
VCFloat2: Floating-Point Error Analysis in Coq
Andrew W. Appel
Princeton University

USA
appel@princeton.edu

Ariel E. Kellison
Cornell University

USA
ak2485@cornell.edu

Abstract
The development of sound and efficient tools that automat-
ically perform floating-point round-off error analysis is an
active area of research with applications to embedded sys-
tems and scientific computing. In this paper we describe
VCFloat2, a novel extension to the VCFloat tool for verifying
floating-point C programs in Coq. Like VCFloat1, VCFloat2
soundly and automatically computes round-off error bounds
on floating-point expressions, but does so to higher accuracy;
with better performance; with more generality for nonstan-
dard number formats; with the ability to reason about exter-
nal (user-defined or library) functions; and with improved
modularity for interfacing with other program verification
tools in Coq. We evaluate the performance of VCFloat2 us-
ing common benchmarks; compared to other state-of-the
art tools, VCFloat2 computes competitive error bounds and
transparent certificates that require less time for verification.

CCSConcepts: • Software and its engineering→ Formal
software verification; •Mathematics of computing →
Numerical analysis.

Keywords: floating point, round-off error analysis
ACM Reference Format:
Andrew W. Appel and Ariel E. Kellison. 2024. VCFloat2: Floating-
Point Error Analysis in Coq. In Proceedings of the 13th ACM SIG-
PLAN International Conference on Certified Programs and Proofs
(CPP ’24), January 15–16, 2024, London, UK. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3636501.3636953

1 Introduction
We describe VCFloat2, an open-source1 tool for automated
floating-point round-off error analysis, foundationally veri-
fied sound in Coq, with a new functional modeling language
for better integration with extended formal analyses of nu-
merical programs, a new core representation of number for-
mats that allows users to derive error bounds for formats not
currently defined by the IEEE 754 standard, a new efficient

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
CPP ’24, January 15–16, 2024, London, UK
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0488-8/24/01
https://doi.org/10.1145/3636501.3636953

optimizer for multinomial floating-point expressions, and a
new analysis for obtaining tighter error bounds. VCFloat2 is
available at github.com/VeriNum/vcfloat, or by opam in the
coq-released repository as coq-vcfloat.
Developing machine-checked proofs that programs cor-

rectly and accurately approximate the solution to continuous
mathematical problems is challenging. First, there is the chal-
lenge of developing machine-checked proofs of accuracy:
while high-level mathematical specifications use real num-
bers and assume operations are exact, computer programs
operate on floating-point numbers and perform inexact op-
erations that introduce round-off error. Practically useful
proofs of accuracy provide tight bounds on this round-off
error without compromising soundness. Second, there is the
challenge of composing proofs of correctness and accuracy—
without introducing logical gaps—inside of a single mecha-
nized logical framework. Using VCFloat2, we address these
challenges by decomposing the problem as follows.

• Write afloating-point functionalmodel—afloating-
point-valued specification of the program—using the
functional-modeling language provided by VCFloat2.

• Prove that a program written in a low-level language
such as C correctly implements the floating-point func-
tional model using a program logic, specified in Coq,
for the low-level language. To help automate this proof,
use a program logic verification tool, like the Verified
Software Toolchain (VST) [2].

• Prove that the floating-point functional model approx-
imates a real-valued functional model, to within
a certain accuracy; that is, perform a round-off error
analysis, using VCFloat2 for automation.

• Prove that the real-valued functional model finds a
solution to the mathematical problem of interest, with
a given accuracy bound. For this, use a Coq library for
real analysis, such as Coquelicot [11] or Mathematical
Components [33].

1VCFloat2 is open source with the LGPL license, for whichwe thank: DARPA
who funded the development of VCFloat1 and and encouraged the products
of its sponsored research to be open-sourced; Jonathan M. Smith, who
started DARPA on this open-source path in 2005 as a program manager;
Ramananandro et al. [40] who open-sourced VCFloat1 in compliance with
this policy; and Qualcomm, who (after acquiring the company that had
developed VCFloat1) in 2022 released its residual rights. Development of
VCFloat2 is supported in part by National Science Foundation grant CCF-
2219757 and by the U.S. Department of Energy, Office of Advanced Scientific
Computing Research, Computational Science Graduate Fellowship Award
Number DE-SC0021110.

1

https://orcid.org/0000-0001-6009-0325
https://orcid.org/0000-0003-3177-7958
https://doi.org/10.1145/3636501.3636953
https://doi.org/10.1145/3636501.3636953
/https://github.com/veriNum/vcfloat

CPP ’24, January 15–16, 2024, London, UK Andrew W. Appel and Ariel E. Kellison

Using VCFloat2 as both a specification language and a tool
for automating floating-point round-off error analysis, the
proofs outlined above can be composed into a single correct-
ness-and-accuracy theorem in Coq, with no logical gaps
compromising soundness. While there are several tools that
perform floating-point round-off error analysis, not all of
them produce machine-checkable proofs that can be so seam-
lessly composed with other theorems about program correct-
ness and real analysis; a detailed review of related work is
provided in Section 15.

VCFloat2 is an extension of the original VCFloat tool, de-
veloped by Ramananandro et al. [40], with the following
improvements:

Functional-modeling language: VCFloat1 took as in-
put expressions from C programs parsed by the front
end of the CompCert C compiler [10, 30]. In VCFloat2,
we have added a new front end that can reify—that is,
turn a formula into an abstract syntax tree for symbolic
analysis—directly from functional models written in a
general and natural style entirely independent of C or
CompCert (see §5). In effect, this is a functional mod-
eling language shallow-embedded in Coq for defining
floating-point algorithms (§3).

Any-precision literals: To support VCFloat2’s functional
models, we added new floating-point literal notations
within Coq that work at any floating-point precision—
single (binary32), double (binary64), half, quad, or ar-
bitrary user-specified (§3).

Modeling library: VCFloat2 provides a library contain-
ing definitions, lemmas, and congruences for reason-
ing about functional models and their equivalences.

User-defined operators: While VCFloat1 could only han-
dle a specific set of built-in operators (+,−,×,÷,√),
VCFloat2 supports user-defined operators of any arity
and precision, requiring only user-supplied proofs (or
axioms) about their rounding behavior.

Non-IEEE formats: While VCFloat1 could handle any
IEEE 754 format (with arbitrarymantissa and exponent
sizes), VCFloat2 additionally supports user-supplied
number formats, so long as the operations on them
have defined (possibly zero) relative and absolute error
bounds. We provide an example of this functionality
using binary64 double-words (“double-doubles" [25])
where the operation under consideration sums a double-
double number and a binary64 number.

Exact division: While VCFloat1 recognized that floating-
point multiplication by nonnegative powers of 2 is ex-
act in the absence of overflow, VCFloat2 obtains tighter
error bounds by recognizing that floating-point divi-
sion by powers of 2 (or multiplication by powers of 1/2)
can also be exact, or in the case of underflow, highly
accurate (§7).

Efficient simplifier: VCFloat1 workflow generated ver-
ification conditions which were discharged by Coq’s
standard solvers for polynomial and rational equations
(e.g., the field_simplify tactic) followed by a call to Coq’s
Interval package [13, §4.2]. Even on standard floating-
point benchmarks, these standard solvers generated
exponentially large terms that caused Coq to run out
of memory. For VCFloat2, we built an efficient, accu-
rate, and proved correct (§9) interval-goal optimizer
in Coq’s term language (§8).

Decomposition tactic: To obtain tight error bounds us-
ing Coq’s interval package on expressions generated
by VCFloat, we implemented a tactic that decomposes
subexpressions in order to mitigate the dependency
effect in the interval analysis. With this decomposition
tactic, VCFloat2 can provide tight bounds on bench-
marks in instances where VCFloat1 failed to produce
a useful bound.

Taken together, each of the contributions outlined above
makeVCFloat2 a flexible tool for building end-to-endmachine-
checked proofs of accuracy and correctness for floating-point
programs. This is illustrated by several verification projects
where VCFloat2 has played an integral role.

Applications. VCFloat2 has been used in several applica-
tions, demonstrating its effectiveness as a tool for building
end-to-end proofs of accuracy and correctness.

Differential equations: Kellison andAppel [26] proved
that a C program correctly and accurately integrates
an ordinary differential equation (ODE). Using VST,
the authors proved that a C program correctly imple-
ments a floating-point functional model. VCFloat2 was
used to prove that the functional model accurately ap-
proximates a discrete-time-step real-valued functional
model. Finally, Coquelicot was used to prove that the
real-valued functional model finds an accurate solution
to the equation with bounded error after 𝑁 time-steps;
all proofs and accuracy bounds were composed into a
single Coq theorem.

Matrix-vector operations: The LAProof library [27]
contains formal proofs of the accuracy of linear al-
gebra operations described by the basic linear alge-
bra subprograms (BLAS) specification, and provides a
proof of correctness of a C implementation of sparse
matrix-vector multiplication. These Coq theorems use
VCFLoat2’s functional-modeling language and model-
ing library, but do not use its automated error analysis.

Jacobi method: Tekriwal et al. [43] proved correctness,
accuracy, and convergence of a stationary iterative
solver for linear systems of equations. A sparse-matrix
C program implementing the Jacobimethodwas proved
correct using VST and using VCFloat2’s modeling li-
brary; proofs of accuracy and convergence used the

2

VCFloat2: Floating-Point Error Analysis in Coq CPP ’24, January 15–16, 2024, London, UK

Mathematical Components library andVCFloat2’smod-
eling library.

VSTlib: C’s standard math library is now axiomatized
as a VST library using VCFloat2’s functional-modeling
languagewith the library functions (sin, cos, etc.) treated
as VCFLoat2 user-defined operators [3]; VCFloat2 there-
fore supports automatic round-off-error analysis for
computations using those functions.

In the remainder of this paper, VCFLoat2 is described in
detail; the significance of VCFloat2 with respect to related
work is described in Section 15. In the following section, we
provide a review of round-off error analysis in order to set
the stage.

2 Review of round-off error analysis
We briefly review the fundamentals of round-off error analy-
sis and floating-point arithmetic, and point readers to more
detailed expositions by Overton [38] and Muller et al. [35]
for further reference.
A floating-point number may be 0, normal finite, subnor-

mal finite, +∞,−∞, orNaN (not a number). A normal number
is representable as ±1.𝑑𝑑𝑑𝑑𝑑𝑑 · 2𝑒 , where the 𝑑𝑑𝑑𝑑𝑑𝑑 repre-
sents a string of binary digits of length𝑀 (the mantissa size)
and 𝑒min ≤ 𝑒 ≤ 𝑒max is the exponent. A subnormal number
is representable as ±0.𝑑𝑑𝑑𝑑𝑑𝑑 · 2𝑒min , where there may be
several leading zeros. A finite number is either ±0, normal,
or subnormal.

Every finite floating-point number 𝑥 exactly represents a
real number R(𝑥). But the floating-point calculation 𝑥 + 𝑦

or 𝑥 · 𝑦 is usually not exact: often R(𝑥) + R(𝑦) ≠ R(𝑥 + 𝑦).
That is, the result of a floating-point operation may have
more mantissa bits than fit into the representation, so it will
be rounded off. In general, if the result of evaluating 𝑥 op 𝑦
for op ∈ {+,−,×,÷} is a normal number, then we know that
R(𝑥 op 𝑦) = (R(𝑥) op R(𝑦)) (1 + 𝛿) for some 𝛿 such that
|𝛿 | ≤ 2−𝑀 ; i.e., there is a relative error bound. If (𝑥 op 𝑦) is
subnormal, then R(𝑥 op 𝑦) = (R(𝑥) op R(𝑦)) +𝜖 , where |𝜖 | ≤
2−𝐸 and 𝐸 = 𝑒max +𝑀 − 2. For single precision 𝑀 = 24 and
𝑒max = 128, so |𝛿 | ≤ 2−24 and |𝜖 | ≤ 2−150. If we know (𝑥 op 𝑦)
will be finite but don’t know whether it will be normal or
subnormal, then R(𝑥 op 𝑦) = (R(𝑥) op R(𝑦)) (1 + 𝛿) + 𝜖 for
some 𝛿 and 𝜖 bounded as above.
There are some special cases: if 𝑥 and 𝑦 have the same

binary order of magnitude (12 ≤ 𝑥/𝑦 < 2) then R(𝑥 − 𝑦) =
R(𝑥) − R(𝑦) exactly; this is called Sterbenz subtraction. If
𝑦 = 2𝑘 for 0 ≤ 𝑘 , R(𝑥 · 𝑦) = R(𝑥) · R(𝑦) exactly, so long
as it doesn’t overflow. If 𝑦 = 2−𝑘 , then R(𝑥 · 𝑦) = R(𝑥) ·
R(𝑦) exactly, so long as the result is normal; or R(𝑥 · 𝑦) =
R(𝑥) · R(𝑦) + 𝜖 if 𝑥 · 𝑦 is subnormal. Finally, if 𝑥 and 𝑦 are
subnormal, then R(𝑥 +𝑦) = R(𝑥)+R(𝑦) exactly, but currently
VCFloat2 does not handle this special case, approximating
as R(𝑥 + 𝑦) = R(𝑥) + R(𝑦) + 𝜖 .

3 Overview of VCFloat2
We will use this formula as a running example:

𝑥 + ℎ · (𝑣 + (ℎ/2) · (3 − 𝑥))

which arises in the simulation of a harmonic oscillator by
leapfrog integration with time-step ℎ = 1/32. Assume 2 ≤
𝑥 ≤ 4 and −2 ≤ 𝑣 ≤ +2, and we compute this in single-
precision floating point.
VCFloat’s job is to soundly derive an absolute round-off

error bound for the formula, by inserting deltas and epsilons
as described in Section 2, taking into account of all the special
cases (known-normal numbers, known-subnormal numbers,
multiplication by powers of two, Sterbenz subtraction, etc.).
We will illustrate the user’s workflow using VCFloat2’s

new annotation system. The user writes in Coq,

Definition h := (1/32)%F32.
Definition F(x: ftype Tsingle) : ftype Tsingle :=

Sterbenz(3.0−x)%F32.
Definition step (x v: ftype Tsingle) :=

(Norm(x + h∗(v+(h/2)∗F(x))))%F32.

Our functional-modeling language is just Coq formulas
and Coq functions over variables of type ftype(𝑇), where
𝑇 :type is any floating-point precision. (Don’t confuse type,
meaning a floating-point format, with Type, which is the
notion of type in Coq’s logic.) We predefine Tsingle:type and
Tdouble:type, but the user can define any binary IEEE 754
floating-point format (e.g., half-precision or quad precision).
So: Tsingle is a floating-point precision description, and the
inhabitants of ftype Tsingle are single-precision floats.
VCFloat2’s %F32 tag means that constants such as 1, 3.0,

38.571e-2 are to be parsed as single-precision (32-bit) floating-
point, with + meaning single-precision addition. We
also permit %F64 and the user can easily define, paramet-
rically, constant notations and operators for any desired
precision. Formulas may mix different precisions:
((1/2) ∗ cast Tdouble (h ∗ h)%F64)%F32 computes ℎ · ℎ in dou-
ble precision and the rest in single precision.

VCFloat2 comes with these exciting new functions:

Definition Norm {A}(x: A) := x.
Definition Denorm {A}(x: A) := x.
Definition Sterbenz {A}(x: A) := x.

But these are hardly exciting at all: each one is just the iden-
tity function. Actually these are annotations for the analysis.2
Norm(𝑥+𝑦) suggests the sum 𝑥 +𝑦 is going to be a normal (not
a subnormal) number. Denorm suggests a subnormal num-
ber. Sterbenz(x−y) suggests that 𝑥 and 𝑦 will have the same
binary order of magnitude. These suggestions will have to
be proved—at the point marked (∗B∗) below—but then they

2The idea of using annotations for reification that are semantically equiv-
alent to identity functions was developed independently by Jason Gross
[21, 23] (although those papers don’t describe the technique so explicitly).

3

CPP ’24, January 15–16, 2024, London, UK Andrew W. Appel and Ariel E. Kellison

will lead to a better round-off error analysis. If these verifi-
cation conditions can’t be proved, then the whole round-off
error theorem is unproved; one might need to remove the
corresponding annotations.

Our running example is annotated with Norm and Sterbenz
at specific places where it is expected that these conditions
will be met. In future work we expect to automatically cal-
culate many of these annotations, so users can write annota-
tions only where they want to insist on the condition.
In general, an error analysis is valid only for a particular

range of input values: the assumptions 2 ≤ 𝑥 ≤ 4 and −2 ≤
𝑦 ≤ 2 are important. The VCFloat2 user encodes these into
a boundsmap that maps identifiers (denoted here as _x and
_v) for the free variables of the expression (𝑥 and 𝑣 in our
example) to user-specified lower and upper bounds:

Definition _x : ident := 2%positive.
Definition _v : ident := 3%positive.
Definition step_bmap_list : list varinfo :=
[Build_varinfo Tsingle _x 2 4 ; Build_varinfo Tsingle _v (−2) 2].

Definition step_bmap : boundsmap :=
a line of boilerplate mentioning step_bmap_list.

The theorem the user wants to prove: The round-off
error of the step function is the maximum difference, for all
𝑥 and 𝑣 in bounds, between the floating-point evaluation
of step 𝑥 𝑣 and the evaluation of the same formula on the
real numbers. To state this theorem, we use the notion of
a valmap, a computable mapping from variable-identifiers
to floating-point numbers. For example, given floats 𝑥 and 𝑣
we can build a valmap representing {_x ↦→ 𝑥, _v ↦→ 𝑣}.

We will prove that the round-off error is less than one in
four million, for any valmap.3 To prepare a functional-model
formula like step for analysis, one reifies it (using some Coq
boilerplate to invoke the reifier within a definition):

Definition step' := ltac:(
let e' := HO_reify_float_expr constr:([_x; _v]) step in exact e').

Proving this theorem for the user is the main purpose of
the tool:

Lemma prove_roundoff_bound_step:
∀ vmap : valmap,
prove_roundoff_bound step_bmap vmap step' (1/4000000).

(∗ Theorem statement: for all 𝑥 and 𝑣 in the bounds of step_bmap,
the round−off error in computing [step 𝑥 𝑣] is less than 1/4000000. ∗)

Proof.
intros.
(∗A∗) prove_roundoff_bound. This tactic leaves two subgoals
− prove_rndval. First subgoal
(∗B∗) all: interval.
− prove_roundoff_bound2. Second subgoal
(∗C∗) optimize_for_interval.
(∗D∗) interval.
Qed.

To illustrate what VCFloat2 does and how it differs from
VCFloat1, we will show the proof state at points A, B, C, D.

Point A. By now we have already reified the formula step
into a deep-embedded tree step'. Unlike VCFloat1, we reified
from a functional-model formula such as step, instead of
from a C program; see section 5.

Point B. By this point, VCFloat’s core algorithm has calcu-
lated several verification conditions. In this case there are 5
conditions. Number 3 of 5, for example, arises from the claim
that (𝑥 + ℎ · 𝑣) is a normal number. Here is this verification
condition (cleaned up a bit); all operations are in the reals:

−2 ≤ 𝑣 ≤ 2 2 ≤ 𝑥 ≤ 4 |𝛿1 | ≤ 2−24
|𝜖0 | ≤ 2−150 |𝜖1 | ≤ 2−150 |𝜖3 | ≤ 2−150

2−126 ≤ |𝑥 + (1
32 (𝑣 + (1

32 (3 − 𝑥) + 𝜖1)) (1 + 𝛿1) + 𝜖3) + 𝜖0 |

This is a claim that 𝑥 +ℎ(𝑣 + (ℎ/2) (3−𝑥)), after rounding, is
not smaller than 2−126: it is not subnormal. The line all:interval
(at Point B in the proof) indicates that these 5 goals are easily
dispatched by the interval tactic [13, §4.2].

Point C. By this point VCFloat has inserted deltas and ep-
silons using the improved analysis of VCFloat2 as described
in Section 7, and now one must prove that the resulting
difference formula is within the error bound:

−2 ≤ 𝑣 ≤ 2 2 ≤ 𝑥 ≤ 4 |𝛿1 | ≤ 2−24 |𝛿2 | ≤ 2−24
|𝜖0 | ≤ 2−150 |𝜖1 | ≤ 2−150 |𝜖3 | ≤ 2−150
| (𝑥+(1

32 ((𝑣+(
1
64 (3 − 𝑥) + 𝜖1)) (1 + 𝛿1) + 𝜖3) + 𝜖0)) (1 + 𝛿2)

− (𝑥 + 1
32 (𝑣 + (1

32/2) (3 − 𝑥))) | ≤ 1
4,000,000

In general this is a difficult formula to analyze, because of
nested epsilons and deltas and the implicit subtraction of
𝑥 − 𝑥 . If we give this directly to the interval package, it will
derive a very weak bound, much worse than the desired
one. Here we use our new special-purpose simplifier, which
(efficiently and soundly) transforms the goal at Point C into
the proof goal at Point D.

Point D. | 𝛿2𝑥 + 1
32𝛿1𝑣 +

1
32𝛿2𝑣 | ≤ 1

4,000,000 −4.07453 ·10−10
This goal is easily solved by the interval tactic.

On some “Point C” goals we also use a (new) tactic that
recursively decomposes the expression for absolute floating-
point error into smaller subexpressions of related terms that
are easier for our simplifier (and Coq Interval package); see
§10. The Gappa tool uses a similar technique.

3If a bound is not known in advance, VCFloat2 can calculate and produce a
proof of a bound at the same time. We don’t illustrate that here.

4

VCFloat2: Floating-Point Error Analysis in Coq CPP ’24, January 15–16, 2024, London, UK

4 Floating point types, operations, and
notation

VCFloat1 defined a floating point type as (basically),

Record type: Type :=
TYPE {fprec: Z; femax: Z; prec_range: 1 < fprec < femax}.

That is, fprec is the number of bits in the mantissa, femax is
themaximum exponent value. The proof fprec_range enforces
(via dependent types) that the precision (number of mantissa
bits) must be less than the maximum exponent.4

This was sufficient to describe any IEEE 754 format (includ-
ing half-precision, double-precision, quad-precision, etc.).
But in VCFloat2 we support exotic floating-point types that
don’t precisely fit the IEEE 754 format. In particular, each
value of the synthetic type double-double [20] has fprec at
least (or exceeding) 106 bits, and femax=1024. Double-double
generally respects the round-off bounds for ⟨106, 1024⟩ but
is not exactly described by any VCFloat1 “type.”

Therefore in VCFloat2 we define,

Record type: Type :=
GTYPE {fprec: Z; femax: Z; prec_range: 1 < fprec < femax;

nonstd: option (nonstdtype fprec femax prec_range)}.
Definition TYPE fprecp femax prec_range :=

GTYPE fprecp femax fprec_lt_femax prec_range None.

When nonstd=None, this is a standard IEEE 754 format; when
nonstd=Some(nt), then nt is a record describing an abstract
data type and its interpretation.
The new definition TYPE allows backward compatibility

for defining IEEE 754 formats, such as single-precision and
double-precision:

Definition Tsingle : type := TYPE 24 128 ltac:(simpl;lia).
Definition Tdouble: type := TYPE 53 1024 ltac:(simpl;lia).

We define precisions Tsingle and Tdouble, but the user can
easily add more. The ltac:(simpl;lia) finds a proof that 1 <

24 < 128 or 1 < 53 < 1024.
For the underlying semantics of floating-point numbers

and operations, we rely on Coq’s Flocq floating-point library
[12, 13]. For example, subtraction:

Bminus (prec: Z) (emax: Z): prec>0→ prec<emax→ mode →
binary_float prec emax→
binary_float prec emax→ binary_float prec emax.

which operates on binary IEEE 754 floating-point numbers at
any precision. The rounding mode may be round-to-nearest-
even, round-toward-zero, round-down, etc. The last two ar-
guments and the result are floats of the given precision.
Given any format-description (ty: type), we can define

ftype(ty), the Coq type of floating-point values belonging to
that format:

4In the actual implementation, the name and statement of fprec_range are
slightly different.

Definition ftype (ty: type) : Type :=
match nonstd ty with
| None ⇒ binary_float (fprec ty) (femax ty)
| Some nt⇒ nonstd_rep nt
end.

That is, if ty is a standard type, then the Coq type of its
values is simply Flocq’s binary_float type (of the appropriate
precision). But if it’s a nonstandard type, then we use the
user-supplied representation type from the nt package.

When 𝑡 is a standard type (nonstd(𝑡)=None), we can use de-
pendent types to convert between binary_float (fprec 𝑡) (femax 𝑡)
and ftype(𝑡):

Definition float_of_ftype {𝑡 :type} {STD: is_standard 𝑡 } :
ftype 𝑡 → binary_float (fprec 𝑡) (femax 𝑡).

Definition ftype_of_float {𝑡 :type} {STD: is_standard 𝑡 } :
binary_float (fprec 𝑡) (femax 𝑡) → ftype 𝑡 .

Now, for any Flocq-standard arithmetic operator such as
Bplus, Bminus, Bmult, etc. that is parametrized by prec and
emax, we can define

Definition BINOP op ty `{STD: is_standard ty} :
ftype ty → ftype ty→ ftype ty :=

ftype_of_float (op _ _ . . . (float_of_ftype x) (float_of_ftype y)).
(∗ . . . indicates some parts of this definition are elided ∗)

Definition BPLUS := BINOP Bplus.
Definition BMINUS := BINOP Bminus.

Therefore, @BPLUS Tsingle has type
ftype Tsingle → ftype Tsingle→ ftype Tsingle;
it is the single-precision floating-point add operator.
Many users would rather write x+y than BPLUS x y, so in

VCFloat2 we provide Coq notations:

Notation "x + y" := (@BPLUS Tsingle x y)(level...): float32_scope.
Notation "x + y" := (@BPLUS Tdouble x y)(level...): float64_scope.

so for example ((1/2) ∗ (h ∗ h))%F32 is an expression using
@BMULT Tsingle and with the constants 1 and 2 parsed as
single-precision floating-point numbers.

Notation parser/pretty-printer for literals. Coq has 64-
bit floats built-in, with notation parsers and printers for
the usual notation (e.g., 1.36e+7). But we want to parse and
pretty-print floats in any precision, and not into built-in
floats but into Flocq’s deep-embedded description of floats.
So we implemented an entire scientific-notation parser and
pretty-printer in Coq, and plugged it in using Coq’s cus-
tomizable Number Notation feature.5

5https://coq.inria.fr/doc/v8.17/refman/user-extensions/syntax-
extensions.html#number-notations. This feature, new in Coq 8.14
(released 2021), is rather intricate to use but (with the help of a Coq wizard)
we were able to instantiate it for any specific set of exponent and mantissa
sizes, with about 50 lines of copy-pasted (and edited) Coq code needed per
instantiation, and 390 lines of Coq programming for the generic semantics
of accurate floating-point parsing and printing.

5

https://coq.inria.fr/doc/v8.17/refman/user-extensions/syntax-extensions.html#number-notations
https://coq.inria.fr/doc/v8.17/refman/user-extensions/syntax-extensions.html#number-notations

CPP ’24, January 15–16, 2024, London, UK Andrew W. Appel and Ariel E. Kellison

It is well known that printing floating-point numbers ac-
curately and concisely is nontrivial [14]. There are four kinds
of solutions:

1. Incorrect (in some cases, print a number that does not
read back as the same number).

2. Correct but unrounded, i.e. print 0.15 as 1.49999996e-1
which reads back correctly but does not look nice.

3. Correct and concise by validation, i.e., print 0.15 as 0.15
or 1.5e-1 by trying twice (rounding down, rounding
up), and then checking in which case the rounding
was done correctly. This is the method we use.

4. Correct and concise by construction, i.e., sophisticated
algorithms that get it right without needing to validate.

In programming languages without arbitrary-precision inte-
gers, all of this is more difficult, but in Coq we have the Z
type that simplifies some issues.

5 Reification
To represent in a logic a function analyzing logical formulas
of type 𝜏 , one cannot write a function with type 𝜏 → Prop;
one must operate on syntactic representations of formulas,
such as our expr type. One can then define in the logic a reflect
function of type expr → 𝜏 . The opposite process, reification,
cannot be donewithin the logic. But we can (and do) program
a reify function from 𝜏 to expr in the tactic language of the
Coq proof assistant. One cannot prove reify correct, but we
obtain a per-instance guarantee for each 𝑓 : 𝜏 by checking
that reflect(reify(𝑓)) = 𝑓 . This is proof by reflection [8, Ch.
16].

Reification is not a new concept, nor is the use of a tactic-
based program to implement it. Where we innovate, com-
pared to previous reifiers and compared to VCFloat1, is in
the handling of annotations that seem to make no semantic
difference—when reflected in the standard way—but become
embodied in the reified term (abstract-syntax tree) so as to
guide the proof of a theorem.

VCFloat1’s inner workings are explained in Sections 3 and
4 of Ramananandro et al. [40]. First the term is reified into
syntax trees. Our Listing 1 is similar to Ramananandro et al.’s
[40] Figure 1, except that: The InvShift form of rounded_unop
is new in VCFloat2; see §7. The Func form of expr is new; see
§12. The notion of collection and the predicate is_standard are
new; see §13.

VCFloat1 did not reify from Coq formulas; instead it trans-
lated C statements into expr terms by first parsing the C using
CompCert’s front end, then translating CompCert ASTs [30]
into exprs. In VCFloat2 we reify from Coq formulas, not di-
rectly from C programs, even though we too are sometimes
interested in proving the correctness of C programs. We reify
from a functional model (such as the step function shown
earlier), for several reasons:

Inductive rounded_binop: Type := PLUS | MINUS | MULT | DIV.
Inductive rounding_knowledge: Type := Normal | Denormal.
Inductive binop: Type :=
| Rounded2 (op: rounded_binop)

(knowl: option rounding_knowledge)
| SterbenzMinus
| PlusZero (minus: bool) (zero_left: bool).

Inductive rounded_unop: Type :=
SQRT | InvShift (pow: positive) (ltr: bool).

Inductive exact_unop: Type := Abs|Opp|Shift(pow:N)(ltr: bool).

Inductive unop: Type :=
| Rounded1 (op: rounded_unop) (knowl:
option rounding_knowledge)
| Exact1 (o: exact_unop)
| CastTo (ty: type) (knowl: option rounding_knowledge).

Inductive expr `{coll: collection} (ty: type) : Type :=
| Const (STD:is_standard ty) (f: binary_float(fprec ty)(femax ty))
| Var (IN: incollection ty) (i: V)
| Binop (STD: is_standard ty) (b: binop) (e1 e2: expr ty)
| Unop (STD: is_standard ty) (u: unop) (e1: expr ty)
| Cast (fromty: type) (STDto: is_standard ty)

(STDfrom: is_standard fromty)
(knowl: option rounding_knowledge) (e1: expr fromty)

| Func (f: floatfunc_package ty) (args: klist expr (ff_args f)).

Listing 1. Syntax of reified expressions.

• The functional model is an important artifact in its
own right. It will be the subject of significant analysis,
not only for floating-point round-off but for the func-
tion it calculates on the real numbers. We don’t only
want to prove that the C program accurately approxi-
mates some real-valued discrete algorithm, we want to
prove that the real-valued algorithm accurately approx-
imates the high-level goal, some real-valued function
or relation. For that, we want a stable, cleanly writ-
ten, human-readable functional model, not something
automatically reified from a C program.

• The user of VCFloat might not be programming in C.
• Our functional modeling language (and VCFloat) can
work at any floating-point precision, but CompCert C
only defines 32-bit single precision and 64-bit double
precision.

Our reifier is written in Coq’s tactic language. Except for
its treatment of annotations, it is fairly conventional. A few
clauses are illustrated in Listing 2.

These four clauses reify differently annotated subtractions.
Since Norm, Denorm, and Sterbenz are all identity functions,
a program in Coq logic’s core calculus could not distinguish
them. But the tactic language can. In the Binop tree-node that
it builds, different “rounding knowledge” is encoded into the
syntax tree.

6

VCFloat2: Floating-Point Error Analysis in Coq CPP ’24, January 15–16, 2024, London, UK

Ltac reify_float_expr E :=
match E with
| BMINUS _ ?a ?b⇒

let a' := reify_float_expr a in let b' := reify_float_expr b
in constr:(Binop (Rounded2 MINUS None) a' b')

| Norm (BMINUS _ ?a ?b)⇒
let a' := reify_float_expr a in let b' := reify_float_expr b
in constr:(Binop (Rounded2 MINUS (Some Normal)) a' b')

| Denorm (BMINUS _ ?a ?b)⇒
let a' := reify_float_expr a in let b' := reify_float_expr b
in constr:(Binop (Rounded2 MINUS (Some Denormal)) a' b')

| Sterbenz (BMINUS _ ?a ?b)⇒
let a' := reify_float_expr a in let b' := reify_float_expr b
in constr:(Binop SterbenzMinus a' b')

| . . .

Listing 2. Select clauses of the reifier.

6 The core of VCFloat
VCFloat’s core algorithm is called rndval_with_cond: “com-
pute rounded value with verification conditions.” (In their
paper [40, §4] it’s called R.)
rndval_with_cond: expr→ rexpr ∗ shiftmap ∗ list (environ→ Prop).

In VCFloat2 we repackage it into a more user-friendly
form, wrapping it with appropriate corollaries and adding
automation tactics to help discharge the verification condi-
tions. Suppose the user’s formula is

(𝑥 + 1
32

𝑣 + 1
2
1
32

1
32

(3 − 𝑥))

which we reify into an expression 𝑒 : expr (in the datatype
of reified expressions, Listing 1). Then rndval_with_cond(𝑒)
produces results (𝑟,𝑚, vcs):

𝑟 : rexpr is a (reified) expression containing epsilons and
deltas indexed by natural numbers, such as appears in
the left-hand-side below the line at Point C (although
there it appears in its reflected, not reified, form).

𝑚 : shiftmap is a map from those natural numbers to
bounds-descriptors, sufficient to describe the bounds
for 𝛿𝑖 and 𝜖 𝑗 above the line at Point C.

vcs : list(environ → Prop) is a list of verification condi-
tions, such as the one that appears (reflected, below
the line) at Point B.

VCFloat’s soundness theorem, rndval_with_cond_correct, is
a machine-checked proof in Coq. It is presented as Theorem
3 by Ramananandro et al. [40]. Basically, it says that

• for any valmap 𝜌 mapping reified variables (such as
_x and _v in our example) to floating-point numbers,

• if each of the verification conditions vcs holds in envi-
ronment 𝜌 ,

• then there exists an error-map 𝜎 from 𝛿𝜖 indexes (nat-
ural numbers) to R,

• such that every 𝛿 and 𝜖 (interpreted in 𝜎) respects the
bound in𝑚,

• and the floating-point evaluation (in 𝜌) of 𝑒 is finite
(not an infinity or NaN),

• and the real-number interpretation of 𝑟 (using 𝜌 and
𝜎) is exactly equal to the floating-point evaluation of
𝑒 (in 𝜌).

VCFloat2’s prove_roundoff_bound tactic (at Point A) ex-
tends this soundness theorem to handle user-supplied func-
tions and nonstandard float types. VCFloat2’s automation
then applies the theorem as part of an end-to-end machine-
checked proof in Coq about the floating-point round-off error
of the given formula.

7 Optimizations and inverse shifts
VCFloat1 included some theorems about transformations on
(reified) terms that would improve the analysis (for better
error bounds). In VCFloat2 we have integrated these trans-
formations so that they’re automatically applied; to do so,
we proved the necessary soundness corollaries. This is built
in to the prove_roundoff_bound tactic used at Point A.
For example, multiplication by a power of 2 is exact in

floating-point arithmetic, if the result stays finite. VCFloat’s
reified trees represent 64.0 · 𝑥 as Binop (Rounded2 MULT) 64 x,
and represent 26 · 𝑥 as Unop (Exact1 (Shift 6)) x. Both of these
“reflect” back to the same floating-point formula, but they
are treated differently in the analysis: MULT introduces 𝛿
and 𝜖 , but Shift does not. We also use other such optimizing
transformations such as constant-folding. The purpose is to
optimize the analysis, not optimize the program that runs.
The choice of what computation to actually run is specified
by the user, in writing the functional model.

InvShift. We also implemented a new optimizing trans-
formation: recognize division by powers of 2 (or multipli-
cation by powers of 1/2). When 𝑥 · 2−𝑘 is a normal number,
then R(𝑥 · 2−𝑘) = R(𝑥) · 2−𝑘 exactly. When 𝑥 · 2−𝑘 is sub-
normal, then R(𝑥 · 2−𝑘) = R(𝑥) · 2−𝑘 + 𝜖 , for |𝜖 | ≤ 2−𝐸 .
We exploit this in VCFloat2’s reified tree language with
the InvShift operator. For example, our optimizer replaces
Binop (Rounded2 DIV) 𝑥 64 with Unop (Rounded1 (InvShift 6)) 𝑥
so that rndval_with_cond introduces the appropriate 𝜖 with
its bound.6

6At present our specification of the InvShift optimization replaces, for
example, 𝑎/8 with 𝑎 × 2−3. These compute the same except that if 𝑎 is a
Not-a-Number (NaN) then the NaN-payloads of the two results may differ.
We soundly account for this, in our proof, with an equivalence relation.
Unfortunately, that clashes with a different feature of IEEE floating point:
the behavior of fused multiply-add when one argument is negative zero.
We have identified a solution to this problem, which is to model InvShift
differently: replace 𝑎/8 with 𝑎/23. This will simplify many things, since we
won’t need the equivalence relation, and will permit the specification of
fused multiply-add. We leave this for near-future work.

7

CPP ’24, January 15–16, 2024, London, UK Andrew W. Appel and Ariel E. Kellison

8 An efficient simplifier for interval goals
The Interval package [13, §4.2] is a procedure in Coq for
proving goals of the form,

𝑙1 ≤ 𝑥1 ≤ ℎ1 𝑙2 ≤ 𝑥2 ≤ ℎ2 . . . 𝑙𝑛 ≤ 𝑥𝑛 ≤ ℎ𝑛

𝑙0 ≤ 𝐸 ≤ ℎ0

where all the 𝑙𝑖 and ℎ𝑖 are constants, the 𝑥𝑖 are real-valued
variables, and 𝐸 is a real-valued expression over the variables.
Any of the inequalities may be strict (<) rather than non-
strict (≤), some of the inequalities may be missing, there may
be several redundant constraints over any given 𝑥𝑖 , and any
of the inequalities may be expressed as |𝑥𝑖 | ≤ ℎ𝑖 . The 𝑙0 and
ℎ0 may be left unspecified, in which case Interval reports the
best bounds that it can prove.

Interval uses floating-point interval arithmetic, being care-
ful with floating-point rounding modes (round down on one
side, up on the other). But that alone would provide very
weak bounds, so Interval also uses higher-precision (syn-
thetic) floating point, interval bisection, Taylor expansions,
and automatic differentiation.

At Point C, just after prove_roundoff_bound2, the proof goal
is in the form accepted by the Interval package. Unfortu-
nately, Interval doesn’t do a very good job on that goal.
Multivariate Taylor expansion would work quite well [42],
but Interval uses only univariate Taylor series.
The Interval mode that can work on our problem is (re-

peated) bisection of the interval. But even then, the nested
expressions with deltas and epsilons are obstacles to good
approximations. In particular, at Point C in Section 3 there is
the formula (𝑥 + . . .) (1+𝛿2) − (𝑥 + . . .), and subtracting 𝑥 −𝑥
using interval arithmetic leads to a severe over-estimation.
We found that it helps to use Coq’s field_simplify tactic

before calling Interval; this would turn the (Point C) goal
𝑙0 ≤ 𝐸 ≤ ℎ0 into,

| (−𝑥𝛿1𝛿2 − 𝑥𝛿1 + 2047𝑥𝛿2 + 64𝑣𝛿1𝛿2 + 64𝑣𝛿1 + 64𝑣𝛿2
+64𝜖1𝛿1𝛿2 + 64𝜖1𝛿1 + 64𝜖1𝛿2 + 64𝜖1 + 3𝛿1𝛿2 + 3𝛿1
+64𝜖3𝛿2 + 64𝜖3 + 2048𝜖0𝛿2 + 2048𝜖0 + 3𝛿2)/2048| ≤ 1

4,000,000

The two terms 𝑥 and −𝑥 have been symbolically canceled,
which reduces the dependency effect in a subsequent interval
analysis. On this new goal, the Interval tactic computes an
excellent bound.
Repeatedly applying the distributive law to this multino-

mial has caused an exponential blow-up in the number of
terms. For this small expression, “exponential” means only 17
terms, but if we apply VCFloat1 tomore substantial examples,
Coq runs out of memory.

The dependency effect. In interval arithmetic, expres-
sions containing multiple occurrences of the same variable
suffer from the dependency effect: rather than taking on a
single value, each occurrence of the same variable represents
a range of values, and the basic arithmetic operations assume
the ranges of operands are independent [37, §1.3.5]. When

interval arithmetic is used naively to bound the round-off
error in floating-point computations, the dependency effect
leads to a substantial over-estimation of the error. The simple
example of |𝑥 − 𝑥 | suffices as a demonstration of the effect:
if 𝑥 lies in the interval [0, 2], then evaluating the expression
in interval arithmetic without symbolic cancellation yields a
worst-case error bound of 2.

A fast ring simplifier. We implemented a high-perfor-
mance special-purpose simplifier, to clean up queries before
asking Interval to solve them. It it creates much smaller
formulas than does field_simplify. It works well for formulas
that can (mostly) be described as multinomials. We expand
the multinomial into sum-of-products form, then soundly
and efficiently cancel terms while reducing the exponential
blow-up in the number of terms.
A real-life numerical analyst might perhaps discard the

higher-order terms, those in which more than one 𝛿 or 𝜖
are multiplied together. Another real-life alternative is to
ignore the issue of underflow (denormalized numbers), in
which case all the 𝜖 are discarded. Both of those methods
work well most of the time. But neither one is sound; and we
want proofs of our bounds!

Therefore, we implemented (and proved correct in Coq) an
algorithm to efficiently and soundly simplify Interval goals:

Step 1: Apply limited ring simplification: the distributive
law, and multiplication by 1 and by 0, division by 1,
multiplication of constants together, limited simplifi-
cation of rational constants.

Step 2: Discard and bound the total of insignificant terms.
Step 3: Cancel terms using an efficent balanced-binary-

tree data structure.
The entire algorithm is implemented in Coq logic’s func-

tional programming language, which Coq can compile to
byte-code or machine-code.

Reification. A program in Coq’s logic must be applied
to a reified term—an abstract-syntax tree—not to a “native”
proof goal. For this component, we chose to use the reified-
tree syntax from the Interval package, rather than VCFloat’s
own. This is because (1) our interval-goal simplifier should
be usable by any user of the Interval package, not only in
connection with VCFloat; and (2) we have no need of the
“rounding knowledge” of VCFloat’s tree syntax.

The distributive law. Step 1 of the algorithm doesn’t
need much explanation: it works in one pass over the tree
with a recursive function.

Discarding negligible terms. Step 2, soundly discarding
insignificant terms, works as follows. One might think, “let’s
discard any higher-order term, i.e., containing the product
of two or more 𝛿 and 𝜖 .” But some of those terms might be
multiplied by very large coefficients or user-variables; and
on the other hand, some terms containing only a single 𝛿

8

VCFloat2: Floating-Point Error Analysis in Coq CPP ’24, January 15–16, 2024, London, UK

or 𝜖 might be multiplied by tiny numbers and therefore be
insignificant.

We will take advantage of the fact that bounds are known
for every variable, both the original variables (𝑥, 𝑣) and the 𝛿
and 𝜖 variables. So in a sum-of-products expression (resulting
from limited ring simplification), we can bound every term.
(Terms containing functions that we cannot bound in closed
form, we handle as described below.)
The user supplies a cutoff such as 2−30 or 2−60 or what-

ever is appropriate. We preprocess all of the (already reified)
bounds hypotheses (for variables 𝑥, 𝑣, 𝛿1, 𝜖2, etc.) into a single
absolute-value bound for each variable: |𝑥𝑖 | ≤ ℎ𝑖 .
Then for each term 𝑥𝑖𝑥 𝑗𝑥𝑘 we can look up the (reified)

bound hypotheses to find a bound ℎ𝑖ℎ 𝑗ℎ𝑘 on the absolute
value of the term. To “delete” 𝑥𝑖𝑥 𝑗𝑥𝑘 we replace it by the con-
stant ℎ𝑖ℎ 𝑗ℎ𝑘 . We accumulate all those constants to produce
the transformed goal,

|𝑥 + 𝑥𝛿2 + 1
32𝑣 +

1
32𝑣𝛿1 +

3
2048 −

1
2048𝑥 + 1

32𝑣𝛿2

− (𝑥 + 1
32𝑣 +

3
2048 −

1
2048𝑥) | ≤ 1

4,000,000 − 4.0745386 · 10−10.

Here, the term 4.0745386 · 10−10 is the sum of bounds of the
deleted terms. This goal implies the original goal, from Point
C in Section 3.
The algorithm for deleting insignificant terms might en-

counter some terms whose bounds it cannot analyze because
the terms are not simply products of variables and constants.
Such “residual” terms it leaves unchanged.

Gathering similar terms and cancelling subtractions.
At this point some terms could cancel (by subtraction). Step
3 cancels terms, efficiently, in the already-reified trees. We
have a tree of additions of terms. Each term is either a product
of constants and variables, or contains other operators; in
the latter case we leave that term alone (as a residual term)
and don’t attempt to cancel it. An example of a (potentially)
cancelable term is, 𝑐1𝑥1𝛿1𝜖2𝑥1𝑐2𝑥2, where 𝑐1, 𝑐2 are rational
constants, and 𝑥1, 𝑥2, 𝛿1, 𝜖2 are variables.
In our reified tree syntax, all variables are represented

by natural numbers. So we can represent any product of
(nonnegative integer) powers of these variables 𝑥𝑘00 𝑥

𝑘1
1 𝑥

𝑘2
2 by

a list of natural numbers [𝑘0, 𝑘1, 𝑘2]. The product of all the
constants can be represented as a canonical-form rational
number. For efficiency, we factor out all the powers of 2
from the numerator and denominator into a separate factor
2𝑒 , where 𝑒 may be positive, negative, or zero. That is, the
canonical form of a (nonresidual) term is,

−→
𝑘 · (±𝑛)/𝑑 · 2𝑒 ,

where where
−→
𝑘 is a list of natural numbers representing the

polynomial 𝑥𝑘00 𝑥
𝑘1
1 𝑥

𝑘2
2 . . ., 𝑛 is an odd integer (or zero), 𝑑 is

an odd positive number, gcd(𝑛,𝑑) = 1, and 𝑒 is an integer.
Wemaintain a balanced binary search tree indexed by keys

−→
𝑘 . At each key

−→
𝑘 we have a list of coefficients, each of the

form (±𝑛)/𝑑 · 2𝑒 . In walking the expression-tree, whenever
we find

−→
𝑘 · (±𝑛)/𝑑 · 2𝑒 we look up 𝑘 , and traverse the list:

if we find the negation of (±𝑛)/𝑑 · 2𝑒 we delete it from the
list, otherwise we cons (±𝑛)/𝑑 · 2𝑒 to the front of the list;
then reinsert at key 𝑘 . Meanwhile, we replace that term in
the expression-tree with 0. What remains is:

• an expression-tree with residual terms that could not
be represented in canonical form, and zeros where
terms have been removed from the tree and added to
the key-value map;

• a key-value map: for each key
−→
𝑘 a list of coefficients

each of the form 𝑛
𝑑
· 2𝑒 .

After the key-value map is built, for each 𝑘 mapped to a list
of coefficients, we add all the coefficients together, as follows:
we normalize all the elements to have the same exponent 𝑒
(so that it is no longer true that every 𝑛 and 𝑑 is odd), then
add all the rational numbers, to collapse the list into a single
coefficient.
We convert each key-value pair back into an expression

𝑥
𝑘0
0 𝑥

𝑘1
1 𝑥

𝑘2
2 . . . 𝑥

𝑘𝑛
𝑛 (±𝑛)/𝑑 · 2𝑒 , and build a final expression tree

with their sum, plus the residual terms previously accumu-
lated. The result is shown at Point D.

Efficiency of the algorithm. Step 1 of the algorithm (dis-
tributive law) takes exponential time. Step 2 takes linear time
and space (in the exponentially sized term produced by step
1). Step 3 takes 𝑁 log𝑁 time and linear space (and tends to
reduce the term back to small size).7
We tested this algorithm on a large expression that re-

sulted from calculating position-change and momentum-
change of a harmonic oscillator and then taking the sum of
squares of position and momentum.

• The original expression-tree (Point C) had 242 nodes
(constants, variables, operators).

• After step 1 (distributive law) there were 612,284 nodes,
or 31,759 multinomial terms.

• After step 2 (delete insignificant terms) there were 1456
nodes, 244 terms.

• After step 3 (cancel) there were 219 nodes, 24 terms.
On this large expression with cutoff 2−30, the entire algo-

rithm runs in Coq in 1.8 seconds.8 One might think, “sim-
plifying 242 nodes into 219 nodes is not much of an accom-
plishment.” But it is quite significant: the final expression
has canceled the 𝑥 − 𝑥 and 𝑣 − 𝑣 that caused Interval to give
horribly loose bounds.

7Since variables (𝑥, 𝛿, 𝜖) are represented by natural numbers in unary, all
these numbers must be multiplied by the number of variables. Using a
binary representation would reduce this to a logarithmic factor.
81.177 to 1.189 seconds using vm_compute on a MacBook Pro M2 laptop
in Coq 8.17.1. It would probably be faster using native_compute. With
cutoff 2−53 it takes 1.3 seconds. Smaller cutoffs are unlikely to be useful, but
even so: cutoff 2−100 takes 3.4 seconds; 2−120 takes 7.4s; 2−140 takes 13.8s,
2−200 takes 36.4s. Coq’s ring_simplify takes 3.365 seconds but cannot treat
the divide operations; field_simplify takes 6.956 seconds; but in either
case, Coq’s stack overflows pretty-printing the result because there are so
many terms.

9

CPP ’24, January 15–16, 2024, London, UK Andrew W. Appel and Ariel E. Kellison

A more efficient algorithm. It should be possible to dis-
card negligible terms interleaved with the distributive law,
so that the exponential blow-up in step 1 never occurs. To do
so, one would first walk over the tree bounding the absolute
value of every subexpression (using the bounds hypotheses).
A second pass would walk the tree, such that in the context
𝐴 ∗ 𝐵, while processing 𝐵 one would adjust the cutoff by the
bound for𝐴. We may implement this algorithm in the future.
For now, the algorithm we have seems fast enough.

Floating-point interval arithmetic. In this section we
have described analyses on real-valued formulas that con-
tain integer and floating-point constants. Since one cannot
efficiently compute on the real numbers, we perform our
analyses in floating-point. Because the analyses must be
sound even in the presence of round-off error, we compute
in floating-point interval arithmetic, as provided by the Coq
Interval package.

9 Soundness theorem for simplification
The algorithm described in the last section is proved correct
in Coq, so applications of it are correct by reflection.
We use the Interval package’s reify function to turn the

user’s functional model into a tree-term e of type expr. As
usual in Coq, reify is written as a tactic program in the Ltac
language, and we validate each reification by reflecting (see
§5¶1).

The user chooses a (small, floating-point) cutoff value, and
VCFloat2’s tactic applies the following function:
Definition simplify_and_prune hyps e cutoff :=
(∗ Step 1 ∗) let e1 := ring_simp e in
(∗ Step 2 ∗) let '(e2,slop) := prune (map b_hyps hyps) e1 cutoff in
(∗ Step 3 ∗) let e3 := cancel_terms e2 in (e3, slop).

The function simplify_and_prune embodies the three-part
algorithm described in Section 8. Before stating the correct-
ness theorem for simplify_and_prune, we must define the no-
tion of equivalently evaluating expressions:
Inductive expr := ... (∗ from the Interval package ∗)
Definition environment := list R. (∗ map variables,

represented as N, to values ∗)
Definition eval : expr→ environment → R :=

... (∗ from the Interval package ∗)
Definition expr_equiv (a b: expr) : Prop :=

∀ env, eval a env = eval b env.
Infix "==" := expr_equiv (at level 70, no associativity).

The correctness theorems for ring_simp and cancel_terms is
that they exactly preserve evaluation, in any environment.
Lemma ring_simp_correct: ∀ e, ring_simp e == e.
Lemma cancel_terms_correct: ∀ e, cancel_terms e == e.

The specification of prune is a bit more complicated, and
therefore so is the specification of simplify_and_prune, shown
in Listing 3. It says, suppose you wish to prove that |𝑒 | ≤ 𝑟

Lemma simplify_and_prune_correct:
∀hyps 𝑒 cutoff 𝑒1 𝑠 ,
simplify_and_prune hyps e cutoff = (𝑒1, 𝑠) →
F.real 𝑠 = true→
∀ (vars: list R) (𝑟 : R),
length hyps = length vars→
eval_hyps hyps vars (Rabs (eval 𝑒1 vars) ≤ 𝑟 − R(𝑠))→
eval_hyps hyps vars (Rabs (eval 𝑒 vars) ≤ 𝑟).

Listing 3. The specification of simplify_and_prune.

with bounds-hypotheses hyps and variables vars that satisfy
hyps. Suppose also that simplify_and_prune gives you a sim-
plified expression 𝑒1, and that the total of all deleted terms
is bounded by 𝑠 . Then it suffices to prove |𝑒1 | ≤ 𝑟 − 𝑠 .
For example, if there are ≤ 1010 terms to delete and a

cutoff of 10−8 is specified, then it is inconceivable that 𝑠 will
overflow, since 1010−8 is representable in double-precision.
But just in case, hypothesis F.real 𝑠 = true tests for overflow.

10 Decomposition tactic
VCFloat2 produces an optimized expression for the abso-
lute error |𝑦 − 𝑦 | between the value 𝑦 resulting from the
floating-point evaluation of an expression and the value 𝑦
resulting from the evaluation of the same expression over
the real numbers. For polynomial expressions, the simpli-
fier described in Section 8 transforms the top-level interval
goal |𝑦 − 𝑦 | ≤ bound into a goal that the Interval tactic is
more likely to prove a tight bound on. More generally, for
rational expressions, the simplifier can be applied effectively
to smaller subgoals that are generated by decomposing the
top-level interval goal using some heuristics that reduce the
dependency effect in the interval analysis.
The decomposition is packaged into a tactic in VCFloat2

called error_rewrites. It works by recursively approximating
the left-hand side of interval goals for the absolute error.
First, distributive and associative laws are applied at the
top-level to the 𝜖 and 𝛿 error variables inserted by VCFloat
as described in Section 2; for example, goals with left-hand
sides of the form | (�̃�/𝑣) (1 + 𝛿) + 𝜖 − 𝑢/𝑣 | are rewritten as
| (�̃� (1 + 𝛿))/𝑣 − 𝑢/𝑣 + 𝜖 |. Then, the resulting left-hand side is
recursively approximated using the triangle inequality (for
𝜖 terms) and the following inequalities, the first of which is
particularly important for rational expressions.�����̃�𝑣 − 𝑢

𝑣

���� ≤ (
|�̃� − 𝑢 | + |𝑣 − 𝑣 | ·

����1𝑣 ���� · |𝑢 |) ·
�����(1 + 𝑣 − 𝑣

𝑣

)−1����� · ����1𝑣 ����
|�̃� · 𝑣 − 𝑢 · 𝑣 | ≤ |�̃� − 𝑢 | · |𝑣 | + |𝑣 − 𝑣 | · |𝑢 | + |�̃� − 𝑢 | · |𝑣 − 𝑣 |
| (�̃� + 𝑣) − (𝑢 + 𝑣) | ≤ |�̃� − 𝑢 | + |𝑣 − 𝑣 |
| (�̃� − 𝑣) − (𝑢 − 𝑣) | ≤ |�̃� − 𝑢 | + |𝑣 − 𝑣 |.
Each of the above inequalities corresponds to a transforma-
tion used in Gappa, as described by Boldo andMelquiond [13,
§4.3.2.2]. The decomposition tactic in VCFloat2 treats each

10

VCFloat2: Floating-Point Error Analysis in Coq CPP ’24, January 15–16, 2024, London, UK

subexpression in the right-hand side of the above inequalities
as a separate interval goal, and each of these smaller interval
goals generally contains fewer terms that suffer from the
dependency effect than the original.

11 Proving C programs
The Verified Software Toolchain is a Coq library for prov-
ing the correctness of C programs with respect to specifi-
cations written in Coq’s logic. Its specification language is
higher-order separation logic with propositions that can use
all of Coq’s logic. Therefore its specification language and
proof system is much more expressive than such systems
as Dafny [29], Verifast [24], Frama-C [28]. Furthermore, be-
cause it is embedded in Coq, one can compose, entirely within
Coq, a VST proof that a C program correctly implements a
functional model, with a Coq proof that a functional model
correctly implements some high-level specification [26].

VST includes a full treatment of C language floating point,
using the Flocq model of the IEEE 754 standard. In VST
one can (fairly easily) prove that a C program implements
a floating-point functional model [4, 26, 27, 43]. But VST
provides no help in reasoning about the functional model.
That is what VCFloat2 can do.

VST describes float operations using CompCert’s thin
layer of definitions over Flocq’s description of IEEE 754
single-precision and double-precision. VCFloat2’s functional
modeling language uses a different thin layer over the same
Flocq types. VCFloat2’s compatibility library FPCompCert
bridges the small gap.

Fast-math, or not? Some compilers do “fast math” opti-
mizations that change the semantics of floating-point opera-
tions; for example, combining 𝑎 ×𝑏 + 𝑐 into a fused multiply-
add (fma) which omits an internal rounding step. CompCert
does not do any transformations that alter floating-point se-
mantics. The CakeML verified ML compiler does [6], and its
authors “argue that any compiler correctness result for fast-
math optimizations should appeal to a real-valued semantics
rather than the rigid IEEE 754 floating-point numbers.” That
argument is sound, but should a compiler perform such trans-
formations? We suggest no, because it greatly complicates
the specification to be proved about the low-level program.
Our approach, as explained in this paper, is to prove (with
VST or similar tools) that the low-level program exactly im-
plements a floating-point functional model. That proof treats
floating-point operations as uninterpreted functions, and
does not even mention the real numbers. When we want
fused multiply-add, we write it that way in the functional
model, and in the C program, using VCFloat2’s new mecha-
nism that we will describe in the next section.

12 User-supplied functions
VCFloat2 allows the user to provide and use arbitrary func-
tions (e.g., sin, cos). The user must provide proofs (or axioms)

of their rounding behavior. Then VCFloat2 will compute and
prove round-off error bounds for formulas containing calls
to these functions (along with standard operators +,−,×,÷,
etc.). This is done by extending the reified expr syntax and
extending the rndval_with_cond theorem to accommodate
user-supplied functions.

Any function that takes 0 ormore float arguments (not nec-
essarily all of the same type) and produces a float result can
be used in VCFloat2. The user provides a floatfunc_package
to describe its characteristics:

Record floatfunc (args: list type) (result: type)
(precond: klist bounds args)
(realfunc: function_type (map RR args) R) :=

{ff_func: function_type (map ftype' args) (ftype' result);
ff_rel: N;
ff_abs: N;
ff_acc: acc_prop args result ff_rel ff_abs

precond realfunc ff_func}.

Record floatfunc_package (ty: type) :=
{ff_args: list type;
ff_precond: klist bounds ff_args;
ff_realfunc: function_type (map RR ff_args) R;
ff_ff: floatfunc ff_args ty ff_precond ff_realfunc}.

Suppose 𝑝 is floatfunc package, that is, 𝑝 : floatfunc_package(ty).
Then ff_args 𝑝 is a list of argument types, and ty is the re-
sult type. For example, suppose ff_args 𝑝 =[Tdouble,Tsingle]
and ty=Tsingle, then the function 𝑓 = ff_func(ff_ff 𝑝) has type
𝑓 : ftype Tdouble→ ftype Tsingle → ftype Tsingle, because
function_type (map ftype' (ff_args 𝑝)) (ftype' ty)
is convertible to ftype Tdouble→ ftype Tsingle → ftype Tsingle.
The specification of this function is as follows: There is

a real-valued function ff_realfunc(𝑝): R → R→ R; and ff_acc is
the theorem that 𝑓 approximates this functionwithin relative
error ff_rel 𝑝 and absolute error ff_abs 𝑝, provided that the
arguments to 𝑓 are within the bounds specified by ff_precond.

Calls to such functions are reified into the Func constructor
of the expr syntax (see §5).

Inductive klist (k : type → Type) : list type→ Type :=
| Knil : klist k []
| Kcons {ty tys} : k ty→ klist k tys→ klist k (ty :: tys).

Inductive expr `{coll: collection} (ty: type) : Type :=
| Const (STD: is_standard ty) (f: binary_float(fprec ty)(femax ty))
| Binop (STD: is_standard ty) (b: binop) (e1 e2: expr ty)
. . .

| Func (f: floatfunc_package ty) (args: klist expr (ff_args f)).

Unlike VCFloat1’s expr type, which was monotyped (in Coq)
but each constructor labeled the intended type of its float
values, VCFloat2’s expr is dependently typed: expr(𝑡) is the
type of reified expressions that would evaluate to float-values
of type ftype(𝑡).

11

CPP ’24, January 15–16, 2024, London, UK Andrew W. Appel and Ariel E. Kellison

Func is especially dependently typed, in that klist forms
a list of argument subexpressions each with a (potentially)
different type, according to the list of types that is ff_args(f).
The klist type constructor is for heterogeneous lists [16, §9.2].

From any given floatfunc_package (with its ff_acc theorem),
VCFloat2 derives both the evaluation semantics and the
(provable) rounding error of calls to these external functions.

VSTlib [3] is a Coq library for use in VST-verified C pro-
grams, with proofs or axiomatizations of the specifications of
C libraries such asmalloc/free, threads, and locks. VSTlib also
provides an axiomatization of the GNU math library, includ-
ing 58 standard Posix math functions such as sin, cos, fma
(fused multiply-add), and so on. Each of these is specified to
provide a certain level of floating-point accuracy on each spe-
cific target architecture as documented in the GNU C library
manual [22]. Different architecture-specific implementations
of the math library have been measured to have different
accuracy guarantees. So if you install VST with target archi-
tecture AArch64, then you’ll get a single-precision arctan-
gent function accurate within 1.5 ulp (unit in last place), but
on VST configured for x86-32 it’ll be specified as accurate to
0.5 ulp. Accuracy specifications for floating-point functions
are written using VCFloat2’s floatfunc_package framework,
as described earlier in this section.

13 Nonstandard floating-point-like types
Users may implement in software floating-point types that
do not correspond exactly to any IEEE 754 format but that
can be shown to respect round-off error bounds. VCFloat2
supports such user-defined types.
Consider the example of double-double [20]. A double-

double number can be used to represent a floating-point
number with at least 106 bits of mantissa using two double-
precision floats whose 53-bit mantissas do not overlap (be-
cause their exponents differ by at least 53). One can add or
multiply numbers in this data type using just a few ordinary
double-precision operations, especially on machines that
support fused multiply-add (fma).
Rounding double-double can be shown to be follow a

model with relative error |𝛿 | ≤ 2−106 and absolute error |𝜖 | ≤
2−1022. If the user can prove such a property of an abstract
number type (of which double-double is just one example),
then they can build a nonstdtype record in VCFloat2:

Record nonstdtype
(fprec: Z) (femax: Z) (prec_range: 1 < fprec < femax) :=

NONSTD
{ nonstd_rep: Type;
nonstd_to_F: nonstd_rep→ option (float radix2);
. . . (∗ some fields omitted ∗) . . .
nonstd_bounds: ∀ x: nonstd_rep,

(− (bpow radix2 femax − bpow radix2 (femax − fprec)) <=
floatopt_to_real (nonstd_to_F x) <=
bpow radix2 femax − bpow radix2 (femax − fprec))%R }.

Here, nonstd_bounds is the user-supplied proof of such a
rounding theorem, nonstd_to_F is the user-supplied defini-
tion of a function that maps nonstandard types to a floating-
point representation, and floatopt_to_real is a function pro-
vided by VCFloat2 that maps a floating-point representation
to a real number.

After building a nonstdtype record, the GTYPE constructor
is used to build a new VCFloat2 type. Expressions in which
some functions return values of this type and other functions
take values of this type can now be reified, and VCFloat2 will
automatically calculate and prove round-off error bounds.

In order to write such expressions, users of VCFloat2 must
first define operations on the newly defined type. This is done
by constructing a floatfunc record (whose type was presented
in Section 12).

Standard vs. nonstandard types. One might wonder
what is special about a “standard” type, that it cannot be
just an instance of the general notion of nonstandard type.
A standard type must support all the operations listed in
Listing 1; nonstandard types support only whatever func-
tions someone has supplied. The notion of an arbitrary “cast”
from any IEEE precision to any other cannot be generically
supported, and (for example) some nonstandard types do not
support Sterbenz subtraction, or constant literals.

14 Double-doubles in VCFloat2
To demonstrate nonstandard types and the definition of a
floatfunc over a nonstandard type, we use double-double.
We instantiate a nonstdtype whose nonstd_rep is

{ a: ftype Tdouble ∗ ftype Tdouble | dd_pred a}

where ddpred is a predicate describing a well-formed double-
double. Based on this representation, we prove the required
properties of a nonstdtype, such as nonstd_bounds.
As an example of a nonstandard operation on double-

doubles constructed using a floatfunc, we use the operation
DWPlusFP, shown in Listing 4, summing a double-double
number and a double-precision IEEE 754 floating-point num-
ber. That is,

• we state the real-valued functionalmodel as real-number
addition;

• we define the floating-point valued functional model
as the DWplusFP algorithm;

• we state its accuracy parameters (relative and absolute
error corresponding to a hypothetical IEEE 754 type
with 106-bit mantissa);

• and we prove the accprop, the accuracy property that
relates the two models up to the stated accuracy. We
adaptMuller and Rideau’s Coq formalization of double-
word arithmetic [36], extended to consider overflow
and underflow.

We implemented the function in C, shown in Listing 5,
and used VST to prove that it implements the floating-point

12

VCFloat2: Floating-Point Error Analysis in Coq CPP ’24, January 15–16, 2024, London, UK

Table 1. Round-off error bounds for Gappa, PRECiSA, FPTaylor, and VCFloat2. The column labeled “Ratio” compares VCFloat2’s
error bound to the best performer (smaller is better). “Time” is shown as the sum x+y of the execution times (in seconds on a
MacBook Pro M2) for Coq to (x) calculate and prove the error bound and (y) check the proof using the Qed command. “Vars”
and “Ops” are the number of variables and operations in the formulas. Remarks: (a) uses our fast ring simplifier discarding
negligible terms (b) uses our decomposition tactic (c) uses field_simplify (d) would benefit from let-bindings (future work)
(–) no special preparation of the interval goal.

Benchmark Gappa FPTaylor PRECiSA VCFloat2 Ratio Time Vars Ops Remarks
carbonGas 2.7e-08 9.2e-09 7.2e-09 2.5e-08 3.5 10+9 1 11 a,b,c
doppler1 2.1e-13 1.6e-13 2.0e-13 4.5e-13 2.8 14+1 8 3 a,b
doppler2 4.0e-13 2.9e-13 3.8e-13 1.2e-12 4.1 12+1 8 3 a,b
doppler3 1.1e-13 8.3e-14 1.1e-13 2.0e-13 2.4 6+1 8 3 a,b
himmilbeau 1.1e-12 1.4e-12 1.0e-12 2.3e-12 2.3 2+.5 2 14 a
jetEngine 8.3e06 1.4e-11 1.6e-11 2.1e3 1014 45+10 2 48 d
t_div_t1 1.0e03 5.8e-14 3.9e-15 4.4e-16 0.1 .7+.1 1 2 c
kepler0 1.3e-13 9.5e-14 1.1e-13 2.2e-13 2.3 2.5+.5 6 15 a
kepler1 5.4e-13 3.6e-13 3.9e-13 1.6e-12 4.6 6+2 4 24 a
kepler2 2.9e-12 2.0e-12 1.5e-12 6.2e-12 4.0 21+8 6 36 a
predprey 2.1e-16 1.9e-16 1.8e-16 3.1e-16 1.7 95+1 1 7 a,b,c
rigidBody1 3.0e-13 3.9e-13 3.0e-13 3.1e-13 1.0 1.5+.2 3 7 a
rigidBody2 3.7e-11 5.3e-11 3.6e-11 3.9e-11 1.1 4+1 3 14 a
verhulst 4.2e-16 3.3e-16 2.9e-16 2.3e-16 0.8 7+.3 1 4 –
turbine1 8.4e-14 2.4e-14 2.3e-14 7.9e-14 3.4 6+2 3 14 a,b,c
turbine2 1.3e-13 2.6e-14 3.1e-14 1.2e-13 4.6 5+1 3 10 a,b,c
turbine3 4.0e01 1.3e-14 1.7e-14 6.1e-14 4.7 7+2 3 14 a,b,c

Definition TwoSum (a b : ftype t) :=
let s := a+b in let a' := s−b in let b' := s− a' in let da := a−a' in
let db := b−b' in (a+b, da+db).

Definition Fast2Sum (a b : ftype t) :=
let s := a+b in let z := s−a in let t := b−z in (s, t).

Definition DWPlusFP (xh xl y : ftype t) :=
let (sh, sl) := TwoSum xh y in let v:= xl+sl in Fast2Sum sh v.

Listing 4. The DWPlusFP operation used in the construction
of a nonstandard operation on double-doubles in VCFloat2.

void dw_plus_fp(struct dword ∗st,struct dword ∗x, double y) {
double v; struct dword sh;
two_sum(&sh,x→ s,y);
v = x→ t + sh.t;
fast_2sum(st,sh.s,v);

}

Listing 5. The double-word plus a floating-point number
operation implemented in C.

functional model DWPlusFP. Now one can use DWPlusFP in
VCFloat2 as a user-defined function operating on a user-
defined type, and VCFloat2 can reason automatically about
round-off error of programs that call this function.

Testing Type equality during reification. In order to
reify such an expression, it’s necessary to test whether the
Type of a subexpression is equal the underlying representa-
tion Type of a nonstdtype (we capitalize Type to emphasize
that these are Coq types, not our type data structure). But
there is no decidable equality on Type. Since this test is be-
ing done by the reifier, which is implemented in the tactic
language, we can get by with the ability of tactics to test
exact identity (a stronger property than equality). But to do
this, the reifier needs a list of candidate Types to test against.
This we call a collection, and (before reifying anything) the
user must “register” any nonstandard type by including it in
a typeclass instance of class collection.

15 Related work and performance
evaluation

Several tools perform round-off error analysis and gener-
ate machine-checkable proofs: Gappa [9] is implemented in
C++ and generates Coq proof scripts; PRECiSA [34] is imple-
mented in Haskell and C and generates proofs in PVS; FPTay-
lor [42] is implemented in OCaml and can generate proofs
in HOL Light; Real2Float [32] is built on top of the NLCer-
tify [31] verification system and generates proof certificates
that can be checked in Coq, and Daisy [18] is implemented
in Scala and generates proofs in Coq and HOL4 [7].

13

CPP ’24, January 15–16, 2024, London, UK Andrew W. Appel and Ariel E. Kellison

In comparison to these other tools, VCFloat2’s formula
language is shallow-embedded expressions in the proof as-
sistant’s own logic, so not only can VCFloat2 generate proofs
(as Gappa, PRECiSA, and FPTaylor can), but it can operate
directly on inputs “from the logic.” Thus, VCFloat2 fits better
into an integrated error analysis and correctness verification
of a numerical program—of which floating-point round-off
is only one component. We want to connect to other proofs
(about program correctness, about discretization error, etc.)
done in a proof assistant for a higher-order logic.
We assessed VCFloat2 on several benchmarks from FP-

Bench [17] (see Table 1). We chose 17 benchmarks for which
there are previously reported results for FPTaylor, Gappa,
and PRECiSA. The column “Ratio” in Table 1 compares the
error bounds produced by VCFloat2 to the best performer
of PRECiSA, Gappa, and verified error bounds computed by
FPTaylor (FPTaylor-f) [42]. VCFloat2 finds bounds within an
order of magnitude of the best performer on 16 of the 17 prob-
lems. VCFloat2, like Gappa, fails to find a useful bound on
jetEngine. Notably, the error bounds computed by VCFloat2
for the doppler1-3 benchmarks are within the same order
of magnitude of those obtained by FPTaylor, but took an
average of 17 seconds each compared to an average of 37
minutes each (on a slower computer) for FPTaylor. Times for
verifying the certificates generated by Gappa and PRECiSA
were not reported.

On any benchmarkwithout a or b in the “remarks,” VCFloat1
would have gotten the same result, because (in these cases)
VCFloat2 is using only VCFloat1 functionality. On the other
benchmarks VCFloat1 would generally fail, unless the user
did substantial ad-hoc tactical proofs equivalent to our auto-
mated tactics corresponding to remarks a or b.

VCFloat2 fails on jetEngine because it is a proper rational
(not a multinomial) with a large number of operations (48
ops). VCFloat2’s Prune tactic (§8) does multinomial pruning
(where appropriate) and solves remaining subgoals using
the Coq Interval package, which can do either multivari-
able first-order interval arithmetic or single variable Taylor
models—but this formula is multivariate and not a multino-
mial. And the decomposition tactic provided by VCFloat2
works well on multivariate multinomials with a smaller num-
ber of operations (e.g., turbine1-3).
In each of the benchmarks we considered, all inputs are

assumed to be exactly representable floating-point numbers.
For modular verification efforts, where the round-off errors
produced by one function might propagate to the inputs of
another, it is particularly useful to be able to specify that
some inputs are not exact; while this is possible in PRECiSA,
Gappa, and FPTaylor, is not currently a feature of VCFloat2.
Finally, modularity via the separate treatment of the propa-
gation of input errors and the local introduction of round-off
errors has enabled the development of scalable tools for
rounding error analyses such as Hugo [1] and Satire [19];

this type of analysis has not yet been adopted in tools that
produce proof certificates.
For each FPBench benchmark in Table 1, the VCFloat2

functional model is a Coq function over double-precision
floats (ftype Tdouble). These functional models can therefore
make use of features of Coq’s core language, such as let-
binders for sharing common subexpressions. But the syntax
of reified terms (see Listing 1) does not support let-binders;
common subexpressions are expanded upon reification and
the resulting reified terms can be very large. This degrades
both the efficiency and the quality of the analysis. For ex-
ample, 𝑘 occurrences of a subexpression that produces a
single relative error term will cause VCFloat to introduce
𝑘 independent 𝛿 error variables. In contrast, FPTaylor and
PRECiSA maintain the dependence between round-off errors
generated by common subexpressions.
Precision-tuning tools like FPTuner [15] and Precimo-

nious [41] suggest, without proofs, which floating-point
operations in a program can be done at double, single, or
half-precision. The accuracy of these tuned programs could,
in principle, be proved by VCFloat2. Herbie [39] discovers
transformations of straight-line expressions that improve the
floating-point round-off error; Becker et al. [5] used Daisy
to produce sound upper bounds on the round-off error of
rewrites produced by Herbie.

16 Conclusion
VCFloat2 permits automatic round-off error analysis to be
done as part of a larger numerical analysis that treats al-
gorithm correctness, discretization analysis, and low-level
program correctness, all in the same general-purpose logic
and with end-to-end composable, machine-checked proofs.
For that purpose, it provides a language for writing floating-
point functional models that clearly and simply relate to real-
valued functional models. Below VCFloat2, VST (or other
another tool) can reason about C program correctness and
connect to VCFloat2’s functional models. Above VCFloat2,
tools for proofs in Coq about the properties of real-valued
functional models are an exciting area for future research.

Future work. There are several interesting directions for
future work: (1) Using multivariate Taylor models, perhaps
as a form of optimize_for_interval at Point C of our process
described in Section 3, would allow VCFloat2 to perform
error analysis similar to FPTaylor. (2) Including an entire
library of double-double operations in VCFloat2; we have
only included a single operation to demonstrate the capabil-
ity of our nonstandard-type mechanism. (3) Allowing input
variables to come with their own error bounds (instead of
being assumed exact) would give VCFloat2 modularity. (4) Al-
lowing let-binders in expressions, or automatically handling
common subexpressions, would improve overall accuracy
bounds and would improve efficiency by reducing the num-
ber of error variables.

14

VCFloat2: Floating-Point Error Analysis in Coq CPP ’24, January 15–16, 2024, London, UK

References
[1] Rosa Abbasi and Eva Darulova. 2023. Modular Optimization-Based

Roundoff Error Analysis of Floating-Point Programs. In Static Analysis,
Manuel V. Hermenegildo and José F. Morales (Eds.). Springer Nature
Switzerland, 41–64. https://doi.org/10.1007/978-3-031-44245-2_4

[2] AndrewW. Appel. 2011. Verified Software Toolchain. In ESOP’11: Euro-
pean Symposium on Programming, Gilles Barthe (Ed.). LNCS, Vol. 6602.
Springer, 1–17. https://doi.org/10.1007/978-3-642-19718-5_1

[3] Andrew W. Appel. 2023. VSTlib: Library Components for Verified C
Programs. In Coq Workshop 2023, Yves Bertot and Enrico Tassi (Eds.).
4 pages. https://coq-workshop.gitlab.io/2023/abstracts/coq2023_vstlib.
pdf

[4] Andrew W. Appel and Yves Bertot. 2020. C-language floating-point
proofs layered with VST and Flocq. Journal of Formalized Reasoning
13, 1 (Dec. 2020), 1–16. https://doi.org/10.6092/issn.1972-5787/11442

[5] Heiko Becker, Pavel Panchekha, Eva Darulova, and Zachary Tatlock.
2018. Combining Tools for Optimization andAnalysis of Floating-Point
Computations. InWorld Congress on Formal Methods (LNCS, Vol. 10951).
Springer, 355–363. https://doi.org/10.1007/978-3-319-95582-7_21

[6] Heiko Becker, Robert Rabe, Eva Darulova, Magnus O Myreen, Zachary
Tatlock, Ramana Kumar, Yong Kiam Tan, and Anthony Fox. 2022.
Verified Compilation and Optimization of Floating-Point Programs in
CakeML. In 36th European Conference on Object-Oriented Programming
(ECOOP 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 1:1–
1:28. https://doi.org/10.4230/LIPIcs.ECOOP.2022.1

[7] Heiko Becker, Nikita Zyuzin, Raphaël Monat, Eva Darulova, Mag-
nus O. Myreen, and Anthony Fox. 2018. A Verified Certificate
Checker for Finite-Precision Error Bounds in Coq and HOL4. In
2018 Formal Methods in Computer Aided Design (FMCAD). IEEE, 1–
10. https://doi.org/10.23919/FMCAD.2018.8603019

[8] Yves Bertot and Pierre Casteran. 2004. Interactive Theorem Proving
and Program Development. Springer. https://doi.org/10.1007/978-3-
662-07964-5

[9] Sylvie Boldo, Jean-Christophe Filliâtre, andGuillaumeMelquiond. 2009.
Combining Coq and Gappa for certifying floating-point programs. In
International Conference on Intelligent Computer Mathematics. Springer,
59–74. https://doi.org/10.1007/978-3-642-02614-0_10

[10] Sylvie Boldo, Jacques-Henri Jourdan, Xavier Leroy, and Guillaume
Melquiond. 2013. A formally-verified C compiler supporting floating-
point arithmetic. In 2013 IEEE 21st Symposium on Computer Arithmetic.
IEEE, 107–115. https://doi.org/10.1109/ARITH.2013.30

[11] Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. 2015. Co-
quelicot: A User-Friendly Library of Real Analysis for Coq. Mathemat-
ics in Computer Science 9 (2015), 41–62. https://doi.org/10.1007/s11786-
014-0181-1

[12] Sylvie Boldo and Guillaume Melquiond. 2011. Flocq: A unified li-
brary for proving floating-point algorithms in Coq. In 2011 IEEE
20th Symposium on Computer Arithmetic. IEEE, 243–252. https:
//doi.org/10.1109/ARITH.2011.40

[13] Sylvie Boldo and Guillaume Melquiond. 2017. Computer Arithmetic
and Formal Proofs: Verifying Floating-point Algorithms with the Coq
System. Elsevier. https://doi.org/10.1016/C2015-0-01301-6

[14] Robert G. Burger and R. Kent Dybvig. 1996. Printing Floating-Point
Numbers Quickly and Accurately. In Proceedings of the ACM SIGPLAN
1996 Conference on Programming Language Design and Implementation
(PLDI ’96). Association for Computing Machinery, 108–116. https:
//doi.org/10.1145/231379.231397

[15] Wei-Fan Chiang, Mark Baranowski, Ian Briggs, Alexey Solovyev,
Ganesh Gopalakrishnan, and Zvonimir Rakamarić. 2017. Rigor-
ous Floating-Point Mixed-Precision Tuning. In POPL’17: 44th ACM
SIGPLAN Symposium on Principles of Programming Languages. As-
sociation for Computing Machinery, New York, NY, USA, 300–315.
https://doi.org/10.1145/3009837.3009846

[16] Adam Chlipala. 2013. Certified Programming with Dependent Types.
MIT Press.

[17] Nasrine Damouche, Matthieu Martel, Pavel Panchekha, Jason Qiu,
Alex Sanchez-Stern, and Zachary Tatlock. 2016. Toward a standard
benchmark format and suite for floating-point analysis. In Numerical
Software Verification (NSV’16) (LNCS, Vol. 10152). Springer, 63–77. https:
//doi.org/10.1007/978-3-319-54292-8_6

[18] Eva Darulova, Anastasiia Izycheva, Fariha Nasir, Fabian Ritter, Heiko
Becker, and Robert Bastian. 2018. Daisy – Framework for Analysis
and Optimization of Numerical Programs (Tool Paper). In Tools and
Algorithms for the Construction and Analysis of Systems, Dirk Beyer
and Marieke Huisman (Eds.). Springer, 270–287. https://doi.org/10.
1007/978-3-319-89960-2_15

[19] Arnab Das, Ian Briggs, Ganesh Gopalakrishnan, Sriram Krishnamoor-
thy, and Pavel Panchekha. 2020. Scalable yet Rigorous Floating-
Point Error Analysis. In SC20: International Conference for High Per-
formance Computing, Networking, Storage and Analysis. IEEE, 1–14.
https://doi.org/10.1109/SC41405.2020.00055

[20] T. J. Dekker. 1971. A Floating-Point Technique for Extending the
Available Precision. Numerical Mathematics 18 (1971), 224–242. https:
//doi.org/10.1007/BF01397083

[21] Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam
Chlipala. 2019. Simple High-Level Code For Cryptographic Arithmetic:
With Proofs, Without Compromises. In 2019 IEEE Symposium on Se-
curity and Privacy. IEEE, 1202–1219. https://doi.org/10.1109/SP.2019.
00005

[22] gnu 2023. GNU C Library, §19.7: Known Maximum Errors in Math
Functions. (2023). //www.gnu.org/software/libc/manual/html_node/
Errors-in-Math-Functions.html.

[23] Jason Gross, Andres Erbsen, Jade Philipoom, Miraya Poddar-Agrawal,
and Adam Chlipala. 2022. Accelerating Verified-Compiler Develop-
ment with a Verified Rewriting Engine. In 13th International Con-
ference on Interactive Theorem Proving (ITP 2022) (LIPIcs, Vol. 237),
June Andronick and Leonardo de Moura (Eds.). Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 17:1–17:18.
https://doi.org/10.4230/LIPIcs.ITP.2022.17

[24] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem
Penninckx, and Frank Piessens. 2011. VeriFast: A powerful, sound,
predictable, fast verifier for C and Java. In NASA Formal Methods
Symposium. Springer, 41–55. https://doi.org/10.1007/978-3-642-20398-
5_4

[25] Mioara Joldes, Jean-Michel Muller, and Valentina Popescu. 2017. Tight
and Rigorous Error Bounds for Basic Building Blocks of Double-Word
Arithmetic. ACM Trans. Math. Softw. 44, 2, Article 15res (Oct. 2017),
27 pages. https://doi.org/10.1145/3121432

[26] Ariel E. Kellison and AndrewW. Appel. 2022. Verified Numerical Meth-
ods for Ordinary Differential Equations. In 15th International Workshop
onNumerical Software Verification (NSV’22) (LNCS, Vol. 13466). Springer,
147–162. https://doi.org/10.1007/978-3-031-21222-2_9

[27] Ariel E. Kellison, AndrewW. Appel, Mohit Tekriwal, and David Bindel.
2023. LAProof: a Library of Formal Accuracy and Correctness Proofs
for Sparse Linear Algebra Programs. In 30th IEEE International Sympo-
sium on Computer Arithmetic. 8 pages.

[28] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles,
and Boris Yakobowski. 2015. Frama-C: A software analysis perspective.
Formal Aspects of Computing 27, 3 (May 2015), 573–609. https://doi.
org/10.1007/s00165-014-0326-7

[29] K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for
Functional Correctness. In Logic for Programming, Artificial Intelligence,
and Reasoning - 16th International Conference, LPAR-16, Dakar, Senegal,
April 25-May 1, 2010, Revised Selected Papers (LNCS 6355), Edmund M.
Clarke and Andrei Voronkov (Eds.). Springer, 348–370. https://doi.
org/10.1007/978-3-642-17511-4_20

15

https://doi.org/10.1007/978-3-031-44245-2_4
https://doi.org/10.1007/978-3-642-19718-5_1
https://coq-workshop.gitlab.io/2023/abstracts/coq2023_vstlib.pdf
https://coq-workshop.gitlab.io/2023/abstracts/coq2023_vstlib.pdf
https://doi.org/10.6092/issn.1972-5787/11442
https://doi.org/10.1007/978-3-319-95582-7_21
https://doi.org/10.4230/LIPIcs.ECOOP.2022.1
https://doi.org/10.23919/FMCAD.2018.8603019
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-642-02614-0_10
https://doi.org/10.1109/ARITH.2013.30
https://doi.org/10.1007/s11786-014-0181-1
https://doi.org/10.1007/s11786-014-0181-1
https://doi.org/10.1109/ARITH.2011.40
https://doi.org/10.1109/ARITH.2011.40
https://doi.org/10.1016/C2015-0-01301-6
https://doi.org/10.1145/231379.231397
https://doi.org/10.1145/231379.231397
https://doi.org/10.1145/3009837.3009846
https://doi.org/10.1007/978-3-319-54292-8_6
https://doi.org/10.1007/978-3-319-54292-8_6
https://doi.org/10.1007/978-3-319-89960-2_15
https://doi.org/10.1007/978-3-319-89960-2_15
https://doi.org/10.1109/SC41405.2020.00055
https://doi.org/10.1007/BF01397083
https://doi.org/10.1007/BF01397083
https://doi.org/10.1109/SP.2019.00005
https://doi.org/10.1109/SP.2019.00005
//www.gnu.org/software/libc/manual/html_node/Errors-in-Math-Functions.html
//www.gnu.org/software/libc/manual/html_node/Errors-in-Math-Functions.html
https://doi.org/10.4230/LIPIcs.ITP.2022.17
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1145/3121432
https://doi.org/10.1007/978-3-031-21222-2_9
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20

CPP ’24, January 15–16, 2024, London, UK Andrew W. Appel and Ariel E. Kellison

[30] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun.
ACM 52, 7 (2009), 107–115. https://doi.org/10.1145/1538788.1538814

[31] Victor Magron. 2014. NLCertify: A Tool for Formal Nonlinear Opti-
mization. InMathematical Software – ICMS 2014, Hoon Hong and Chee
Yap (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 315–320.
https://doi.org/10.1007/978-3-662-44199-2_49

[32] Victor Magron, George Constantinides, and Alastair Donaldson. 2017.
Certified Roundoff Error Bounds Using Semidefinite Programming.
ACM Trans. Math. Softw. 43, 4, Article 34 (Jan. 2017), 31 pages. https:
//doi.org/10.1145/3015465

[33] Assia Mahboubi and Enrico Tassi. 2022. Mathematical Components.
Zenodo. https://doi.org/10.5281/zenodo.7118596

[34] Mariano M. Moscato, Laura Titolo, Aaron Dutle, and César A. Muñoz.
2017. Automatic Estimation of Verified Floating-Point Round-Off
Errors via Static Analysis. In Computer Safety, Reliability, and Security –
36th International Conference, SAFECOMP’17. Springer, 213–229. https:
//doi.org/10.1007/978-3-319-66266-4_14

[35] Jean-Michel Muller, Nicolas Brunie, Florent de Dinechin, Claude-Pierre
Jeannerod, Mioara Joldes, Vincent Lefèvre, Guillaume Melquiond,
Nathalie Revol, and Serge Torres. 2018. Handbook of Floating-Point
Arithmetic, 2nd edition. Birkhäuser Boston. 632 pages. https://doi.org/
10.1007/978-3-319-76526-6

[36] Jean-Michel Muller and Laurence Rideau. 2022. Formalization of
Double-Word Arithmetic, and Comments on “Tight and Rigorous
Error Bounds for Basic Building Blocks of Double-Word Arithmetic”.
ACM Trans. Math. Softw. 48, 1, Article 9 (Feb. 2022), 24 pages. https:
//doi.org/10.1145/3484514

[37] Hong Diep Nguyen. 2011. Efficient algorithms for verified scientific
computing: Numerical linear algebra using interval arithmetic. Thesis.
Ecole Normale Supérieure de Lyon. https://theses.hal.science/tel-
00680352

[38] Michael L. Overton. 2001. Numerical Computing with IEEE Floating
Point Arithmetic. Society for Industrial and Applied Mathematics.
https://doi.org/10.1137/1.9780898718072

[39] Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary
Tatlock. 2015. Automatically Improving Accuracy for Floating Point
Expressions. In PLDI’15: 36th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. ACM, 1–11. https:
//doi.org/10.1145/2813885.2737959

[40] Tahina Ramananandro, Paul Mountcastle, Benoît Meister, and Richard
Lethin. 2016. A Unified Coq Framework for Verifying C Programs with
Floating-Point Computations. In Proceedings of the 5th ACM SIGPLAN
Conference on Certified Programs and Proofs (CPP 2016). Association
for Computing Machinery, New York, NY, USA, 15–26. https://doi.
org/10.1145/2854065.2854066

[41] Cindy Rubio-González, Cuong Nguyen, Hong Diep Nguyen, James
Demmel, William Kahan, Koushik Sen, David H. Bailey, Costin Iancu,
and David Hough. 2013. Precimonious: Tuning assistant for floating-
point precision. In SC ’13: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis.
ACM, 1–12. https://doi.org/10.1145/2503210.2503296

[42] Alexey Solovyev, Marek S Baranowski, Ian Briggs, Charles Jacobsen,
Zvonimir Rakamarić, and Ganesh Gopalakrishnan. 2018. Rigorous
Estimation of Floating-point Round-off Errors with Symbolic Taylor
Expansions. ACMTransactions on Programming Languages and Systems
41, 1 (2018), 1–39. https://doi.org/10.1145/3230733

[43] Mohit Tekriwal, Andrew W. Appel, Ariel E. Kellison, David Bindel,
and Jean-Baptiste Jeannin. 2023. Verified Correctness, Accuracy, and
Convergence of a Stationary Iterative Linear Solver: Jacobi Method.
In 16th Conference on Intelligent Computer Mathematics. Springer, 206–
221. https://doi.org/10.1007/978-3-031-42753-4_14

Received 2023-09-19; accepted 2023-11-25

16

https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1007/978-3-662-44199-2_49
https://doi.org/10.1145/3015465
https://doi.org/10.1145/3015465
https://doi.org/10.5281/zenodo.7118596
https://doi.org/10.1007/978-3-319-66266-4_14
https://doi.org/10.1007/978-3-319-66266-4_14
https://doi.org/10.1007/978-3-319-76526-6
https://doi.org/10.1007/978-3-319-76526-6
https://doi.org/10.1145/3484514
https://doi.org/10.1145/3484514
https://theses.hal.science/tel-00680352
https://theses.hal.science/tel-00680352
https://doi.org/10.1137/1.9780898718072
https://doi.org/10.1145/2813885.2737959
https://doi.org/10.1145/2813885.2737959
https://doi.org/10.1145/2854065.2854066
https://doi.org/10.1145/2854065.2854066
https://doi.org/10.1145/2503210.2503296
https://doi.org/10.1145/3230733
https://doi.org/10.1007/978-3-031-42753-4_14

	Abstract
	1 Introduction
	2 Review of round-off error analysis
	3 Overview of VCFloat2
	4 Floating point types, operations, and notation
	5 Reification
	6 The core of VCFloat
	7 Optimizations and inverse shifts
	8 An efficient simplifier for interval goals
	9 Soundness theorem for simplification
	10 Decomposition tactic
	11 Proving C programs
	12 User-supplied functions
	13 Nonstandard floating-point-like types
	14 Double-doubles in VCFloat2
	15 Related work and performance evaluation
	16 Conclusion
	References

