
Proof Pearl: Magic Wand as Frame

Qinxiang Cao1, Shengyi Wang2, Aquinas Hobor2, and Andrew W. Appel1

1 Princeton University
2 National University of Singapore

Abstract. Separation logic is widely used to verify programs that manipulate
pointers. It adds two connectives: separating conjunction ∗ (“star”) and its ad-
joint, separating implication −∗ (“magic wand”). Comparatively, separating con-
junction is much more widely used. Many separation logic tools do not even
support separating implication. Especially in interactive program verification or
pen-paper proofs, people often find magic wand expressions not useful in ex-
pressing preconditions and postconditions.

We demonstrate that by using magic wand to express frames that relate lo-
cal portions of data structures to global portions, we can exploit its power while
proofs are still easily understandable. This magic-wand-as-frame technique is
especially useful when verifying imperative programs that walk through a data
structure from the top down. We use binary search tree insert as an example to
demonstrate this proof technique.

Keywords: Separation logic, Separating implication, Program verification

1 Thesis

When proving in separation logic a program that traverses (and possibly modifies) a list
or tree data structure, use these PROOF RULES OF WAND-FRAME:

WANDQ-FRAME-INTRO: Q ` ∀x. (P (x) −∗ P (x) ∗Q)

WANDQ-FRAME-ELIM: P (x) ∗ ∀x. (P (x) −∗ Q(x)) ` Q(x)

WANDQ-FRAME-HOR: ∀x. (P1(x) −∗ Q1(x)) ∗ ∀x. (P2(x) −∗ Q2(x)) `
∀x. (P1(x) ∗ P2(x) −∗ Q1(x) ∗Q2(x))

WANDQ-FRAME-VER: ∀x. (P (x)−∗Q(x)) ∗ ∀x. (Q(x)−∗R(x)) ` ∀x. (P (x)−∗ R(x))
WANDQ-FRAME-REFINE: ∀x. (P (x) −∗ Q(x)) ` ∀y. (P (f(y)) −∗ Q(f(y)))

2 Introduction

Separation logic [14] is an extension of Hoare logic that has been widely used in pro-
gram verification. The separating conjunction P ∗Q (“star”) in assertions represents the
existence of two disjoint states, one that satisfies P and one that satisfies Q. Formally,

m � P ∗Q =def there exist m1 and m2 s.t. m = m1 ⊕m2, m1 � P and m2 � Q.

February 2, 2018

2

Here, m1 ⊕ m2 represents the disjoint union of two pieces of state/memory. The ∗
concisely expresses address (anti)aliasing. For example, if “p 7→ v” is the assertion that
data v is stored at address p, then p 7→ v ∗ q 7→ u says v is stored at address p, u
is stored at address q, and p 6= q. Separation logic enables one to verify a Hoare triple
locally but use it globally, using the frame rule:

FRAME
{P} c {Q} FV(F) ∩ModV(c) = ∅

{P ∗ F} c {Q ∗ F}

Star has a right adjoint P −∗ Q separating implication, a.k.a. “magic wand”:

m � P −∗ Q =def for any m1 and m2, if m⊕m1 = m2 and m1 � P then m2 � Q.

WAND-ADJOINT1
P ` Q −∗ R
P ∗Q ` R WAND-ADJOINT2

P ∗Q ` R
P ` Q −∗ R

Magic wands are famously difficult to control [15]. In the early days of separation
logic, magic wand was used to generate weakest preconditions and verification con-
ditions for automated program verification. However, those verification conditions are
not human readable or understandable, and decision procedures for entailment checking
with magic wand are quite complex.

Magic wand is rarely used in interactive program verification or pencil-and-paper
proofs. (There are some exceptions [11, 12] that we discuss in the related work section
(§6).) Authors tend to use forward verification instead of backward verification since it
is easier to understand a program correctness proof that goes in the same direction as
program execution. “Forward” Hoare logic rules do not generate magic wand expres-
sions; therefore, most authors find that the expressive power of star is already strong
enough. For example, we need to define separation logic predicates for different data
structures (like records, arrays, linked list and binary trees) in order to verify related
programs. Berdine et al. [4] and Charguéraud [8] show that these predicates can be
defined with separating conjunction only.

In this paper, we propose a new proof technique: magic wand as frame, and we
show that using magic wand can make program correctness proofs more elegant.

The main content of this paper is a proof pearl. We use our new proof technique to
verify the C program in Fig. 1, insertion into a binary search tree (BST). The program
uses a while loop to walk down from the root to the location to insert the new element.

A pointer to a tree has type struct tree *, but we also need the type pointer-to-
pointer-to-tree, which we call treebox. The insert function does not return a new tree, it
modifies the old tree, perhaps replacing it entirely (if the old tree were the empty tree).

Consider running insert(p0,8,‘‘h”), where p0 points to a treebox containing the root
of a tree as shown in Fig. 2. After one iteration of the loop or two iterations, variable p
contains address p, which is a treebox containing a pointer to a subtree. This subtree t
and a partial tree P (shown within the dashed line) form the original BST.

Naturally, we can verify such a program using a loop invariant with the following
form: P is stored in memory ∗ t is stored in memory.

To describe partial trees, most authors [4, 8] would have you introduce a new induc-
tive description of tree with exactly one hole—in addition to the inductive description

3

struct tree {int key; void *value;
struct tree *left, *right;};

typedef struct tree **treebox;

void insert (treebox p, int x, void *v) {
struct tree *q;
while (1) {
q = *p;
if (q==NULL) {

q = (struct tree *) surely malloc (sizeof *p);
q→key=x; q→value=v;
q→left=NULL; q→right=NULL;
*p=q;
return;
} else {

int y = q→key;
if (x<y)

p= &q→left;
else if (y<x)

p= &q→right;
else {

q→value=v;
return;

} } } }

Fig. 1: Binary Search Tree insertion

Fig. 2: Execution of insert(p0, 8, ”h”).

value
left

p0

 right

key 5
e

i

lgb

d
0

00 0 00 0

4 9

2 7 12

p

value
left

p0

p

 right

key 5
e

i

lgb

d
0

00 0 00 0

4 9

2 7 12

value
left

p0

p

 right

key 5
e

i

lgb

d
0

00 0 00 0

4 9

2 7 12

of ordinary trees—and define a corresponding recursive separation-logic predicate “par-
tial tree P is stored in memory”, in addition to the recursive predicate for ordinary trees.
(Similarly, “list segment” is inductively defined as a list with one hole.)

That’s a lot of duplication. We propose a different approach in this paper: using
magic wand to express “P is stored in memory”. With this approach, we do not even
need to define “partial trees” and its corresponding separation logic predicate or prove
their domain specific theories.

We organize the rest of this paper as follows:

§3 We verify this C implementation of BST insert using magic-wand-as-frame.
§4 We formalize this correctness proof in Coq using Verifiable C [3] and we show that

magic-wand-as-frame also works for other implementations of BST insert, other
operations of BST, and other data structures such as linked lists.

§5 We compare our proofs with traditional approaches. We discuss the power and
limitation of using magic wand and we explain the name of our proof technique
magic-wand-as-frame.

§6 We discuss related work and summarize our contributions.

4

3 Proof Pearl: Binary search tree insertion

This section demonstrates the main content of this paper: a magic-wand-as-frame veri-
fication of BST insert. Here we use standard mathematical notation; in the next section
we give details about the Coq formalization and the proof notation of Verifiable C.

3.1 Specification

Correctness for BSTs means that the insert function—considered as an operation of
an abstract data type—implements the update operation on finite maps from the key
type (in this case, integer) to the range type (in this case void*). The client of a finite
map does not need to know that trees are used; we should hide that information in our
specifications. For that purpose, we define separation logic predicates for binary trees,
and we define map predicates based on tree predicates. Only map predicates show up
in the specification of this insert function.

Binary trees: t = E | T (t1, k, v, t2)
Representation predicates:

treebox rep(E, p) =def p 7→ null
treebox rep(T (t1, k, v, t2), p) =def ∃q. p 7→ q ∗ q.key 7→ k ∗ q.value 7→ v ∗

treebox rep(t1, q.left) ∗ treebox rep(t2, q.right)
(1)

Mapbox rep(m, p) =def ∃t. Abs(t,m) ∧ SearchTree(t) ∧ treebox rep(t, p)

Representation invariant: SearchTree(t), the search-tree property. That is, at any node of the
tree t, the keys in the left subtree are strictly less than the key at the node, and the keys in the
right subtree are strictly greater.

Abstraction relation: Abs(t,m), says that m is an abstraction of tree t, i.e., the key-value pairs
in map m and tree t are identical.

High-level separation-logic specification of insert function:
Precondition : {JpK = p0 ∧ JxK = x ∧ JvK = v ∧Mapbox rep(m0, p0)}

Command : insert(p, x, v)

Postcondition : {Mapbox rep(update(m0, x, v), p0)}

We use JpK to represent the value of program variable p. In the postcondition,
update(m0, x, v) is the usual update operation on maps. SearchTree(t) and Abs(t,m)
are formally defined in the SearchTree chapter of Verified Functional Algorithms [2].
Their exact definitions are not needed in our proof here.

3.2 Two-level proof strategy

One could directly prove the correctness of the C-language insert function, using the
search-tree property as an invariant. But it is more modular and scalable to do a two-
level proof instead [1, 10]: First, prove that the C program (imperatively, destructively)
implements the (mathematical, functional) ins function on binary search trees; then
prove that the (pure functional) binary search trees implement (mathematical) finite

5

maps, that ins implements update, and that ins preserves the search-tree property. So let
us define insertion on pure-functional tree structures:

ins(E, x, v) =def T (E, x, v, E)

ins(T (t1, x0, v0, t2), x, v) =def If x < x0, T (ins(t1, x, v), x0, v0, t2)

If x = x0, T (t1, x, v, t2)

If x > x0, T (t1, x0, v0, ins(t2, x, v))

The SearchTree chapter of VFA [2] proves (via the Abs relation) that this implements
update on abstract finite maps. Next, we’ll prove that the C program refines this func-
tional program; then compose the two proofs to show that the C program satisfies its
specification given at the end of §3.1.

For that refinement proof, we give a low-level separation-logic specification of the
insert function, i.e., the C program refines the functional program:

{JpK = p0 ∧ JxK = x ∧ JvK = v ∧ treebox rep(t0, p0)}
insert(p, x, v)
{treebox rep(ins(t0, x, v), p0)}

(2)

3.3 Magic wand for partial trees

The function body of insert is just one loop. We will need a loop invariant! As shown
in Fig. 2, the original binary tree can always be divided into two parts after every loop
body iteration: one is a subtree t whose root is tracked by program variable p (that is,
J∗pK is the address of t’s root node) and another part is a partial tree P whose root is
identical with the original tree and whose hole is marked by address JpK.

The separation logic predicate for trees (also subtrees) is treebox rep. We define
the separation logic predicate for partial trees as follows. Given a partial tree P , which
is a function from binary trees to binary trees:

partial treebox rep(P, r, i) =def ∀t. (treebox rep(t, i) −∗ treebox rep(P (t), r))

This predicate has some important properties and we will use these properties in the
verification of insert. (3a) and (3b) show how single-layer partial trees are constructed.
(3c) shows the construction of empty partial trees. (3d) shows that a subtree can be filled
in the hole of a partial tree. And (3e) shows the composition of partial trees.

These properties are direct instances of the MAGIC-WAND-AS-FRAME proof rules
(§1), which are all derived rules from minimum first-order separation logic (i.e. intu-
itionistic first order logic + commutativity and associativity of separating conjunction
+ emp being separating conjunction unit + WAND-AJOINT). WANDQ-FRAME-INTRO
proves (3a), (3b) and (3c). WANDQ-FRAME-ELIM proves (3d). WANDQ-FRAME-VER
and WANDQ-FRAME-REFINE together prove (3e). The soundness of (3c) (3d) and (3e)
do not even depend on the definition of treebox rep.

6

p 7→ q ∗ q.key 7→ k ∗ q.value 7→ v ∗ treebox rep(t2, q.right)
` partial treebox rep(λt. T (t, k, v, t2), p, q.left)

(3a)

p 7→ q ∗ q.key 7→ k ∗ q.value 7→ v ∗ treebox rep(t1, q.left)
` partial treebox rep(λt. T (t1, k, v, t), p, q.right)

(3b)

emp ` partial treebox rep(λt. t, p, p) (3c)

treebox rep(t, i) ∗ partial treebox rep(P, r, i)
` treebox rep(P (t), r)

(3d)

partial treebox rep(P1, p1, p2) ∗ partial treebox rep(P2, p2, p3)
` treebox rep(P1 ◦ P2, p1, p3)

(3e)

3.4 Implementation correctness proof

Now, we can verify the insert function with the loop invariant,

∃t p P. P (ins(t, x, v)) = ins(t0, x, v) ∧ JpK = p ∧ JxK = x ∧ JvK = v ∧
treebox rep(t, p) ∗ partial treebox rep(P, p0, p)

It says, a partial tree P and a tree t are stored in disjoint pieces of memory, and if we
apply the ins function to t locally and fill the hole in P with that result, then we will get
the same as directly applying ins to the original binary tree t0.

The correctness of insert is based on the following two facts. First, the precondition
of insert implies this loop invariant because we can instantiate the existential variables
t, p and P with t0, p0 and λt. t and apply property (3c). Second, the loop body preserves
this loop invariant and every return command satisfies the postcondition of the whole
C function. Fig. 3 shows our proof (for conciseness, we omit JxK = x ∧ JvK = v in all
assertions).

This loop body has four branches: two of them end with return commands and the
other two end normally. In the first branch, the inserted key does not appear in the
original tree. This branch ends with a return command at line 13. We show that the
program state at that point satisfies the postcondition of the whole function body (line
11). The transition from line 10 to line 11 is sound due to rule (3d). The second branch
contains only one command at line 18. We re-establish our loop invariant in this branch
(line 20). The transition from line 15 to line 19 is due to rule (3a) and the transition
from line 19 to line 20 is due to rule (3e). The third branch at line 22 is like the second,
and the last branch is like the first one.

q==NULL x<y y<x x==y
In summary, the partial tree P is established as an empty partial tree (λt̂. t̂) in

the beginning. The program merges one small piece of subtree t into the partial tree

7

1

{
P (ins(t, x, v)) = ins(t0, x, v) ∧ JpK = p ∧

treebox rep(t, p) ∗ partial treebox rep(P, p0, p)

}
2 q = * p;
3 if (q == NULL) {

4

{
P (ins(t, x, v)) = ins(t0, x, v) ∧ JpK = p ∧ JqK = null ∧ t = E ∧

p 7→ null ∗ partial treebox rep(P, p0, p)

}
5

{
P (T (E, x, v, E)) = ins(t0, x, v) ∧ JpK = p ∧
p 7→ null ∗ partial treebox rep(P, p0, p)

}
6 q = (struct tree *) surely malloc (sizeof *q);
7 q→key=x; q→value=v;
8 q→left=NULL; q→right=NULL;
9 *p=q;

10

{
P (T (E, x, v, E)) = ins(t0, x, v) ∧ JpK = p ∧

treebox rep(T (E, x, v, E), p) ∗ partial treebox rep(P, p0, p)

}
11 {P (T (E, x, v, E)) = ins(t0, x, v) ∧ JpK = p ∧ treebox rep(P (T (E, x, v, E)), p0)}
12 {treebox rep(ins(t0, x, v), p0)}
13 return;
14 } else {

15

∃t1 t2 x0 v0 q. P (ins(t, x, v)) = ins(t0, x, v) ∧ t = T (t1, x0, v0, t2) ∧ JpK = p ∧
JqK = q ∧ p 7→ q ∗ q.key 7→ x0 ∗ q.value 7→ v0 ∗ treebox rep(t1, q.left) ∗
treebox rep(t2, q.right) ∗ partial treebox rep(P, p0, p)

16 int y = q→key;
17 if (x<y)
18 p= &q→left;

19

∃t1 t2 x0 v0 q. x < x0 ∧ P (ins(t, x, v)) = ins(t0, x, v) ∧
t = T (t1, x0, v0, t2) ∧ JpK = q.left ∧
partial treebox rep(λt̂. T (t̂, x0, v0, t2), p, q.left) ∗
treebox rep(t1, q.left) ∗ partial treebox rep(P, p0, p)

20

∃t1 t2 x0 v0 q. P (T (ins(t1, x, v), x0, v0, t2)) = ins(t0, x, v) ∧
JpK = q.left ∧ treebox rep(t1, q.left) ∗
partial treebox rep(λt̂. P (T (t̂, x0, v0, t2)), p0, q.left)

21 else if (y<x)
22 p= &q→right;

23

∃t1 t2 x0 v0 q. P (t1, x0, v0, T (ins(t2, x, v))) = ins(t0, x, v) ∧
JpK = q.right ∧ treebox rep(t2, q.right) ∗
partial treebox rep(λt̂. P (T (t1, x0, v0, t̂)), p0, q.right)

24 else {
25 p→value=v;

26

{
∃t1 t2 x0 v0 q. x = x0 ∧ P (ins(t, x, v)) = ins(t0, x, v) ∧ t = T (t1, x0, v0, t2) ∧
treebox rep(T (t1, x, v, t2), p) ∗ partial treebox rep(P, p0, p)

}
27

{
∃t1 t2 x0 v0 q. P (T (t1, x, v, t2)) = ins(t0, x, v) ∧
treebox rep(T (t1, x, v, t2), p) ∗ partial treebox rep(P, p0, p)

}
28 {treebox rep(ins(t0, x, v), p0)}
29 return;
30 } }

Fig. 3: Proof of loop body

8

in each iteration of the loop body. Finally, when the program returns, it establishes a
local insertion result (ins(t, x, v)) and fills it in the hole of that partial tree—we know
the result must be equivalent with directly applying insertion to the original binary tree.
The diagrams above illustrate the situations of these four branches and our proof verifies
this process.

4 Coq formalization in Verifiable C

We machine-check this proof in Coq, using the Verified Software Toolchain’s Verifiable
C program logic [3], which is already proved sound w.r.t. CompCert Clight [6]. We
import from Verified Functional Algorithms the definition of purely functional search
trees and their properties. Readers can find our Coq development online:

https://github.com/PrincetonUniversity/VST/tree/master/wand demo
We formalize our proof using Verifiable C’s interactive symbolic execution system

in Coq [7]. Until now, Verifiable C had not included much proof theory for wand, ex-
cept the basic WAND-ADJOINT. Now we add the PROOF RULES OF WAND-FRAME (see
wandQ frame.v) as derived lemmas from Verifiable C’s basic separation logic. We use
them in the Coq proof of partial treebox rep’s properties (see §4.1 and bst lemmas.v).

4.1 Separation logic predicates and properties for BST

Binary trees with keys and values are already formalized in VFA as an inductive data
type in Coq. Here, we will formalize the separation logic predicate treebox rep.

Fixpoint tree rep (t: tree val) (p: val) : mpred :=
match t with
| E => !!(p=nullval) && emp
| T a x v b =>

EX pa:val, EX pb:val,
data at Tsh t struct tree (Vint (Int.repr (Z.of nat x)),(v,(pa,pb))) p *
tree rep a pa * tree rep b pb

end.

Definition treebox rep (t: tree val) (b: val) :=
EX p: val, data at Tsh (tptr t struct tree) p b * tree rep t p.

Lemma treebox rep spec: forall (t: tree val) (b: val),
treebox rep t b =
EX p: val,
data at Tsh (tptr t struct tree) p b *
match t with
| E => !!(p=nullval) && emp
| T l x v r =>

field at Tsh t struct tree [StructField key] (Vint (Int.repr (Z.of nat x))) p *
field at Tsh t struct tree [StructField value] v p *
treebox rep l (field address t struct tree [StructField left] p) *
treebox rep r (field address t struct tree [StructField right] p)

end.

9

Instead of defining treebox rep directly as in (1), we first define tree rep, then de-
fine treebox rep based on that. Finally, we prove that it satisfies the equalities in (1).
We choose to do this because C functions for BST operations do not always take ar-
guments with type (struct tree * *) (or equivalently, treebox). For example, a look-up
operation does not modify a BST, so it can just take a BST by an argument with type
(struct tree *).

Here, val is CompCert Clight’s value type; nullval has type val and represents the
value of NULL pointer. The Coq type mpred is the type of Verifiable C’s separation logic
predicates. “&&”, “∗” and “EX” are notations for conjunction, separating conjunction
and existential quantifiers in Verifiable C’s assertion language. “!! ” is the notation that
injects Coq propositions into the assertion language. The expression (Vint (Int.repr (Z.of nat x))
injects a natural number x into the integers, then to a 32-bit integer,3 then to CompCert
Clight’s value type, val.

Data at is a mapsto-like predicate for C aggregate types. Here,
data at Tsh t struct tree (Vint (Int.repr (Z.of nat x)),(v,(pa,pb))) p

means that x, v, pa, pb are four fields of the “struct tree” stored at address p. Tsh means
top share (full read/write permission). Verifiable C’s field at is like data at but permits
a field name such as “.right”.

Our partial tree predicate partialT does not care how treebox rep works internally.
Thus, in defining the proof theory of partial trees, we’ll parameterize over the treebox
predicate. As claimed in §3, the soundness of rules (3c) (3d) and (3e) do not depend on
the definition of treebox rep; we prove them sound for arbitrary partial tree predicates.
For the sake of space, we only list one of these three here.

Definition partialT (rep: tree val→ val→ mpred) (P: tree val→ tree val) (p root p in: val) :=
ALL t: tree val, rep t p in −∗ rep (P t) p root.

Definition partial treebox rep := partialT treebox rep.

Lemma rep partialT rep: forall rep t P p q, rep t p * partialT rep P q p ` rep (P t) q.
Proof. intros. exact (wandQ frame elim (fun t => rep t p) (fun t => rep (P t) q) t). Qed.

As described in §3, we define Mapbox rep based on treebox rep, Abs and SearchTree;
and Abs and SearchTree are already defined in VFA. Similarly, we define Map rep
based on tree rep; application of it can be found in §4.3.

4.2 C program specification and verification

Specification and Coq proof goal. Verifiable C requires users to write C function spec-
ification in a canonical form.

The following is the specification of C function insert. The WITH clause there says
that this specification is a parameterized Hoare triple—that is, for any p0, x, v, m0, this
specific triple is valid. The brackets after PRE hold the C argument list. CompCert
Clight turns every C variable into an identifier in the Clight abstract syntax tree defined

3 Mapping Z to Z mod 232 is not injective; in a practical application the client of this search-
tree module should prove that x < 232.

10

in Coq. In this argument list, p is the identifier for C variable p, etc. The brackets after
POST hold the C function return type.

Definition insert spec :=
DECLARE insert
WITH p0: val, x: nat, v: val, m0: total map val
PRE [p OF (tptr (tptr t struct tree)), x OF tint, value OF (tptr Tvoid)]

PROP()
LOCAL(temp p p0; temp x (Vint (Int.repr (Z.of nat x))); temp value v)
SEP (Mapbox rep m0 p0)

POST [Tvoid]
PROP() LOCAL() SEP (Mapbox rep (t update m0 x v) p0).

Both precondition and postcondition are written in a PROP/LOCAL/SEP form. PROP
clauses are for program-variable-irrelevant pure facts; there happen to be none here.
LOCAL clauses talk about the values of program variables. For example, temp p p0
says JpK = p0. SEP clauses are separating conjuncts. Verifiable C requires users to
isolate programs variables in their assertions—SEP conjuncts do not refer directly to C
program variables—so we use LOCAL clauses to connect program variables to PROP
and SEP clauses.

Theorem insert body. The C function implements its functional specification, insert spec.

Reduce to implementation correctness. We split the program-correctness proof into an
implementation correctness proof (the C program refines a functional algorithm) and an
algorithm correctness proof. To connect these, we prove (in verif bst.v):

Lemma insert concrete to abstract: LOW-LEVEL SEPARATION-LOGIC SPECIFICA-
TION (Fig. 4d) implies HIGH-LEVEL SEPARATION-LOGIC SPECIFICATION (Fig. 4a).

We state this theorem as an implication between Hoare triples that are derived from
the two function-specifications. Each Hoare triple has the form semax ∆ P c Q, repre-
senting the judgment ∆ ` {P}c{Q} in Verifiable C, where ∆ records information like
C types of C program variables. The postcondition Q is a quadruple: normal postcon-
dition, break condition, continue condition, return condition. In this lemma—about a
function body that must return—only the return condition is nontrivial.

Proof. This lemma takes only a few lines to prove:

rewrite !Mapbox rep unfold. Intros t0.
apply (semax post’’ (PROP () LOCAL () SEP (treebox rep (insert x v t0) p0))); auto.
Exists (insert x v t0). entailer!.
split; [apply insert relate | apply insert SearchTree]; auto.

The first tactic “rewrite !Mapbox rep unfold” unfolds the definition of Mapbox rep and
gives us the proof goal in Fig. 4b. Then we use Verifiable C’s tactic “Intros t0” to extract
existentially quantified variables and related pure facts from the precondition to Coq
assumptions (see Fig. 4c).

The lemma semax post’’ is a special form of the rule of consequence. Applying
that leaves us two proof goals, see Fig. 4d and Fig. 4e. The former is the low level

11

Delta := ...
m0 := total map val
=======================
semax Delta
(PROP ()
LOCAL
(temp p p0;
temp x
(Vint (Int.repr (Z.of nat x)));

temp value v)
SEP (Mapbox rep m0 p0))

FUNCTION BODY
(frame ret assert
(function body ret assert tvoid
(PROP () LOCAL ()
SEP (Mapbox rep

(t update m0 x v) p0)))
emp))

(a) High-level spec.

Delta := ...
m0 : total map val
=======================
semax Delta
(PROP ()
LOCAL
(temp p p0;
temp x
(Vint (Int.repr (Z.of nat x)));

temp value v)
SEP (EX t : tree val,

!! (Abs val nullval t m0 ∧
SearchTree t) &&

treebox rep t p0))
FUNCTION BODY
(frame ret assert
(function body ret assert tvoid
(PROP () LOCAL ()
SEP (EX t : tree val,

!! (Abs t
(t update m0 x v) ∧

SearchTree t) &&
treebox rep t p0)))

emp)

(b) After unfold.

Delta := ...
m0 : total map val
t0 : tree val
H0 : Abs t0 m0
H1 : SearchTree t0
=======================
semax Delta
(PROP ()
LOCAL
(temp p p0;
temp x
(Vint (Int.repr (Z.of nat x)));

temp value v)
SEP (treebox rep t p0))

FUNCTION BODY
(frame ret assert
(function body ret assert tvoid
(PROP () LOCAL ()
SEP (EX t : tree val,

!! (Abs t
(t update m0 x v) ∧

SearchTree t) &&
treebox rep t p0)))

emp)

(c) After Intros.

Delta := ...
t0 : tree val
=======================
semax Delta
(PROP ()
LOCAL
(temp p p0;
temp x
(Vint (Int.repr (Z.of nat x)));

temp value v)
SEP (treebox rep t0 p0))

FUNCTION BODY
(frame ret assert
(function body ret assert tvoid
(PROP () LOCAL ()
SEP (treebox rep

(insert x v t0) p0)))
emp))

(d) Low-level spec.

Delta := ...
m0 : total map val
t0 : tree val
H0 : Abs t0 m0
H1 : SearchTree t0
=======================
treebox rep (insert x v t0) p0)
` EX t : tree val,

!! (Abs t (t update m0 x v) ∧
SearchTree t) &&

treebox rep t p0)

(e) Entailment.

Delta := ...
m0 : total map val
t0 : tree val
H0 : Abs t0 m0
H1 : SearchTree t0
=======================
Abs
(insert x v t0)
(t update m0 x v) ∧

SearchTree
(insert x v t0)

(f) After Entailer!.

Fig. 4: Coq proof goals

specification—the premise of this lemma, implementation correctness. The latter can
be easily solved: Verifiable C provides “Exists” to instantiate the existentially quanti-
fied variables on the right side of entailments. Verifiable C also provides “entailer!”, an
automatic simplifier for separation logic entailments. These two tactics leave the proof
goal in Fig. 4f—the algorithm correctness. That goal can be proved by two theorems
about pure-functional BST insert imported from VFA.

Theorem body insert: semax body Vprog Gprog f insert insert spec.
(* The C function f insert (Fig. 1) implements its specification *)

Proof.
start function.
apply insert concrete to abstract; intros.
. . . (* 62 lines of forward proof in separation logic *)

Qed.

12

Implementation correctness. After we apply the insert concrete to abstract lemma, the
rest of the proof is symbolic execution in separation logic. It is here that we use the
PROOF RULES OF WAND-AS-FRAME specialized as equations (3a)–(3e).

From the proof goal in Fig. 4d, we apply the forward loop tactic with our loop in-
variant (§3.4). This leaves two subgoals:

1. The function precondition implies the loop invariant (easy, by instantiating the three
existentials, applying the entailment solver, and using (3c)).

2. The loop body preserves the invariant. The main structure of this Coq proof is
very similar to the decorated program shown in Fig. 3. This is done by 13 steps of
forward symbolic execution (e.g., simple invocations of the forward tactic and the
forward if tactic provided by Verifable C) interspersed with 35 lines of interactive
proofs of side conditions, introductions of existentials that appear in preconditions,
and so on. These proofs use equations (3a)–(3e).

The forward tactic generates strongest postconditions of assignment commands. For
example, we omitted an assertion after line 16 in Fig. 3 for simplicity. The tactic forward
generates that assertion, so we never need to write it explicitly. In this case, it adds a
conjunct JyK = x0 to the assertion in line 15.

The forward if tactic generates preconditions for the then and else branches. For ex-
ample, we omit an assertion before line 18 in Fig. 3 for conciseness. The tactic forward if
generates that assertion. Specifically, since we know JxK = x and JyK = x0 before that
if command, forward if adds x < x0 to the precondition of if-then branch.

In summary, we do not need to manually type those long assertions in our inter-
active proof. Verifiable C generates most of them for us. We only provide function
pre/postcondition and the loop invariant.

4.3 Other data structures, programs and proofs

Magic-wand-as-frame is a pretty flexible proof technique. We briefly introduce some
other possibilities in magic-wand-as-frame proofs here. Interested readers can down-
load our Coq development for more details.

Alternative magic-wand-as-frame proofs for BST insert. Universal quantifiers are not
necessary for magic-wand-as-frame proofs. In the BST insert example, we can also use

∃t p. JpK = p ∧ JxK = x ∧ JvK = v ∧
treebox rep(t, p) ∗ (treebox rep(ins(t, x, v), p) −∗ treebox rep(ins(t0, x, v), p0))

as loop invariant. The proofs are very similar except that we can use WAND-FRAME
rules instead of WANDQ-FRAME rules to generate properties of partial tree predicates.

QUANTIFIER-FREE PROOF RULES OF WAND-FRAME(wand frame.v) :

WAND-FRAME-INTRO: Q ` P −∗ P ∗Q
WAND-FRAME-ELIM: P ∗ (P −∗ Q) ` Q
WAND-FRAME-VER: (P −∗ Q) ∗ (Q −∗ R) ` P −∗ R
WAND-FRAME-HOR: (P1 −∗ Q1) ∗ (P2 −∗ Q2) ` P1 ∗ P2 −∗ Q1 ∗Q2

13

Other BST operations. We also verify C implementations of BST delete and look-up
operation with the magic-wand-as-frame technique. In the verification of BST delete,
we also use partial treebox rep to describe partial trees and use rules (3a-3e) to com-
plete the proof. In the verification of BST look-up, we define partial tree rep using
parameterized partialT and prove similar proof rules for it.

Definition partial tree rep := partialT tree rep.

Especifically, we get the counterparts of (3c-3e) for free because we have already proved
them for general partialT predicates. Proofs of the other two are also very straightfor-
ward using WANDQ-INTRO.

Another data structure: linked list. We also use magic-wand-as-frame to verify linked
list append (see verif list.v). In that proof, we use the following separation logic pred-
icates and proof rules (see list lemmas.v). These proof rules are direct instances of
WANDQ-FRAME rules. Here, we use l1l2 to represent the list concatenation of l1 and l2.

p p; [] =def p = null ∧ emp
p p; (h :: t) =def p.head 7→ h ∗ ∃q. p.tail 7→ q ∗ q p; t

p
l
p;p q =def ∀l′. (q p; l′ −∗ p p; ll′)

p.head 7→ h ∗ p.tail 7→ q ` p
[h]
p;p q emp ` p

[]
p;p p

p
l1
p;p q ∗ q p; l2 ` p p; l1l2 p

l1
p;p q ∗ q

l2
p;p r ` p

l1l2
p;p r (4)

5 Magic-wand-as-frame vs. traditional proofs

We have used magic wand to define partial tree (tree-with-a-hole) predicates and list
segment (list-with-a-hole) predicates. Berdine et al. [5] first defined list segments and
demonstrated a proof of imperative list append; Charguéraud defined tree-with-holes
for a proof of BST operations.

These authors defined partial tree (and also list segment) by an explicit inductive
definition, roughly as follows:

Partial trees:
P = H | L(P, k, v, t2) | R(t1, k, v, P)

Representation predicates for partial trees:

partial treebox repR(H, r, i) =def r = i ∧ emp

partial treebox repR(L(P, k, v, t2), r, i) =def

∃q. r 7→ q ∗ q.key 7→ k ∗ q.value 7→ v ∗
partial treebox repR(P, q.left, i) ∗ treebox rep(t2, q.right)

partial treebox repR(R(t1, k, v, P), r, i) =def ...

14

That is: a partial tree is either one single hole or a combination of a partial tree and a
complete tree; the partial tree can act as either the left subtree or the right subtree. And
partial treebox repR is defined as a recursive predicate over that structure.

5.1 One comparison
With this alternative definition, proof rules (3a)–(3e) are still sound and our proof in Fig.
3 still holds. However, our magic wand approach is better than that in three aspects.

Parameterized definition and proofs. Using magic wand, we can define partialT as a
parameterized predicate for partial trees and proof rules (3c)–(3e) are sound in that
parameterized way. Both partial treebox rep and partial tree rep are its instances.

Domain-specific theories for free. When a partial tree is defined as a function from
trees to trees, we get the definition of “filling the hole in P with tree t” and “shrinking
the hole in P1 with another partial tree P2” for free. They are just P (t) and P1 ◦ P2.
In contrast, when partial trees are defined as a Coq inductive type, we would have to
define these two combinators by Coq recursive functions and we would have to prove
the following properties by induction:

(P1 ◦ P2)(t) = P1(P2(t)) P1 ◦ (P2 ◦ P3) = (P1 ◦ P2) ◦ P3

Avoiding brittle and complex separation logic proofs. Using magic wand and quanti-
fiers, rule (3d) and (3e) are direct corollaries of WANDQ-FRAME rules. However, prov-
ing them from recursively defined partial treebox repR needs induction over the par-
tial tree structure.

In some situation, these induction proofs can be very complicated and even annoy-
ing to formalize in Coq. The separation logic predicate for C aggregate types is such
an example. The data at predicate is already dependently typed. Proof rules that substi-
tute a single field’s data are now described by magic-wand-involved expressions. Their
soundness proofs are significantly shorter (although still quite long) than using hole-
related predicates.

Even worse, those inductive proofs are actually very brittle beside their length and
complexity. Using linked-list predicates as an example, different authors had proposed
different recursive definitions for list segments. Here is Smallfoot’s [5] definition:

p
[]
p;p q =def p = q ∧ emp

p
(h::t)
p;p r =def ∃q. p 6= r ∧ p.head 7→ h ∗ p.tail 7→ q ∗ q

t
p;p r

p p; l =def p
l
p;p null

And here is the definition from Charguéraud [8]:

p
[]
p;p q =def p = q ∧ emp

p
(h::t)
p;p r =def ∃q. p.head 7→ h ∗ p.tail 7→ q ∗ q

t
p;p r

p p; l =def p
l
p;p null

15

These two definitions look similar, but their proof theories are surprisingly different.
Proof rules in (4) are unsound with respect to Smallfoot’s definition but sound with
respect to Charguéraud’s definition. Specifically, SmallFoot’s list segment only satisfies
weaker rules like the following one:

p
l1
p;p q ∗ q

l2
p;p r ∗ r p; l3 ` p

l1l2
p;p r ∗ r p; l3

5.2 Another comparison

In the execution of BST insert’s loop body, the memory that the magic wand expression
partial treebox rep(P, p0, p) describes is never touched by any C command. Also, this
expression is preserved as a separating conjunct in the assertions in the proof until get-
ting merged with another conjunct in the end. Specifically, it gets merged with another
partial treebox rep predicate by rule (3e) in two normal branches and it gets merged
with a treebox rep by rule (3d) in two return branches. In other words, although we
do not explicitly use the frame rule in the proof, this magic wand expression acts as a
frame. Thus we call our proof a magic-wand-as-frame verification.

The proof theory of magic wand supports this conjuncts-merging quite well. The
derived rule WANDQ-ELIM enables us to fill the hole of a partial data structure and
get a complete one. The rule WANDQ-VER enables us to shrink the holes of partial
data structures. The rule WANDQ-HOR simply merges two holes into a larger one. The
diagrams below illustrate these merging operations.

Fill the hole:
* ⊢

Vertical composition:
* ⊢

Horizontal composition:
* ⊢

In contrast, the recursively defined partial treebox repR reveals more information
about that partial tree but offers less support for merging. For example, we know that

partial treebox repR(L(P, x, v, t), r, i) ` ∃p. r 7→ p ∗ p.key 7→ x ∗ >

But we cannot prove any corresponding property about partial treebox rep.
After all, partial treebox rep is a weaker predicate—we can even prove:

partial treebox repR(P, r, i) ` partial treebox rep(P, r, i)

But that magic wand expression precisely reveals the properties that we need in veri-
fication: the hole in it can be filled with another tree and it can also get merged with
aother partial tree.

16

6 Related work and conclusion

Previous work with magic wand: Hobor and Villard [11] use magic wand in their ram-
ification theory in graph algorithm verification. Their proof rule RAMIF can be treated
as a special instance of magic-wand-as-frame proof. RAMIF can be proved by WAND-
FRAME-INTRO, WAND-FRAME-ELIM, FRAME and Hoare logic’s consequence rule.

RAMIF

{L} c {L′} G ` L ∗ (L′ −∗ G′)
FV(L′ −∗ G′) ∩ModV(c) = ∅

{G} c {G′}

Iris has used magic wand heavily since Iris 3.0 [12]. They use magic wand and
weakest-precondition (wp) to define their Hoare triple:

{P}c{Q} =def (` P −∗ wp(Q))

In principle, they do not limit the use of magic wand in a structural way. They develop
Iris Proof Mode [13] for proving such separation logic entailments in Coq, which sim-
plifies the process of applying the adjoint property in the object language.

Charguéraud [8] also mentions in his paper that if the purpose of a partial tree is to
fold back with the original subtree (e.g. in BST look-up), magic wand can be used to
describe that piece of memory. Our method shows that even if the subtree is modified,
we can use a magic wand expression to describe a partial tree.

Separation logic for trees and lists: SmallFoot [5] verifies a shape analysis of a few
linked list operations and tree operations. Charguéraud [8] formalizes a series of sep-
aration logic verifications for high order linked lists and trees. They use recursively
defined list segment and tree-with-a-hole instead of magic wand. We have discussed
their work in §5. Chlipala’s Bedrock paper presents a proof of imperative list append
[9, Figure 2], in a different style from our proof. He uses a “double-barreled” loop in-
variant with both pre- and postconditions for the loop, and uses neither list-segments
nor magic wand. However, the double-barreled loop invariant is not a panacea: if ap-
plied to our BST insert of Fig. 3, without the use of any program transformations to turn
it into some sort of tail recursion, one would require some sort of tree-with-a-hole, and
we would recommend the use of wand-frames.

In this paper, we demonstrate a Coq formalized verification of BST insert. Com-
pared to the work of previous authors, our contributions are:

1. We present a new proof technique: magic-wand-as-frame, with its four rules (intro,
elim, ver(tical composition), hor(izontal composition)).

2. We discover the power of magic wand in merging partial data structure together.
3. We show that defining magic-wand-involved predicates for partial data structure

permits elegant soundness proofs of their critical properties. It avoids us writing
brittle, less general and complex inductive proofs.

4. We formalize our proof in Coq and that formalization successfully uses those projects
developed by other authors.

5. Thanks to CompCert, Verifiable C and VFA, our Coq proof is actually an end-to-
end correctness proof from top level specification to compiled assembly code.

17

References

1. Andrew W. Appel. Modular verification for computer security. In CSF 2016: 29th IEEE
Computer Security Foundations Symposium, pages 1–8, June 2016.

2. Andrew W. Appel. Verified Functional Algorithms, volume 3 of Software Foundations. 2017.
3. Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah Dodds, Gor-

don Stewart, Sandrine Blazy, and Xavier Leroy. Program Logics for Certified Compilers.
Cambridge, 2014.

4. Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. A decidable fragment of separation
logic. In International Conference on Foundations of Software Technology and Theoretical
Computer Science, pages 97–109. Springer, 2004.

5. Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot: Modular automatic
assertion checking with separation logic. In Formal Methods for Components and Objects,
pages 115–135, 2005.

6. Sandrine Blazy and Xavier Leroy. Mechanized semantics for the clight subset of the c lan-
guage. Journal of Automated Reasoning, 43(3):263–288, Oct 2009.

7. Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and Andrew W. Appel.
VST-Floyd: A separation logic tool to verify correctness of C programs. Journal of Auto-
mated Reasoning, (to appear), 2018.

8. Arthur Charguéraud. Higher-order representation predicates in separation logic. In Proceed-
ings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, pages 3–14.
ACM, 2016.

9. Adam Chlipala. The bedrock structured programming system: Combining generative
metaprogramming and hoare logic in an extensible program verifier. In ICFP’13: Pro-
ceedings of the 18th ACM SIGPLAN International Conference on Functional Programming,
September 2013.

10. Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (Newman)
Wu, Shu-Chun Weng, Haozhong Zhang, and Yu Guo. Deep specifications and certified
abstraction layers. In 42nd ACM Symposium on Principles of Programming Languages
(POPL’15), pages 595–608. ACM Press, January 2015.

11. Aquinas Hobor and Jules Villard. The ramifications of sharing in data structures. In
POPL’13: Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 523–536. ACM, January 2013.

12. Robbert Krebbers, Ralf Jung, Aleš Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and Lars
Birkedal. The essence of higher-order concurrent separation logic. In European Symposium
on Programming, pages 696–723. Springer, 2017.

13. Robbert Krebbers, Amin Timany, and Lars Birkedal. Interactive proofs in higher-order con-
current separation logic. In Giuseppe Castagna and Andrew D. Gordon, editors, Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, Paris, France, January 18-20, 2017, pages 205–217. ACM, 2017.

14. John Reynolds. Separation logic: A logic for shared mutable data structures. In LICS 2002:
IEEE Symposium on Logic in Computer Science, pages 55–74, July 2002.

15. J. K. Rowling. Harry Potter and the Philosopher’s Stone. Bloomsbury Childrens, London,
1997.

