
To appear in IEEE Symposium on Information Visualization (InfoVis ’98), October 1998.

Traversal-based Visualization of Data Structures∗

Jeffrey L. Korn
Andrew W. Appel

Department of Computer Science, Princeton University†

July 16, 1998

Abstract

Algorithm animation systems and graphical debuggers perform the
task of translating program state into visual representations. While
algorithm animations typically rely on user augmented source code
to produce visualizations, debuggers make use of symbolic infor-
mation in the target program. As a result, visualizations produced
by debuggers often lack important semantic content, making them
inferior to algorithm animation systems. This paper presents a
method to provide higher-level, more informative visualizations in
a debugger using a technique called traversal-based visualization.
The debugger traverses a data structure using a set of user-supplied
patterns to identify parts of the data structure to be drawn a similar
way. A declarative language is used to specify the patterns and the
actions to take when the patterns are encountered. Alternatively,
the user can construct traversal specifications through a graphical
user interface to the declarative language. Furthermore, the debug-
ger supports modification of data. Changes made to the on-screen
representation are reflected in the underlying data.

CR Descriptors: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration - Viewing Algorithms; D.1.7 [Programming Techinques]:
Visual Programming; D.2.5 [Software Engineering]: Testing and
Debugging - Debugging aids.

1 INTRODUCTION

Software visualization enables users to mentally picture a computer
program or algorithm. It is most often used in algorithm animation
systems, where the intended purpose of the visualization is to com-
municate how an algorithm works. Such visualization is also useful
to a debugger, as it can help reveal which parts of the code are not
functioning correctly. Some recent PC and UNIX debuggers such
as DDD [19] and Deet [5] provide visual representations of data
structures. The pictures rendered by these debuggers are essen-
tially mirror images of how the data is laid out in memory. This
is in contrast to algorithm animation systems such as Balsa [2] and
Zeus [3], where an animator has a finer level of control by hand
crafting the pictures through the augmentation of source code with

∗This work is supported in part by AASERT grant DAA G55-97-0209,
DARPA order number E381, and NSF grant ASC-9612756.

†Author’s Address: 35 Olden St., Princeton, NJ 08544; email:
{jlk,appel}@cs.princeton.edu

c©1998 IEEE. Personal use of this material is permitted. However, permission
to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse
any copyrighted component of this work in other works must be obtained from the
IEEE.

token = 5

left =

right =

token = 2

data = num = 2

token = 5

left =

right =

token = 5

left =

right =

token = 2

data =

token = 2

data =

token = 2

data =

num = 3

num = 4

num = 5

Figure 1: Low-level Data Structure Layout

calls to the animation system. Since debuggers usually work with
object code, using source-level animations is not practical. There-
fore, debuggers aren’t able to provide displays that are as abstract
and informative as algorithm animation systems.

This paper examines how a debugger can visualize data struc-
tures by using externally supplied semantic information to produce
useful and informative visualizations. We wish to produce displays
that contain more than a picture of what is in the heap. For exam-
ple, instead of displaying a structure that contains two integer fields
as two boxes labeled with the values of the fields, we may wish
to represent the data as a point on a two dimensional graph. A data
structure that contains an index into an array might wish to draw the
contents of that array element rather than simply the index number.
The emphasis in this paper is in the methods of collecting the infor-
mation to be visualized rather than on the pictures produced. Once
we have gathered the data, we use a set of standard visualization
techniques to display the structures.

Figure 1 shows an example of a tree-like data structure as vi-
sualized without any external information. Nodes contain a field
named token which is an integer. For this data structure, token
represents either an operation type or a value type, and we’d like
to see the operation represented in a meaningful way. By applying
some transformation to the structure, we could end up with a draw-
ing like the one shown in Figure 2, which is both more concise and
easier to understand.

In order to produce such visualization, there must be a way for
the user to specify what the underlying data means. The PROVIDE
debugger [7] was one of the earliest debuggers to add a level of ab-
straction to the visual display of data. With PROVIDE, users could
select from a limited set of simple mappings that could display ele-
ments in the form of pie charts, bar graphs, etc.

More recent systems have attempted a more flexible and gen-
eralizable approach. The Lens debugger [8] attempts to use the
techniques found in algorithm animation systems and apply them
at the debugger level. Algorithm animation systems use interesting
events for visualization, which identify key steps in the algorithm
where visualization code is inserted. Lens allows the user to at-

To appear in IEEE Symposium on Information Visualization (InfoVis ’98), October 1998.

token = 5

left =

right =

token = 2

data = num = 2

token = 5

left =

right =

token = 5

left =

right =

token = 2

data =

token = 2

data =

token = 2

data =

num = 3

num = 4

num = 5

#

2 3 4 5

Figure 2: Transforming traditional layout into a more abstract rep-
resentation

tach algorithm animation instructions to breakpoints, bringing the
interesting events model to the level of the debugger. A problem
with interesting events is that it is often difficult to identify the ap-
propriate segments of the code to annotate. The construction of a
data structure may be sprinkled across the code, resulting in many
related but separate annotations. Another problem with interesting
events is that they cannot be used to debug an already running pro-
gram that has created data structures prior to being debugged.

An alternative approach to interesting events, introduced by Ro-
man [14], is called declarative visualization. Declarative visual-
ization is a method that defines mappings from program state to
graphical objects. It depends solely on data, eliminating the need
to know about a program’s control flow. Thus, declarative visual-
ization does not need access to the source code of the algorithm
being debugged. A system called Pavane [13] uses the technique of
declarative visualization. However, Pavane is not a debugging sys-
tem — it is used to visualize concurrent computations. Its mappings
resemble predicate logic and visualization of a mapping requires an
access to every object in the heap. This is unsuitable for a debugger
which deals with large programs and should only access objects on
a need-to-know basis. Pavane also does not allow visualizations to
be changed at run time, nor does it allow modification of data. Such
features are of use to a debugger.

We present another approach, which we call traversal-based vi-
sualization. With traversal-based visualization, we take a root ob-
ject or set of objects and traverse the objects by following any other
objects referenced by or associated with the root. As we traverse,
we apply a set of predicates to the data that decide how the data is
to be drawn. Traversal-based visualization, like declarative visual-
ization, does not require finding and annotating events in program
code. Unlike declarative visualization, it allows objects to be ex-
amined efficiently by using objects as they are needed, making it
possible to use in a debugger. Traversal-based visualization is par-
ticularly useful for working with tree-like data structures. However,
it works with any linked structure, even those with cycles.

This paper presents a debugger built using traversal-based visu-
alization. Using a user-supplied specification of visual mappings,
it traverses the target’s data structures to produce abstract displays.
The predicates take the form of patterns, which are more efficient

than generic predicates. The system is designed to be capable of
working with a variety of languages, including C, C++, and Java.
The current implementation only supports Java, and although this
paper will focus on Java, it is important to note that the techniques
are applicable to other languages as well.

The system allows visual mappings to be changed at run time and
provides a mechanism to add callbacks that allow changes made to
on-screen objects to be reflected in the underlying data. Mappings
can be constructed with a textual specification, or through a user
interface which allows users to quickly put together useful displays.

The remainder of this document presents an overview of the sys-
tem. We give examples of how the system can be used to visualize
some sample data structures, and discuss how the system is imple-
mented. We conclude by summarizing the current status and future
directions of this work.

2 FOUNDATION

The goal of this work is to produce a debugging environment where
data structures can be abstractly displayed. This paper does not go
into the details of the fundamental operations that the debugger pro-
vides such as stepping and setting breakpoints (see [5]), but instead
focuses only on the visual display of values. Which objects are
displayed and when they are displayed are something that the de-
bugger needs to handle, but the discussion here focuses on how they
are displayed. We will assume we are given an object or set of ob-
jects to draw, and we only have access to symbolic information of
the object code.

The guiding principles that were considered in the design of the
visualization system are as follows:

1. Declarative specification: Visualizations should be specified
through a declarative language to provide maximum flexibil-
ity. Such a language makes it possible to write tools that au-
tomatically generate specifications.

2. Visual interface: A casual user should not have to learn a new
language to put together a simple visualization. Therefore, a
visual interface to the declarative language should be provided
for simplicity.

3. Data Modification: There should be a way to modify the
underlying data in the program by modifying elements of the
visualization.

This section gives an overview of the system that accomplishes
these goals. The specification language consists of a set of rules that
define how to draw objects matching a given structure. Each rule
defines a pattern, which specifies the form that a value must match,
and a set of actions that create entities to be displayed. The entities
are rendered by a separate component. Figure 3 shows how each
of the components interact. The remainder of this section further
describes these components.

Data Model

First, we must make some assumptions about the underlying data.
We assume that our data consists of objects, where each object is an
instance of a given type, and an object may be a reference (pointer)
to another object. An object type is either a primitive type (integer,
string, etc.) or made up from a collection of other types (accounting
for classes, structures, arrays, etc.). This assumption is sufficient
for visualization in languages such as C, C++, Java, and Modula-3.
It may be less so for languages that do not have types or support
mutation, such as scripting languages or ML, which are beyond the
scope of this paper.

2

To appear in IEEE Symposium on Information Visualization (InfoVis ’98), October 1998.

Traversal action

Node

Node

MatchObject

Node

Pattern Action

Rules:

Pattern Action

Pattern Action

Pattern Action

Node list
Create

action
node

Display

Layout
Manager

Figure 3: System Components

Patterns

A pattern defines a set of structures that fit a given criteria, where
the form of the structure is specified by constraining values or sup-
plying wildcards. Patterns are to data structures what regular ex-
pressions are to strings. We will explain patterns by showing their
grammar:

pattern = type-name label [pattern-body]
[when-clause]

pattern-body = pattern-body "&&" pattern-body
| pattern-body "||" pattern-body
| sub-pattern

sub-pattern = simple-pattern
| struct-pattern

simple-pattern = relation expression

struct-pattern = "=" "{" { field ";" } "}"

field = type-name field-name [sub-pattern]

when-clause = "when" "(" expression ")"

relation = "=" | "!=" | "<" | ">" | ...

Figure 4: EBNF Grammar for Patterns

Each pattern is defined with a type-name and label, where the
type-name is the type of the object to match the pattern against, and
the label is a name for the pattern. Optionally, a pattern-body can
be declared to further constrain the pattern. If pattern-body is not
specified, the pattern is a wildcard for the given type.

A pattern-body is a boolean expression of sub-patterns, where
&& is used to match both pattern-body fields, and || is used to match
either.

There are two basic types of sub-patterns. First, a simple-pattern
is a pattern that matches a primitive type in the language such as an
integer or string. We use the relation to compare the object to ex-
pression. relation is =, != or a comparison function (eg. <) for nu-
merical values. The expression can be any source-level expression,
which is evaluated once when the pattern is defined. For example,
the pattern to match any integer is:

int x
The pattern to match any integer greater than zero is:

int x > 0
Second, a struct-pattern matches an object that contains a collection
of fields, such as a class in Java or a struct in C. A struct-pattern

specifies a list of patterns that are used to match fields of the struc-
ture. Any field not listed is unconstrained (a wildcard). If we have
a class Point with two elements, x and y, the pattern to match any
instance of Point is:

Point p
The pattern to match an instance of Point where the field y is non-
zero:

Point p = {
int x;
int y != 0;

}
Further nesting is possible. For example, If Point were contained
within another class Element, we could use a pattern such as the
following:

Element e = {
Point point = {

int y != 0;
}
UserData data != null;

}

The optional when-clause of a pattern can be used to specify a con-
dition that must also be satisfied when a pattern matches an object.
Unlike the expression field in a simple-pattern, which is evaluated
once when the pattern is defined, the expression of the when-clause
is evaluated each time an object is matched against the pattern.
Thus, a when-clause provides a way to allow general predicates,
though at additional cost. For example, a when-clause could be
used as follows:

Point point = {
int y > 0;

} when (point.x < Math.sqrt(point.y))

The use of patterns makes it possible to perform efficient visualiza-
tions of data. The set of patterns in a specification can be compiled
into a finite automaton, in effect making it possible to avoid match-
ing each pattern individually. This is similar to the way regular
expression matchers work. If we have a large pattern specification,
there will be minimal slowdown during the matching phase after
the specification is compiled to the automata. Once an object is
matched with the automaton, it will then evaluate any when-clause
expressions. If multiple patterns match an object, the pattern de-
fined first will be returned as the match.

Actions

Along with a pattern, one must specify what to do when an ob-
ject is encountered that matches the pattern. This typically in-
volves the creation of nodes, which are entities that are to appear
on screen. Nodes are represented with a set of attributes, which
are (name,value) pairs describing the node. For example, a node

3

To appear in IEEE Symposium on Information Visualization (InfoVis ’98), October 1998.

could contain attributes for its color, shape, label, and font. The
actual rendering of the node, described in the next section, is done
separately. Actions can set attributes for a node using expressions
that include the objects from the matching pattern. Alternatively,
an external function can be called to set the attributes.

Actions may also specify other elements of the data structure that
need to be drawn. For example, a pattern that matches a node in a
tree could request that its children also be drawn. An integer field
in a data structure which represents an index into an array could
request that the appropriate element of the array be drawn. Figure 5
shows the grammar for actions.

Environments

When traversing a data structure, it is often useful to pass along
state information from an element of the structure to its descen-
dants. For this purpose, we use environments. Environments main-
tain a set of variables and values for a particular pattern. Envi-
ronments are inherited from the pattern matching an object by the
patterns matching subsequently traversed objects. The values of
environment variables are set in the actions of a rule and are arbi-
trary expressions that can be computed using objects in the target
program.

When an object matches a pattern, an environment variable is
created that can be used to reference the object that matched the
pattern. Its name is the identifier supplied as label in a pattern def-
inition. When an action or when-clause refers to a symbol in an
expression, the environment is first checked for the symbol. If the
symbol is not found in the environment, global variables in the tar-
get are checked.

Layouts

Once a set of nodes is constructed from a traversal of a data struc-
ture, it is sent to a particular layout manager to be drawn. Layout
managers draw the nodes by looking at their attributes. For exam-
ple, if a data structure represents a set of two dimensional points, a
traversal could produce a set of nodes with attributes named x and y.
A layout manager drawing points on a two dimensional plot would
use this list of nodes to render points based on these attributes.

Currently, the system contains layout managers for directed
graphs, hierarchical lists, and two dimensional plots, with more are
to be added. Each of these layout managers use standard visual-
ization techniques, so we do not go into the details of layout in this
paper. Users are also permitted to add layout managers of their own
which can be reused across multiple visualizations.

3 EXAMPLES

To best illustrate how the visualization system works, we will look
at some examples. The examples consider the debugging of a tree-

action-list = action {"," action}

action = (node-creation | traversal) val-list

node-creation = [environment-var =] node-name

traversal = "->" expression

val-list = "(" { identifier "=" expression } ")"

Figure 5: EBNF Grammar for Actions

Figure 6: Traditional Layout

like data structure in Java. In our data structure, each element of
the tree is either an integer or a binary operation. Each element is a
subclass of the class Expr. Our class definitions are as follows:

public abstract class Expr { }

public class Num extends Expr {
private int value;

// Methods not shown
}

public class Op extends Expr {
final static int PLUS = 1;
final static int MINUS = 2;
final static int TIMES = 3;
final static int DIV = 4;

private Expr left;
private int op;
private Expr right;

// Methods not shown
}

The class Op has an integer field indicating the operation type.
Suppose we are at a breakpoint and we wish to graphically display a
tree of type Expr. Figure 6 shows how a typical graphical debugger
might draw a tree instance without user input [9]. In fact, some
existing debuggers are incapable of drawing this much. Since left
and right are declared as type Expr but instances are always of
one of Expr’s subtypes, some debuggers will draw the fields as an
Expr which contains no fields.

A major problem with the drawing in Figure 6 is that the op
field is shown as a number, making it difficult to see what kind of
operation the node actually represents. There is no information in
our data structure that says that the op field should be interpreted
as one of the defined constants in the class Expr instead of a plain
integer. Thus, we will write a set of patterns with actions to display
the operation field more appropriately:

Num numPattern : node=TreeNode(label=numPattern.value),
TreeEdge(from=parent, to=node);

Op plusPattern = {
int op = Op.PLUS;

} : node=TreeNode(icon="plus.xbm"),

4

To appear in IEEE Symposium on Information Visualization (InfoVis ’98), October 1998.

Figure 7: Layout with Patterns

TreeEdge(from=parent, to=node),
-> plusPattern.left(parent=node),
-> plusPattern.right(parent=node);

Op timesPattern = {
int op = Op.TIMES;

} : node=TreeNode(icon="times.xbm"),
TreeEdge(from=parent, to=node),
-> timesPattern.left(parent=node),
-> timesPattern.right(parent=node);

// etc..

These rules create specialized Op nodes depending on the value
of the op field. When the nodes are drawn, they will be viewed as
seen in Figure 7. The pattern named plusPattern matches any
object of type Op which has its op field set to Op.PLUS (which is
statically defined to be 1). If an object matches this pattern, then
the action taken is to create two nodes, one of type TreeNode and
one of type TreeEdge. Attributes may be specified when a node is
created. In this case, we specify the icon attribute for TreeNode
to contain a reference to a plus icon. The TreeNode node has other
attributes such as color and font, but we do not need to specify
attributes for which we use the default value. The TreeEdge node
connects two nodes together. It identifies the two nodes using the
environment variable parent, which has been passed down from
the parent object, and node, which is defined when the TreeNode
is created.

For each of the rules, we also specify other objects that are to be
traversed. In each of the patterns in this example, we draw the left
and right fields. The specification of these fields will permit the
entire tree to be traversed. We pass down the environment variable
parent set to the node created in the current rule so that when the
object’s fields are traversed, they can use the parent environment
variable to properly link their nodes to the tree.

To demonstrate the use of when-clauses, let us consider the fol-
lowing example, in which we modify our patterns above to high-
light any integers that are contained below a TIMES node when one
of the operands is 0.

Num redNumPattern when (hilite == 1)
: node=TreeNode(label=redNumPattern.value, color="red"),
TreeEdge(from=parent, to=node);

Num greenNumPattern when (hilite != 1)
: node=TreeNode(label=greenNumPattern.value,

color="green"),
TreeEdge(from=parent, to=node);

Op times0Pattern = {
int op = Op.TIMES;
Num left = {

int value = 0;
}

} || {
int op = Op.TIMES;
Num right = {

int value = 0;
}

} : node=TreeNode(icon="times.xbm"),
TreeEdge(from=parent, to=node),
-> times0Pattern.left(parent=node, hilite=1),
-> times0Pattern.right(parent=node, hilite=1);

// Previous rules for "Op"

Above, when an Op node is reached that has its op field set to
Op.TIMES and one of its operands is zero, it performs the same
actions as the previous example, except it passes down the environ-
ment parameter hilite a value of 1. The first two patterns above
specify preconditions on the environment by using when-clauses.
The first pattern is only applied if the environment has hilite set
to 1, and the second is applied in all other cases. Thus, if a Num node
is reached with the hilite environment variable set, we know that
it has previously been found to be underneath a Op.TIMES node
where one of the operands is zero. We can then draw it specially, in
this case with a distinguishing color.

Note here that this visualization is difficult to do with other mod-
els such as interesting events and declarative visualization. Since
Num instances don’t contain a reference back to the parent, deter-
mining such a property is not possible without going through the
data structure and keeping around information as it is traversed.
Our experience has found that environment variables are frequently
useful for producing visualizations of data structures.

Visualization of Real Programs

Using the traversal specification language, we have constructed vi-
sualizations for some existing programs. In Figure 8, we see the
visualization of a program that finds the longest path through a di-
rected graph with weighted edges. The visualization is produced
by traversing a linked list of edges and nodes, turning each into an
object that is sent to the directed graph layout manager. The lay-
out manager chooses the location for the nodes. Edges that appear
in the longest path are determined by checking the value of a field
named inGraph, so we define patterns to draw such edges with a
dashed line. The pattern specification is as follows:

Graph graph = {
Node nodeList;
Edge edgeList;

} : -> graph.nodeList,
-> graph.edgeList;

Node node : DagNode(label=node.num, id=node),
-> node.next;

Edge edge = {
int inGraph = 1;

} : DagEdge(label=edge.weight, style="dashed",
from=edge.left, to=edge.right),

-> edge.next;

Edge edge = {
int inGraph = 0;

} : DagEdge(label=edge.weight, from=edge.left, to=edge.right),
-> edge.next;

5

To appear in IEEE Symposium on Information Visualization (InfoVis ’98), October 1998.

Figure 8: Visualization of Longest Path

In Figure 9, we see a visualization of an algorithm that computes
a convex hull from a list of points. The points are stored in an array,
and the set of points found to compose the hull is stored separately
in a stack. To produce the visualization, we traverse the array of
points, turning each point into a node with x and y coordinates, and
then the stack. The traversal of the stack creates line segments using
successive elements in the stack as end points. The specification
(not shown here) is around 30 lines long.

Automated Pattern Generation

An advantage of using a declarative language is that it is possible
to write tools that automatically generate specifications.

Generated specifications are used to produce simple visualiza-
tion of data structures similar to that of a typical visual debugger.
Information in the target’s symbol table is used to create the spec-
ifications. For each type in the symbol table, a pattern is created
to handle the rendering of that type. The actions of the rule are
to create a node for the object, displaying each of the fields of the
object in the node. Any fields that are references are specified to
be further traversed. The nodes created by these patterns contain
attributes that can be visualized by either the hierarchical list or di-
rected graph layout managers. The automated pattern specification
is useful to a user who wants to produce basic displays without writ-
ing patterns. It should not be necessary to write specifications that
can be created automatically.

Generated specifications can also be useful for other applica-
tions. Consider a tool such as lex or yacc, which takes a high-level
specification (e.g. lexer or parser) and generates lower-level code.
Debugging the generated code might be difficult, as the correspon-
dence between the abstractions in the input file and the generated
data structures may not be easy to determine. If we augment such
tools to additionally generate a pattern specification, we can use the
patterns to assist in the debugging process. This type of genera-
tion of external information to be used by the debugger is similar to
what is already done by compilers, as they emit extra symbol table
information when appropriate flags are specified.

Figure 9: Visualization of Convex Hull

4 VISUAL PATTERN CONSTRUCTOR

Our debugging tool also provides a visual interface to the pattern
language, making it possible to construct visualizations entirely
through a user interface. This is especially useful for first-time or
casual users of the system who don’t wish to learn the pattern lan-
guage. The visual interface allows the patterns and actions to be
constructed from scratch or by starting with an example.

The first step to creating a pattern from scratch is to create a
root pattern node. A root node is created by selecting from a list
of known types (extracted from the symbol table). The root node
then appears on screen, representing the pattern that matches any
object of the specified type. The user can then use a pop-up menu
to further constrain the pattern. If the type is a structural type, the
menu lets the user choose from the the set of fields defined in the
structure. For primitive types, one of “=”, “! =”, “>”, “>=”, “<”
and “<=” can be chosen to specify a value to match. A user can
also select “unrestricted”, which removes any existing submatches
and turns the pattern into a wildcard. Figure 10 shows the user
interface of the pattern constructor.

Once a pattern has been visually specified, a set of actions can be
defined through the interface. Actions are either nodes to be created
or other objects to be traversed. For actions that create nodes, an
interface is presented through which attributes for the node can be
entered. Similarly for traversal actions, an interface exists to set
passed down environment variables.

Patterns can also be constructed by selecting a group of nodes
that have been already rendered on the display, similar to what is
shown in Figure 2. The selected nodes become an exact pattern
match for that substructure. The pattern can then be further refined
(by changing a subpattern to be “unrestricted”, adding fields, etc.)
using the pattern editor interface.

5 SYSTEM IMPLEMENTATION

This section gives an overview of how the system is implemented.
The current implementation is approximately 9,000 lines of Java
code.

Debugger Interaction

Our system uses an abstract interface to access symbol table infor-
mation through a debugging library (not discussed here, see [5]).

6

To appear in IEEE Symposium on Information Visualization (InfoVis ’98), October 1998.

Figure 10: Visual Pattern Constructor UI

An advantage to having an abstract interface to the debugger is that
we can switch between alternate implementations of the API. For
example, there are two implementations in Java. The first is built
on top of Sun’s RemoteDebugger package, which is used to debug
a Java program running in a separate interpreter (the target). The
second is built on top of the Java reflection API, which is used to
gather type and object information in the current interpreter (the
debugger). It is useful to switch between accessing objects in the
debugger and the target, and the API provides the flexibility to do
this.

Updates and Redrawing

It is undesirable to redraw an entire data structure each time part of
it is changed. Redrawing requires retraversing every element of the
structure, which is inefficient and does not provide the user with in-
formation on which parts have changed. Therefore, our system has
the ability to determine which on-screen nodes need to be updated
based on a set of modified objects in the target.

The debugger is responsible for determining which of the under-
lying objects in the target have changed and reporting these objects
to the visualization component. It is difficult for a debugger to tell
when an object has been modified, but it is beyond the scope of
this paper. Once the system has determined which objects have
changed, it is then necessary to update the display appropriately.

In order to tell which of the on-screen nodes need to be updated,
a mapping between in-core objects and on-screen nodes is main-
tained. This mapping is constructed during object traversal. When
a pattern matches an object, each object referenced in the pattern is
mapped to the node or nodes created by the actions of that pattern.
When an object is redrawn, the system first checks which pattern
the object matched before the modification using the mapping ta-
ble. It then matches the modified object against the patterns, and
checks if the newly matched pattern is different than the previous
one. If the same pattern is matched, and the object and environment
values are equal, no further action needs to be taken.

If a different pattern is matched, all of the old nodes created by
that pattern are marked for deletion. The new pattern is applied,

Declarative
Language

Syntax Tree Pattern Constructor

VisualizationCompilation

Figure 11: Visual Pattern Constructor Design

creating a new set of nodes. We then look at the dependencies of
the new pattern. For each dependency denoting a different object
than in the old pattern, we delete the old dependency, and traverse
the new dependency.

After a modification is applied, the layout manager receives a
list of nodes to be created and deleted. The layout manager is then
responsible for updating the display based on the values of the new
nodes.

Modification

Now we examine how modification to an object’s on-screen repre-
sentation is propagated to the underlying data structure. The layout
manager is responsible for handling user interaction with displayed
nodes. When a node is manipulated, the layout manager reflects
the changes into the object by changing its attributes. For exam-
ple, if a point is dragged in a two dimensional plot, the interface
would update its x and y attributes. Attribute changes may be mon-
itored by specifying a callback routine that is invoked when a node
is modified.

In the callback routine, it is possible to use the modified at-
tributes to make changes to the underlying object. The routine may
use node attributes and environment variables to determine what
needs to be changed and how. A callback can also do a reverse-
mapping to determine which object or objects were used to synthe-
size attributes of the node through a set of library functions. The
callback uses the debugger interface to make changes to the under-
lying objects. Changes are then sent to the visualization component,
where the appropriate nodes are redrawn as described previously in
this section.

If no callbacks exist to monitor node attributes, then the on-
screen nodes will be changed but the underlying object will not be
modified.

Visual Pattern Constructor

The visual pattern constructor is itself a traversal-based visual-
ization. In the declarative language, patterns are parsed into an
abstract-syntax tree before they are internally processed. The visual
pattern constructor, which provides a user interface to the declara-
tive language, is written with a pattern specification to visualize
this abstract-syntax tree. As patterns are edited on the display, the
abstract-syntax tree is manipulated to reflect the changes (through
callback functions).

Figure 11 shows the design of the pattern constructor. One dif-
ference between a typical visualization and the visualization the
pattern constructor uses is that the objects the pattern constructor
visualizes are in the address space of the debugger instead of the
address space of the target. Thus, we use an alternate implementa-
tion of the debugging functions (the Reflection API) to access the
underlying objects.

7

To appear in IEEE Symposium on Information Visualization (InfoVis ’98), October 1998.

6 DISCUSSION

Preliminary results from the system have been promising. We
have used it to put together visualizations for a project called
Zephyr [18]. Zephyr provides a language for describing tree-like in-
termediate forms in compilers (for example, abstract-syntax trees),
and includes a tool that generates data structures matching the de-
scriptions. Our visualizations draw the intermediate forms graph-
ically. The use of patterns makes it possible to easily distinguish
between different types of nodes, as well as identify and simplify
commonly used idioms. Our experience with traversal-based visu-
alization has led to improved displays while requiring little work to
produce them.

Another application built from the declarative language was the
user interface to generate the declarative language itself. Through
putting together the visual pattern constructor, we were able to
make use of the support for modification.

Our experience with the system is in early stages. So far, we
have had success using the debugger in the compiler domain as well
as with a handful of small programs, but the next step will be to
explore other areas. There are many commonly used visualizations
that we would like to implement, such as sorting algorithms. We
plan to produce visualizations for the set of algorithms typically
used as examples in algorithm animation systems.

One of the primary goals of this work is to make it possible for
novice users to quickly and effortlessly construct useful visualiza-
tions. To accomplish this, we will further pursue the development
of user interfaces to the declarative language, as well as write tools
that automatically generate specifications for various applications.

Although we do not have performance numbers at this point, we
expect that our system will scale well. By compiling patterns into
an automata, it is possible to handle a large number of rules in an
efficient manner. We would like to see how well traversal-based
visualization works in large applications.

The current implementation only provides static pictures. We
hope to provide smooth animations found in algorithm animation
systems in the future. In order to do this, it is necessary to know the
relationship between the nodes in successive steps of an algorithm.
For example, if we are animating a sorting algorithm, we need to
distinguish between setting two elements in array to new values and
swapping two elements. Thus, we need to provide a way to spec-
ify such supplementary information to layout managers, similar to
what is done in algorithm animation systems.

Support for other programming languages besides Java is up-
coming. This will make it possible to evaluate how well our data
model and patterns work for languages such as C and C++.

7 CONCLUSION

We have introduced a new model of software visualization called
traversal-based visualization, which is capable of displaying ab-
stract representations of data structures in a debugger. Traversal-
based visualization makes it possible to write a specification of pat-
terns and actions that provide the semantic information needed to
draw objects in an informative way. We have implemented a debug-
ger that allows transformations to be specified with a pattern-based
language. The debugger also provides a user interface to this lan-
guage. The system is functional for Java, and development is ongo-
ing. See the author’s home page at http://www.cs.princeton.
edu/˜jlk/viz for more information.

References

[1] R. A. Baeza-Yates, L. Jara, G. Quezada. VCC: Automatic
Animations of C Programs Proceedings of Compugraphics,

December 1992, 389–397.

[2] M. Brown. Exploring Algorithms using Balsa-II IEEE Com-
puter, 21(5):14–36, May 1988.

[3] M. Brown. Zeus: A System for Algorithm Animation and
Multi-View Editing IEEE Workshop on Visual Languages,
Kobe, Japan, 1991, 4–9.

[4] R. A. Duisberg. Visual Programming of Program Visualiza-
tions: A Gestural Interface for Animating Algorithms. IEEE
Workshop on Visual Languages, Washington, D.C., 1987, 55–
66.

[5] D. R. Hanson, J. L. Korn. A Simple and Extensible Graph-
ical Debugger Proceedings of the Winter USENIX Technical
Conference, Anaheim, CA, January 1997, 173–184.

[6] C. McCreary. The VGJ Graph Drawing Tool
http://www.eng.auburn.edu/department/cse/
research/graph_drawing/vgj.html.

[7] T. Moher. PROVIDE: A Process Visualization and Debugging
Environment IEEE Transactions on Software Engineering,
14(6):849–857, June 1988.

[8] S. Mukherjea, J. T. Stasko. Toward Visual Debugging: In-
tegrating Algorithm Animation Capabilities within a Source-
Level Debugger ACM Transactions on Computer-Human In-
teraction, 1(3):215-244, September 1994.

[9] D. Lieber. The Jikes Debugger http://www.alphaworks.
ibm.com/formula/jikesdebugger.

[10] B. Myers. A System for Displaying Data Structures Computer
Graphics, 17(3):115–125, July 1983.

[11] S. North, E. Koutsofios. Applications of Graph Visualization
Proceedings of Graphics Interface, 1994, 235–245.

[12] S. P. Reiss, S. Meyers, C. Duby. Using GELO to Visual-
ize Software Systems Proceedings of the ACM SIGGRAPH
Symposium on User Interface Software and Technology, 1989,
149–157.

[13] G.-C. Roman, K. Cox, C. Wilcox, J. Plun. Pavane: A Sys-
tem for Declarative Visualization of Concurrent Computa-
tions Journal of Visual Languages and Computing, 3(1), Jan-
uary 1992, 161–193.

[14] G.-C. Roman, K. Cox. A Declarative Approach to Visualizing
Concurrent Computations Computer, 22(10):25–36, October
1989.

[15] T. Shimomura, S. Isoda. Linked-List Visualization for Debug-
ging IEEE Software, 8(3):44–51, May 1991.

[16] J. Stasko, J. Domingue, M. Brown, B. Price, editors. Software
Visualization MIT Press, February, 1998.

[17] Sun Microsystems. Java Foundation Classes http://java.
sun.com/products/jfc.

[18] D. C. Wang, A. W. Appel, J. L. Korn and C. S. Serra. The
Zephyr Abstract Syntax Description Language USENIX Con-
ference on Domain-Specific Languages, Santa Barbara, Octo-
ber 1997.

[19] A. Zeller and D. Lütkehaus. DDD — a free graphical front-
end for UNIX debuggers SIGPLAN Notices, 31(1):22–27,
January 1996.

8

