8): let k = βnD/(
∑

e cew
′
e +

φ′) ≥ βnD ·C/2, and scale up the w′
e, l

′
ij , φ

′ by k to get we, lij , φ. Since
∑

e cewe+φ =

βnD,
∑

e cewe ≤ βnD and φ ≤ βnD; so bφ ≤ 1/ε2 as needed. Also,
∑

ij d̃ij lij =∑
ij d̃ij l

′
ij · k ≥ βnDC/2.

Case 3a. If C > 14/β, then
∑

ij d̃ij lij > 7nD, so
∑

ij dij lij ≥ nD. Then Oracle

constructs an x̄ ∈ P by using the given settings for we and lij and assigning zS = 2
for some S with n/2 vertices. Other variables are all 0. Then

v(d̄, x̄) ≥ nD − d(S, S̄) · 2 ≥ nD − nD ≥ 0.

Case 3b. Otherwise, C ≤ 14/β; then the Oracle fails. We then get a pseudoex-
pander flow as explained below.

6.1. Finding a pseudoexpander flow. The flow yp obtained by Oracle just
before it failed routes all but

∑
ij tij of the total demand with congestion at most 14/β.

We discard the tij demands, which amount to at most
∑

ij t
′
ij/t ≤ (1/b)·C ≤ 14ε2nD.

The remaining demands are D
β +D regular. If we choose δ = 1

2 in Lemma 11, then

after random sampling, all c-balanced cuts have expansion at least β1

2 D. By setting

ε2 = β1c
56 , the total demand discarded is at most β1c

4 nD. Thus, all c-balanced cuts

still have expansion at least β1

4 D. We then scale the flow by β
14 so that the congestion

becomes 1, all degrees are at most D, and all c-balanced cuts have expansion at least
β2D for β2 = β1β

56 . Thus, we end up with a D-regular (c, β2)-pseudoexpander flow.

7. Finding a cut of expansion within O(
√
logn) of optimal. In this sec-

tion we finish the proof of Theorem 9 (as noted earlier, Theorem 8 follows using
Lemma 10). Recall that the idea is to do binary search on degree D and try to find
a D-regular pseudoexpander flow by solving the game. We already proved in the

1762 SANJEEV ARORA, ELAD HAZAN, AND SATYEN KALE

previous section that if the oracle fails within O(log n) rounds, then we can find a D-
regular (c, β2)-pseudoexpander flow. Thus to finish the proof of Theorem 8 we show
that if Oracle does not fail in T = O(log n) rounds, then we can find a c′-balanced
cut of expansion O(

√
logn ·D) for some c′ ≤ c.

Let d̄t be the demand vector produced in the tth iteration of the algorithm. Let
x̄t ∈ P be the corresponding vector produced by Oracle. Let x̄∗ = 1

T

∑
t x̄

t be the
vector obtained by averaging Oracle’s responses for all T rounds. Let its elements
be s∗i , w

∗
e , z

∗
S. Then we have the following lemmas.

Lemma 12. For any d̄, v(d̄, x̄∗) ≥ − δ
2nD

Proof. We first show that v(d̄, x̄∗) ≥ 1
T

∑
t v(d̄, x̄

t). The only nonlinear part in
v(d̄, x̄) is lij(x̄), so it suffices to prove that lij(x̄

∗) ≥ 1
T

∑
t lij(x̄

t). If lij(x̄
∗) = 1/ε, then

since 1/ε is an upper bound on all lij(x̄
t), the inequality holds trivially. Otherwise,

lij(x̄
∗) is the length of shortest path from i to j under the corresponding we’s. Let

this path be p. The length of p under any x̄t is at least lij(x̄
t). Averaging the lengths

of p under all x̄t we get exactly lij(x̄
∗), which is thus at least 1

T

∑
ij lij(x̄

t).

Now, by Theorem 1 (scaled up by 1
2nD) we have

v(d̄, x̄∗) ≥ 1

T

∑
t

v(d̄, x̄t) ≥ 1

T

∑
t

v(d̄t, x̄t)− δ

2
nD ≥ − δ

2
nD,

since for all t Oracle ensures that the payoff v(d̄t, x̄t) ≥ 0.
Lemma 13. We can construct a unit vectors v1, v2, . . . , vn such that 1

4

∑
ij ‖vi−

vj‖2 = c(1− c)n2 and for all pairs i, j, 1
4‖vi − vj‖2 =

∑
S: i∈S,j∈S̄

|S|
n z∗S.

Proof. First we note that
∑

S
|S|
n zS = 1 for any x̄ ∈ P. There are N = O(log n)

sets S with nonzero z∗S . We construct vectors in R
N , with a coordinate for each such

set S. For any vertex i, construct vector vi by setting vi(S) = ±
√

|S|
n z∗S depending

on whether i ∈ S or i ∈ S̄. Note that ‖vi‖2 =
∑

S
|S|
n zS = 1. Also, for any pair i, j,

the vector vi − vj has nonzero coordinates only for S such that i ∈ S, j ∈ S̄. Thus,
1
4‖vi − vj‖2 =

∑
S: i∈S,j∈S̄

|S|
n z∗S. So,

1

4

∑
ij

‖vi−vj‖2 =
∑
ij

∑
S: i∈S,j∈S̄

|S|
n

z∗S =
∑
S

|S|
n

z∗S ·
⎡
⎣ ∑
ij: i∈S,j∈S̄

1

⎤
⎦ =

∑
S

|S|
n

z∗S ·|S||S̄|.

Since z∗S = 0 only if the cut (S, S̄) is c-balanced, we have |S||S̄| ≥ c(1 − c)n2 for all
such S, and hence

1

4

∑
ij

‖vi − vj‖2 ≥
∑
S

|S|
n

z∗S · c(1− c)n2 = c(1− c)n2.

We need the following theorem from [6].
Theorem 14 (see [6]). Let v1, v2, . . . , vn be vectors of length at most 1, such that

1
4

∑
ij ‖vi − vj‖2 ≥ c(1 − c)n2. Let we be weights on edges, and let α :=

∑
e cewe.

Then there is an algorithm which runs in Õ(mn) time, and finds a cut of value C
which is c′-balanced for some constant c′ ≤ c, such that there exists a pair of nodes i, j
with the property that the graph distance between i and j is at most O(

√
log n · αC) and

‖vi − vj‖2 ≥ s, where s is a constant. Furthermore, this is true even if any fixed set
of τn nodes is prohibited from being i or j for some small constant τ . The constants
c′, s, τ depend only on c.

FAST APPROXIMATIONS TO SPARSEST CUT 1763

Theorem 15. If Oracle fails, then we can find a cut with expansion at most
O(
√
logn ·D) in Õ(n2) time.
Proof. Since for any d̄, v(d̄, x̄∗) ≥ − δ

2nD, in particular, for any pair {i, j}, if we
choose the demands dij =

1
2nD and dk� = 0 if {k, �} = {i, j}, we conclude that

s∗i + s∗j + lij(x̄
∗)−

∑
S: i∈S,j∈S̄

z∗S ≥ −δ

=⇒ s∗i + s∗j + min
p∈Pij

{∑
e∈p

w∗
e

}
≥

∑
S: i∈S,j∈S̄

|S|
n

z∗S − δ.

For convenience, let Δ(i, j) = minp∈Pij{
∑

e∈p w
∗
e}. Construct the unit vectors

v1, v2, . . . , vn of Lemma 13. Then for all pairs {i, j}, we have s∗i + s∗j + Δ(i, j) ≥
1
4‖vi − vj‖2 − δ.

Since
∑

i s
∗
i ≤ βn, at most τn nodes have s∗i > β/τ . Let all such vertices form

the set A. We apply Theorem 14 to G with A being the τn forbidden vertices and
the weights w∗

e on the edges. Let c′, s, τ be the constants given by Theorem 14. Note
that α =

∑
e cew

∗
e ≤ βnD. We thus get a cut of value C such that there is a pair of

vertices i, j with the following properties:
1. s∗i , s

∗
j ≤ β/τ ;

2. the graph distance of i, j in G is at most O(
√
logn·α/C) = O(

√
logn·nD/C);

and
3. ‖vi − vj‖2 ≥ s.

Now suppose that in the algorithm we set the parameters β = sτ
32 and δ = s

16 so that
s
4 − 2β

τ − δ = s
8 . Then we conclude that Δ(i, j) ≥ s

8 . Hence, we have O(
√
logn ·

nD/C) ≥ s
8 . Thus C

c′n ≤ O(
√
logn ·D). This implies that the expansion of the cut

found is at most O(
√
logn ·D), as required. Since we have only O(n log n) edges in

the graph, this procedure runs in Õ(n2) time.

8. Conclusions. Though our approximation ratio is O(
√
logn), the constants

inside the O(·) are not great. The game’s definition uses a constant β that is likely
to be quite small, less than 0.1. The use of the Alon–Cheeger inequality degrades the
constants further. We plan to explore whether the constants can be improved—either
theoretically or in practice.

Though our running time of Õ(n2) seems tough to improve (in particular it arises
in several places in this paper), one could conceivably get Õ(m), that is, near-linear.
This would involve looking inside the various results such as those of Benczúr and
Karger and Fleischer (or Garg and Könemann) that are used in black-box fashion
here. A challenging open problem is to obtain a polylogarithmic approximation to
the Sparsest Cut problem in near-linear time. Currently, the fastest such algorithms
appear in [5] and [26] and obtain an O(log n) approximation in Õ(m+ n1.5) time.

Appendix A. Sparse cuts via eigenvalue computations. For a weighted
graph G where the weight for pair {i, j} (j could possibly be the same as i to allow for
self-loops) is dij , the Laplacian L of G is the n× n symmetric matrix with rows and
columns indexed by nodes in G, such that L = D−1/2(D −A)D−1/2, where D is the
diagonal matrix of (weighted) node degrees, and A is the (weighted) adjacency matrix
of the graphG. We assume here that no node has zero degree. The smallest eigenvalue
of L is 0 corresponding to the eigenvector 〈√d1,

√
d2, . . . ,

√
dn〉�. The following well-

known theorem that arises from the work of Alon and Cheeger (for a proof see [13])

1764 SANJEEV ARORA, ELAD HAZAN, AND SATYEN KALE

shows that the second smallest eigenvalue of L gives us useful information about the
conductance of G (defined in (2)).

Theorem 16 (Alon and Cheeger). Let the conductance of a weighted graph G
with n vertices and m edges be Φ(G). Let the Laplacian of the graph be L, and denote
its second smallest eigenvalue by λL. Then

2Φ(G) ≥ λL ≥ Φ(G)2

2
.

Furthermore, suppose we are given a vector x such that
∑

i

√
dixi = 0, where di is the

degree of node i. Let λ := x�Lx
x�x

. Then there is a procedure SweepCut(G, x) that in

time Õ(m+ n) finds a cut with conductance at most
√
2λ.

The procedure SweepCut(G, x) operates as follows. Assume that the coordi-
nates of x are ordered in increasing value, x1 ≤ x2 ≤ · · · ≤ xn. For 1 ≤ k ≤ n − 1,
let Sk = {1, 2, . . . , k}. Then the theorem shows that one of the cuts (Sk, S̄k) has
conductance at most

√
2λ, and thus it can be found in time Õ(m+ n).

The optimal x for this procedure is an eigenvector belonging to the second smallest
eigenvalue of L. Computing this eigenvector may be computationally expensive if λL
is very close to 0. However, for our application, we need only find a cut of conductance
less than some prespecified constant β > 0. In this case, it suffices to find a vector

x such that its λ value is at most β2

2 . For this, we can use the power method, as
explained in the following lemma.

Lemma 17. Let λ > λL be a given parameter. Then we can find a vector x such

that
∑

i

√
dixi = 0 and x�Lx

x�x
≤ λ using O(logn

λ−λL
) matrix vector products with the

matrix L.
Proof. An eigenvector of L for the 0 eigenvalue is y = 〈√d1,

√
d2, . . . ,

√
dn〉�.

Furthermore, the largest eigenvalue of L is at most 2. Thus, the matrix 2I−L− 1
y�y

yy�

is positive semidefinite with largest eigenvalue 2−λL. To get a vector x with Rayleigh
quotient at least 2−λ, we can use the power method with a random start. The analysis
of [21] indicates that the method succeeds with constant probability in O(log n

λ−λL
)

iterations.

Lemma 18. There is a randomized procedure, FindCut(G, λ), which finds a cut
of conductance at most

√
2λ in G or, with constant probability, concludes correctly

that G has conductance at least λ
4 . The procedure requires O(log n

λ) matrix vector
products with the Laplacian of G.

Proof. Let λL be the second smallest eigenvalue of the Laplacian of G. If
λL ≤ 1

2λ, then with constant probability, O(log n
λ) iterations of the power method,

as described in Lemma 17, suffice to find the desired x. Once x is found, we can run
SweepCut(G, x) to find a cut of conductance at most

√
2λ. Otherwise, if λL ≥ 1

2λ,
then by Theorem 16, G has conductance at least 1

2λ.
One can iterate the FindCut procedure to find c-balanced separators.

Lemma 19. There is a procedure that, given a weighted graph G with degrees
bounded by D, a fraction 0 < c ≤ 1/3, and a expansion bound β > 0, uses FindCut

O(n) times and produces either a c-balanced cut with edge expansion at most βD or

a graph on at least (1 − c)n vertices of expansion at least β2

8 D.
Proof. For a graph G, let GD be the graph G with each node augmented with

(weighted) self-loops to make the weighted degree exactly D. This ensures that a cut
of conductance φ in GD has expansion at least φD. We repeatedly use FindCut to
get cuts of expansion less than βD and aggregate them. The resulting cut (S, S̄) also

FAST APPROXIMATIONS TO SPARSEST CUT 1765

has expansion less than βD. Once we have a large enough (i.e., at least cn nodes) S,
we return it. Note that the final size of S is at most cn+ (1− c)n/2; even so, the cut
(S, S̄) is still c-balanced since c ≤ 1/3.

Now, if at some point FindCut can no longer find cuts of expansion less than
βD, then with constant probability, the second smallest eigenvalue of the Laplacian

of the remaining (augmented) graph is at least β2

4 . Thus, by Theorem 16, every

cut in the remaining graph has expansion β2

8 D. This procedure, FindLargeCut,
is given below. The success probability can be boosted up using standard repetition
techniques. Here, G \ S is the subgraph induced on the vertex set V \ S.

Procedure FindLargeCut(G,D, c, β)
// Returns a cut of expansion of expansion at most βD or
// a subgraph of G of size at least (1 − c)n with expansion at

least β2

8 D
Initialization: S ← φ

while FindCut((G\S)D, β2

2) finds a cut (T, T̄) of conductance
at most β
S ← S ∪ T
end while
if |S| ≥ cn then return the cut (S, S̄)
else return the graph (G \ S)

Appendix B. Pseudoexpander flows. In this section we show how, given a
pseudoexpander flow, we can either convert it into an expander flow or find a sparse
cut.

Definition 3. A D-regular multicommodity flow (fp) is called a (c, β)-pseudo-
expander flow if every c-balanced cut expands well. Formally

∀S, n/2 ≥ |S| ≥ cn :
∑

i∈S,j∈S̄

∑
p∈Pij

fp ≥ βD|S|.

We recall Lemma 10 here.

Lemma 10. Let fp be a D-regular (c, β)-pseudoexpander flow on a graph G for
c ≤ 1/3. Assume that the flow has nonzero demand on only O(n log n) pairs of
vertices. Then, there is a procedure that in time Õ(n2) finds either

1. a D-regular β2

500 expander flow or
2. a cut of expansion at most 2D.

Proof. First, we note that fp is clearly also a (1/3, β)-pseudoexpander flow since
c ≤ 1/3. Let Gf be the demand graph for the given pseudoexpander flow. Let D be
its Laplacian, and let λD be the second smallest eigenvalue of D.

First, we run FindLargeCut(Gf , D, 1/3, β2). Since Gf is the demand graph of
a (1/3, β)-pseudoexpander flow, the procedure cannot return a cut (S, S̄) in Gf that

is 1/3 balanced with expansion less than β
2D. Thus, it returns a subset of vertices S

of size at most n/3 such that the induced subgraph Gf \S has expansion at least β2

32 .

Now, let L be the set S along with n/3 − |S| arbitrarily removed nodes of S̄,
and let R = V \ L. Note that |L| = n/3 and |R| = 2n/3. We form a flow network
by connecting all nodes in L to a single (artificial) source with edges of capacity
2D and all nodes in R to a single (artificial) sink with edges of capacity D, and we
compute the max flow in the network (with all original graph edges in G retaining

1766 SANJEEV ARORA, ELAD HAZAN, AND SATYEN KALE

their capacities). The flow computation runs in Õ(n2) time using the algorithm of
Goldberg and Tarjan [18] since the graph is sparse.

Suppose the flow does not saturate all source edges. Then its value is less than
2D · |L| = 2nD/3. Let (T, T̄) be the min-cut found, with T being the side of the cut
containing the source. Let n� = |T ∩ L| and let nr = |T̄ ∩ R|. Then the capacity
of the original graph edges cut is at most 2nD/3− 2D(n/3− n�)−D(2n/3− nr) =
D[2n� + nr − 2n/3]. Note that 2n� ≤ 2|L| = 2n/3 and nr ≤ |R| = 2n/3, and so the
capacity of the cut is at most D[2n�+nr− 2n/3] ≤ 2Dmin{n�, nr}. The smaller side
of the cut contains at least min{n�, nr} nodes, and hence the expansion of the cut
found is at most 2D.

Otherwise, suppose that the flow does saturate all source edges. Let ḡ be this
flow. Consider the flow h̄ = 1

2 f̄ + 1
4 ḡ. Then h̄ is a D-regular flow. We claim that it is

a β2

500 expander flow.
Let (T, T̄) be a cut in the graph, with |T | ≤ |T̄ |. Let x = |T ∩L| and y = |T ∩R|.

Now we have two cases:
1. x ≥ β2

200y:
Since ḡ pumps 2D flow into every node in T ∩ L, which eventually goes into
the sink, at least 2Dx flow must cross the cut (T, T̄). Thus, in the flow h̄, at
least 1

2Dx flow crosses the cut (T, T̄). Thus, the expansion of the cut (T, T̄)
is at least

1
2Dx

x+ y
≥

1
2Dx

x+ 200
β2 x

≥ β2

500
D

since β ≤ 1.

2. x ≤ β2

200y:
Define U = T ∩ R. Note that U ⊆ S̄, and y = |U | = |T ∩ R| ≤ |T | ≤ n/2,
since |T | ≤ |T̄ |. Thus, |S̄ \ U | ≥ |S̄| − n/2 ≥ 2n/3 − n/2 = n/6. Thus, we
conclude that min{|U |, |S̄\U |} ≥ y/3. Now since the subgraph of Gf induced

by S̄ has expansion at least β2

32D, at least β2

32Dmin{|U |, |S̄ \ U |} ≥ β2

100y flow
in f̄ must leave the set U . Since f̄ is D-regular, at most Dx of this flow can

terminate in nodes in T ∩ L. Thus, since x ≤ β2

200y, at least β2

200Dy flow in

f̄ crosses the cut (T, T̄). So in h̄, at least β2

400Dy flow crosses the cut (T, T̄).
Thus, the expansion of the cut (T, T̄) is at least

β2

400Dy

x+ y
≥

β2

400Dy

y + β2

200y
≥ β2

500
D

since β ≤ 1.

Appendix C. Random sampling on the demands. We now describe how
to randomly sample the demands to reduce the number of nonzero demands to
O(n log2 n) while still preserving degrees, expansion of large cuts, and the values
of lij(x)’s.

Recall that we only perform the random sampling if the steps corresponding to
choosing the si’s and the zS ’s do not result in a x̄ that has positive payoff. Therefore

∀i : di ≤ D

β
,

∀S, n/2 ≥ |S| ≥ cn : d(S, S̄) ≥ β1D|S| ≥ β1cnD.

FAST APPROXIMATIONS TO SPARSEST CUT 1767

For random sampling, we choose the probability distribution D over pairs of
nodes, where the probability of {i, j} is pij = dij/Z, where Z =

∑
k� dk� ≤ 1

2nD.
Now we form the multiset S by choosing m independent samples {i, j} from D. Thus,
in each of the m rounds, we choose only 1 pair, for a total of m pairs. Set indicator
random variable Xs

ij = 1 or 0 depending on whether we choose {i, j} on the sth trial,
1 ≤ s ≤ m. Finally, set the new sampled demands to be

d̃ij =
Z
∑

s X
s
ij

|S| .

We use the following version of the Chernoff–Hoeffding bounds from [25].
Lemma 20. Let X =

∑
Xs be the sum of m independent identically distributed

random variables in [0, 1] such that E[Xs] = μ. Let δ > 0 be any small error parame-
ter, and let b(δ) = (1 + δ) ln(1 + δ)− δ. Then

Pr[X/m ≥ (1 + δ)μ] < e−mb(δ)μ.

If δ > 2e − 1, the upper bound above can be replaced by 2−m(1+δ)μ. For δ < 1, we
have

Pr[X/m ≤ (1− δ)μ] < e−mδ2μ/2.

Now we prove Lemma 11, which asserts that the sampled demands approximate
the original ones well with high probability if the number of samples is Ω(n log2 n).

Lemma 11. We can randomly sample the demands to produce new demands, d̃ij ,
of which at most O(n log2 n) are nonzero, so that for any δ > 0, with probability at
least 1− n−Ω(logn), we have

∀i : d̃i ≤ di +D,

∀S, n/2 ≥ |S| ≥ cn : d̃(S, S̄) ≥ (1− δ)d(S, S̄),

∀x̄ ∈ P :
∑
ij

dij lij(x̄) < nD =⇒
∑
ij

d̃ij lij(x̄) < 7nD.

Proof. Let m = Ω(n log2 n) be the number of samples.
1. Fix any i. Define, for all 1 ≤ s ≤ m, Xs =

∑
j X

s
ij . All Xs ∈ {0, 1} and have

expectation di/Z. Define X =
∑

s Xs. Then X/m = d̃i/Z. Set δ = D
di
. Now

we have two cases:
(a) δ ≤ 2e− 1:

Then di ≥ D
2e−1 ≥ D/6, and hence di/Z ≥ 1/3n. By Lemma 20, we

conclude that

Pr[d̃i ≥ di +D] = Pr[X/m ≥ (1 + δ)(di/Z)]

< e−mb(δ)di/Z

≤ e−mb(β)/3n

since δ = D
di
≥ β, and so b(δ) ≥ b(β).

(b) δ ≥ 2e− 1:
Then (1 + δ)di/Z > D/Z ≥ 2/n. By Lemma 20, we conclude that

Pr[d̃i ≥ di +D] = Pr[X/m ≥ (1 + δ)(di/Z)]

< 2−m(1+δ)di/Z

< 2−2m/n.

1768 SANJEEV ARORA, ELAD HAZAN, AND SATYEN KALE

If m = Ω(n log2 n), then any such event happens with probability at most
n−Ω(logn). By the union bound over all n nodes,

Pr[∃i : d̃i ≥ di +D] < n−Ω(logn).

2. Fix any S. Define, for all 1 ≤ s ≤ m, Xs =
∑

i∈S,j∈S̄ Xs
ij . All Xs ∈ {0, 1} and

have expectation d(S, S̄)/Z. Define X =
∑

s Xs. Then X/m = d̃(S, S̄)/Z ≥
2β1c. By Lemma 20, we conclude that

Pr[d̃(S, S̄) ≥ (1− δ)d(S, S̄)] < e−mδ2d(S,S̄)/2Z ≤ e−δ2β1cm.

If m = Ω(n log2 n), then any such event happens with probability at most

e−Ω(n log2 n). By the union bound over at most en choices of S,

Pr[∃S, |S| > n/5 : d̃(S, S̄) ≥ (1− δ)d(S, S̄)] < e−Ω(n log2 n).

3. Fix an x̄ ∈ P. Let we be the weight function on edges specified by x̄. Note
that since we truncate all path lengths to be at most 1/ε2, we may assume
that all we ≤ 1/ε2. We discretize the space of all possible weight functions
on edges as follows. Let the number of edges be N = O(n log n). We round
the we values downwards to the closest multiple of 1/N to obtain the point
x̃ ∈ P. The number of possible such discretized weight functions is bounded
by (N/ε2)

N = eO(n log2 n).
With some abuse of notation, let lij = lij(x̄) and l̃ij = lij(x̃). The discretiza-

tion ensures that |lij − l̃ij | ≤ 1. Since case 1 holds with high probability, we

may assume that all d̃i ≤ di +D. Thus, |∑ij d̃ij lij −
∑

ij d̃ij l̃ij | ≤
∑

ij d̃ij ≤
nD.
Define, for all 1 ≤ s ≤ m, Xs = ε2

∑
ij X

s
ij l̃ij . All Xs ∈ [0, 1] (as l̃ij ≤

ε−1
2) and have expectation μ = ε2

∑
ij dij l̃ij/Z. Define X =

∑
s Xs. Then

X/m = ε2
∑

ij d̃ij l̃ij/Z. Now, if
∑

ij dij lij < nD, then
∑

ij dij l̃ij < nD,

and so μ < ε2nD/Z. Let 1 + δ = 6ε2nD/Z
μ . Note that δ > 2e − 1, and

(1 + δ)μ ≥ 12ε2. By Lemma 20, we conclude that

Pr

⎡
⎣∑

ij

d̃ij lij > 7nD

⎤
⎦ ≤ Pr

⎡
⎣∑

ij

d̃ij l̃ij > 6nD

⎤
⎦

≤ Pr[X/m > (1 + δ)μ]

< 2−m(1+δ)μ

< 2−12ε2m.

Applying the union bound to all the eO(n log2 n) possible discretized metrics,
we obtain that if m = Ω(n log2 n), then

Pr

⎡
⎣∃x̄ ∈ P :

∑
ij

dij lij < nD but
∑
ij

d̃ij lij > 7nD

⎤
⎦ ≤ e−Ω(n log2 n).

Finally, the union bound over all three cases implies that the stipulation of the lemma
holds with probability at least 1− n−Ω(logn).

FAST APPROXIMATIONS TO SPARSEST CUT 1769

Appendix D. Proof of Theorem 1. Recall Theorem 1.
Theorem 1. For any δ > 0, let ε = δ/2ρ, T = 4ρ2 ln(N)/δ2. Then the Multi-

plicative Weights Algorithm guarantees that, for any distribution D over R,

1

T

T∑
t=1

M(D(t), j(t)) ≤ 1

T

T∑
t=1

M(D, j(t)) + δ.

Proof. We use the value Φ(t) =
∑

i∈R wi
(t) as a potential function and track

changes in it as t increases. We have, for t ≥ 1,

Φ(t+1) =
∑
i∈R

wi
(t+1)

=
∑
i∈R

wi
(t) · (1− ε)μ(i,j

(t))

≤
∑
i∈R

wi
(t) · (1− εμ(i, j(t))) ∵ (1− ε)x ≤ 1− εx for x ∈ [0, 1]

= Φ(t)[1− εμ(D(t), j(t))] ∵ D(t) = {w1
(t)/Φ(t), . . . , wN

(t)/Φ(t)}
≤ Φ(t) exp(−εμ(D(t), j(t))) ∵ (1− x) ≤ exp(−x).

Thus, by induction, we get that

Φ(T+1) ≤ Φ(1) exp

(
−ε

T∑
t=1

μ(D(t), j(t))

)
= N exp

(
−ε

T∑
t=1

μ(D(t), j(t))

)
.

On the other hand, we have for any i ∈ R,

Φ(T+1) ≥ wi
(T+1) = (1 − ε)

∑T
t=1 μ(i,j(t)).

Putting these together, and taking logarithms and simplifying using the fact that
− ln(1− ε) ≤ ε(1 + ε) for ε < 1

2 , we get that for any i ∈ R,
T∑

t=1

μ(D(t), j(t)) ≤ (1 + ε)

T∑
t=1

μ(i, j(t)) +
lnN

ε
.

Since this holds for all i ∈ R, given any distribution D over R, by summing up the
inequalities for all i with weights given by D, we get that

T∑
t=1

μ(D(t), j(t)) ≤ (1 + ε)

T∑
t=1

μ(D, j(t)) + lnN

ε
.

Substituting μ(D(t), j(t)) = (M(D(t), j(t))− �)/ρ, we get

1

T

T∑
t=1

M(D(t), j(t)) ≤ 1

T

T∑
t=1

[M(D, j(t)) + ε(M(D, j(t))− �)] +
ρ lnN

εT
.

We bound (M(D, qt)− �) ≤ ρ, and then using the specified values of ε and T we get
(3).

1770 SANJEEV ARORA, ELAD HAZAN, AND SATYEN KALE

Acknowledgments. We thank Russell Impagliazzo, Lisa Fleischer, Satish Rao,
and Robert Schapire for helpful conversations.

REFERENCES

[1] F. Alizadeh, Interior point methods in semidefinite programming with applications to combi-
natorial optimization, SIAM J. Optim., 5 (1995), pp. 13–51.

[2] N. Alon, Eigenvalues and expanders, Combinatorica, 6 (1986), pp. 83–96.
[3] N. Alon and V. Milman, λ1, isoperimetric inequalities for graphs, and superconcentrators, J.

Combin. Theory Ser. B, 38 (1985), pp. 73–88.
[4] S. Arora, E. Hazan, and S. Kale, The multiplicative weights method: A meta-algorithm and

some applications, Theory Comput., submitted.
[5] S. Arora and S. Kale, A combinatorial, primal-dual approach to semidefinite programs, in

Proceedings of the 39th Annual ACM Symposium on Theory of Computing, 2007, pp. 227–
236.

[6] S. Arora, S. Rao, and U. V. Vazirani, Expander flows, geometric embeddings and graph
partitioning, in Proceedings of the 36th Annual ACM Symposium on Theory of Computing,
2004, pp. 222–231.

[7] Y. Aumann and Y. Rabani, An O(log k) approximate min-cut max-flow theorem and approx-
imation algorithm, SIAM J. Comput., 27 (1998), pp. 291–301.

[8] A. A. Benczúr and D. R. Karger, Approximating s-t minimum cuts in Õ(n2) time, in
Proceedings of the 28th Annual ACM Symposium on Theory of Computing, 1996, pp. 47–
55.

[9] M. Blum, R. M. Karp, O. Vornberger, C. H. Papadimitriou, and M. Yannakakis, The
complexity of testing whether a graph is a superconcentrator, Inform. Process. Lett., 13
(1981), pp. 164–167.

[10] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cam-
bridge, UK, 2004.

[11] S. Chawla, A. Gupta, and H. Räcke, Embeddings of negative-type metrics and an improved
approximation to generalized sparsest cut, in Proceedings of the Sixteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, 2005, pp. 102–111.

[12] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, in Problems in Anal-
ysis, Princeton University Press, Princeton, NJ, 1970, pp. 195–199.

[13] F. Chung, Spectral Graph Theory, CBMS Regional Conf. Ser. in Math. 92, AMS, Providence,
RI, 1997.

[14] L. K. Fleischer, Approximating fractional multicommodity flow independent of the number
of commodities, SIAM J. Discrete Math., 13 (2000), pp. 505–520.

[15] Y. Freund and R. E. Schapire, Adaptive game playing using multiplicative weights, Games
Econom. Behav., 29 (1999), pp. 79–103.

[16] N. Garg and J. Könemann, Faster and simpler algorithms for multicommodity flow and other
fractional packing problems, in Proceedings of the 39th Annual Symposium on Foundations
of Computer Science, 1998, pp. 300–309.

[17] M. X. Goemans and D. P. Williamson, Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming, J. ACM, 42 (1995), pp. 1115–
1145.

[18] A. V. Goldberg and R. E. Tarjan, A new approach to the maximum-flow problem, J. ACM,
35 (1988), pp. 921–940.

[19] R. Khandekar, S. Rao, and U. Vazirani, Graph partitioning using single commodity flows, in
Proceedings of the 38th Annual ACM Symposium on Theory of Computing, 2006, pp. 385–
390.

[20] P. Klein, S. Plotkin, C. Stein, and É. Tardos, Faster approximation algorithms for the
unit capacity concurrent flow problem with applications to routing and finding sparse cuts,
SIAM J. Comput., 23 (1994), pp. 466–487.

[21] J. Kuczyński and H. Woźniakowski, Estimating the largest eigenvalue by the power and
Lanczos algorithms with a random start, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 1094–
1122.

[22] F. T. Leighton and S. Rao, Multicommodity max-flow min-cut theorems and their use in
designing approximation algorithms, J. ACM, 46 (1999), pp. 787–832.

[23] N. Linial, E. London, and Y. Rabinovich, The geometry of graphs and some of its algorith-
mic applications, Combinatorica, 15 (1995), pp. 215–245.

[24] D. W. Matula, A linear time 2 + ε approximation algorithm for edge connectivity, in Pro-

FAST APPROXIMATIONS TO SPARSEST CUT 1771

ceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, 1993,
pp. 500–504.

[25] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, Cam-
bridge, UK, 1995.

[26] L. Orecchia, L. J. Schulman, U. V. Vazirani, and N. K. Vishnoi, On partitioning graphs
via single commodity flows, in Proceedings of the 40th Annual ACM Symposium on Theory
of Computing, 2008, pp. 461–470.

[27] S. A. Plotkin, D. B. Shmoys, and É. Tardos, Fast approximation algorithms for fractional
packing and covering problems, in Proceedings of the 32nd Annual Symposium on Foun-
dations of Computer Science, 1991, pp. 495–504.

[28] F. Shahrokhi and D. W. Matula, The maximum concurrent flow problem, J. ACM, 37 (1990),
pp. 318–334.

[29] D. S. Shmoys, Cut problems and their application to divide and conquer, in Approximation
Algorithms for NP-hard Problems, PWS, Boston, 1995.

[30] V. Vazirani, Approximation Algorithms, Springer-Verlag, Berlin, 2002.
[31] N. E. Young, Randomized rounding without solving the linear program, in Proceedings of the

Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, 1995, pp. 170–178.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

