
Shrink Fast Correctly!
Olivier {Savary Bélanger}

Princeton University

olivierb@princeton.edu

Andrew W. Appel

Princeton University

appel@princeton.edu

ABSTRACT
Function inlining, case-folding, projection-folding, and dead-variable

elimination are important code transformations in virtually every

functional-language compiler. When one of these reductions strictly

reduces the size of the program (e.g., when the inlined function has

only one applied occurrence), we call it a shrink reduction. Appel
and Jim [1] introduced an algorithm to perform all shrink reduc-

tions (producing a shrink normal form) in quasilinear time. They

proved confluence but not correctness.

We have implemented this algorithm as part of an end-to-end

verified compiler for Gallina, the specification language of the Coq

theorem prover. We have given the first proofs of these properties:

correctness with respect to contextual equivalence, reduction (in

one pass) of all administrative redexes with one applied occurrence

introduced by CPS conversion, and termination. The correctness

and termination proofs are machine-checked in Coq.

Because we use a pure functional language without imperative

array update, our implementation is O (N logN) rather than O (N).
Still, it’s quite fast: we give performance results on some nontrivial

benchmarks.

ACM Reference format:
Olivier {Savary Bélanger} and Andrew W. Appel. 2017. Shrink Fast Cor-

rectly!. In Proceedings of International Symposium on Principles and Practice
of Declarative Programming, Namur, Belgium, 9 – 12 October 2017 (PPDP’17),
12 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
If the program has bugs, why bother proving the compiler cor-

rect? If the compiler has bugs, why bother proving the program

correct? Verified source programs deserve verified compilers, and

vice versa. We [2] are building CertiCoq, a verified-correct compiler

for Coq—that is, for the functional language that’s part of Coq’s

Gallina specification language. All compiler phases will be proved

to preserve observable behavior from each intermediate language

to the next, with machine-checked proofs in Coq. The user can

prove a program correct in Coq, then the verification of CertiCoq

guarantees that this program compiled to machine-language has

the behavior that the user verified at the source level.

We want this compiler to be not only correct but efficient. We

have improved, implemented, and proved correct an algorithm [1]

that in one fast pass performs dead-variable elimination, inlining

of single-use functions, projection folding, and case folding. To do

this in one pass, the algorithm must efficiently and incrementally

PPDP’17, 9 – 12 October 2017, Namur, Belgium
© 2017 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in Proceedings of
International Symposium on Principles and Practice of Declarative Programming, 9 – 12
October 2017 , https://doi.org/10.1145/nnnnnnn.nnnnnnn.

update its dataflow information and usage counts. This additional

complexity is made worthwhile by the cascading reduction oppor-

tunities which appear as other reductions are performed. We are

not the first to implement this “shrink-reduction” algorithm, but

we are the first to prove it, or an implementation, correct.

In a functional language with immutable data structures—such

as Gallina, ML, Haskell—several optimizations are particularly im-

portant: function inlining (β-reduction); case-folding, compile-

time evaluation of case statements when the discriminant value can

be statically determined; projection-folding, compile-time fetch-

ing of projections of tuple-fields (or generally, fields of inductive

data constructors) when the tuple can be statically determined; and

dead variable elimination. The reason these are more important

in functional languages than in traditional imperative languages

is that there are far more opportunities: functional languages and

their compilers use functions more heavily, and folding of field-

projections is possible only when the record-fields cannot have

been updated with new values. Also, many compiler transforma-

tions introduce β-redexes. For example, simple CPS transformations

introduce many so-called administrative (β-)redexes which can be

safely reduced to recover a more compact program.

It is important to do all these optimizations together, because one
may produce new opportunities to do another.

For example, in

let f x := (match x with O ⇒ M ; S _⇒ N) in f O

we can inline f resulting in

match O with O ⇒ M ; S _⇒ N

at which point the constructorO is exposed and the case-construct

can be folded down to M . Then, since the expression N has dis-

appeared, some of the free variables of N (bound in some context

external to the entire let expression) may now be dead, permitting

dead-variable elimination.

Case-folding, projection-folding, and dead-variable elimination

are always worth doing, because they make the program smaller

and faster. Function inlining usually makes the program faster, but if

there aremany uses of the function, it maymake the program bigger.

Inlining a function that has only one applied occurrence will make

the program smaller and faster, because the function-definition is

now dead and can be deleted. Appel and Jim [1] described this class

of optimizations (case-folding, projection-folding, dead-variable

elimination, and inlining functions with one applied occurrence)

as shrink reductions.
A traditional function-inliner or dead-variable optimizer makes

one static-analysis pass over the program, counting applied oc-

currences and learning which functions are worth inlining; then

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

PPDP’17, 9 – 12 October 2017, Namur, Belgium Olivier {Savary Bélanger} and Andrew W. Appel

another pass performs the transformations; then (because the trans-

formations may have enabled new optimizations) repeats the analy-

sis pass, then another optimization pass, and so on until the analysis

pass yields no new optimizations to perform.

Appel and Jim described an efficient algorithm that performs

(almost) all the possible shrink reductions, even cascading ones, in

one linear-time pass. This is a quasilinear time algorithm: in linear

time, it typically reduces to shrink-normal form, but sometimes

leaves a very small number of shrink redexes to be reduced in

a second pass, or very rarely in a third pass. Appel and Jim also

described a fully linear-time algorithm that heavily uses imperative

graph-update, which is less convenient to implement in a functional

programming language. Kennedy [3] improved, implemented, and

measured the fully linear-time algorithm, and reported excellent

performance.

No one has done a formal proof (machine-checked or otherwise)

of correctness of either of these algorithms, or of any efficient

algorithm for approaching shrink-normal form. In this paper, we

prove the correctness of an implementation (in Coq) of Appel and

Jim’s quasilinear-time algorithm, and demonstrate that it achieves

excellent performance.

Instead of presenting a monolithic proof of correctness, we

modularize it into three layers: We first prove that the program

contract_top performs reductions according to a system of shrink-

rewrite rules (⇁∗C). We then prove this system to be a specialization

of a second, more general rewrite system ({∗C), describing a wider

class of optimizations. Finally, we prove that the general rewrite

system only relates equivalent programs(�exp).

�exp {∗C
Thm .3.1ks ⇁∗C

Thm .4.1ks contract_top
Thm .5.3ks

The paper is organized as follows.

§2 We present our object language, showing its syntax, its semantics

and our notion of equivalence on environment, terms and values.

§3 We present a series of rewrite rules admissible by general reduc-

tion. We use these rules to form a rewriting system, which we

prove correct according to our notion of equivalence.

§4 We refine the rules to admit only rules that shrink the overall

size of the program. We prove that the rewriting system formed

by the refined rule (so called shrink rewrites) is included in the

general rewriting system.

§5 We present an algorithm that reduces most shrink redexes in

quasilinear time, evaluate its performance and prove that it only

modifies the term according to the shrink-rewrite system, which,

composed with the previous proofs, shows that the algorithm is

correct.

§6 We show benchmark measurements on realistic, substantial pro-

grams that demonstrate that the shrink-reducer is really fast,

and very effective.

Contributions:

• We improve on the shrink inlining algorithm presented in Appel

and Jim [1], simplifying the presentation and preserving a more

accurate count of variable occurrences.

• We prove the algorithm correct in Coq with respect to contextual

equivalence, which Appel and Jim did not do even on paper.

• We prove correctness not just of an algorithm, but of an im-
plementation of the algorithm, an efficient working functional

program.

• We show that the algorithm reduces all administrative redexes

[4] with one applied occurence introduced by the CPS transfor-

mation, in a single pass. This is important because a simpler CPS

transformation is significantly easier to implement and prove

correct than one that reduces administrative redexes [5].

• We have implemented this as part of CertiCoq, and our proof

composes with the rest of the compiler to provide an end-to-end

correctness guarantee.

The Coq development with our implementation and proofs is

available at:

https://www.cs.princeton.edu/~appel/shrink-fast-correctly.tar

2 BACKGROUND
Syntax

(Function Def′n) fd ::= f (x⃗) = e
(Branch) b ::= c ⇒ e
(Expression) e ::= let x = Con c y⃗ in e

| let x = Prim p y⃗ in e
| let x = Projn y in e
| App x y⃗
| let f⃗d in e
| match x with b⃗
| halt x

(Value) v ::= (c, v⃗)
| (ρ, f⃗d, x)

(Environment) ρ ::= ·

| ρ, x 7→ v

Figure 1: Syntax of the Object Language

Our object language is a continuation-passing-style functional

language with mutually recursive functions and pattern-matching.

Figure 1 shows its syntax. “let x = Con c y⃗ in e” binds the construc-
tor c applied to arguments y⃗ to variable x in expression e . “let x =
Prim p y⃗ in e” binds the result of the primitive operator p on argu-

ments y⃗ to variable x in expression e . “let x = Projn y in e” binds
the nth projection of y to variable x in in expression e . “App x y⃗”

applies function x to arguments y⃗. “match x with b⃗” matches the

constructor c of x with the right branch (c ⇒ e) ∈ b⃗.
To simplify the presentation, we assume that branch patterns

do not overlap and that function names within each bundle are

distinct. “halt x” terminates computation by returning the value

bound to x .
The semantics of our object language is given through a big-step,

environment-based judgment ρ ⊢ e ⇓k v evaluating expressions e
in environment ρ into value v in at most k β-reductions. We will

sometimes omit the argument k and just write ρ ⊢ e ⇓ v when

the cost is inconsequential. The environment maps variables to

values. A value is either a constructor c with its arguments v⃗ or

closure including a function’s body e with its parameters x⃗ and an

environment ρ providing values for the function’s free variables.

Figure 2 shows the evaluation rules.

https://www.cs.princeton.edu/~appel/shrink-fast-correctly.tar

Shrink Fast Correctly! PPDP’17, 9 – 12 October 2017, Namur, Belgium

ρ (x) = c w⃗ (c ⇒ e) ∈ b⃗ ρ ⊢ e ⇓k v

ρ ⊢ match x with b⃗ ⇓k v
e_match

ρ (y) = c w⃗ ρ;x 7→ wn ⊢ e ⇓k v

ρ ⊢ let x = Projn y in e ⇓k v
e_proj

ρ (f) = (ρ ′, f⃗d, f) (f (x⃗) = e) ∈ f⃗d ∀yi ∈y⃗ , ρ yi = vi ρ ′; fi 7→ (ρ ′, f⃗d, fi);xi 7→ vi ⊢ e ⇓k v

ρ ⊢ App f y⃗ ⇓k+1 v
e_app

∀yi ∈y⃗ , ρ (yi) = wi ρ;x 7→ (c, w⃗) ⊢ e ⇓k v

ρ ⊢ let x = Con c y⃗ in e ⇓k v
e_constr

∀yi ∈y⃗ , ρ (yi) = wi f w⃗ = w ρ;x 7→ w ⊢ e ⇓k v

ρ ⊢ let x = Prim f y⃗ in e ⇓k v
e_prim

ρ; f1 7→ (ρ, f⃗d, f1); ...; fn 7→ (ρ, f⃗d, fn) ⊢ e ⇓k v where names(f⃗d) = { f1, ..., fn }

ρ ⊢ let f⃗d in e ⇓k v
e_fun

ρ (x) = v

ρ ⊢ halt x ⇓k v
e_halt

Figure 2: Evaluation rules of the object language

In our object language, pattern-matching is broken into two oper-

ations. First, our case constructor “match x with (c1 ⇒ e1, ..., cn ⇒
en)” determines which pattern ci the construction bound to variable
x matches, and proceeds to evaluate ei , as seen in e_match. Then,

projection constructs “let x1 = Proj
1
x in...let xm = Projm x in”

are used to bind variables to the m arguments of ci which will

be replaced by the right values when evaluated as shown in rule

e_proj.

ML’s and Haskell’s syntax and type systems connect case match-

ing with projection, so that the programmer cannot mistakenly

project a field from the wrong constructor. We separate projections

from cases because it makes the operational semantics simpler, the

optimizer simpler, and the proof simpler: our language is an un-
typed intermediate language, not a typed source language. CertiCoq
is meant to be used only to compile source programs type-checked

in Coq; the Coq type system guarantees that they will not get stuck.

Therefore, as the front-end phases are proved correct, the program

translated to lower-level intermediate languages (such as the CPS

presented here) will not get stuck.

Rule e_app shows how applications are evaluated. When a func-

tion f is applied to arguments y⃗, we look up f in the environment

ρ to retrieve the function value bundle (ρ ′, f⃗d, f). Next, we find
function f in f⃗d with arguments x⃗ and function body e . We then

evaluate the function body e in saved environment ρ ′ extended

with bindings for each mutually recursive function in f⃗d and by

associating each yi in y⃗ to their respective xi in x⃗ .
We define set of variables FV(e) and BV(e) to be respectively the

set of free and bound variables of a term e or of a bundle of function
definitions f⃗d. We also define names(f⃗d) to be all the names of

functions from the bundle:

names(f⃗d) := { f | f (x⃗) = e ∈ f⃗d}

An important property that is not enforced by the syntax pre-

sented in Fig. 1 is that bound names are globally unique. This

property is easy to achieve and maintain; the translation from the

previous intermediate language uses a state monad to assign unique

variable names. We also make sure that the free variables of the

top-level program are disjoint from its bound variables. This allow

us, for example, to perform function inlining without worrying

about variable capture. We define the proposition UB(e) to assert

that e has the unique binding property.

Applicative context
We define a notion of applicative context, intuitively a term with a

hole, which will be used in the statement of the rewriting rules and

in the proof of correctness of our function inliner.

(Function Context) fc ::= f (x⃗) = C
(Expression Context) C ::= J K

| let x = Con c y⃗ in C
| let x = Prim p y⃗ in C
| let x = Projn y in C
| let f⃗d in C
| let f⃗d ++ fc :: f⃗d in e
| match x with b⃗ ++ (c ⇒ C) :: b⃗

Figure 3: Applicative Context

An applicative context is either a hole, a let-binder over an ap-

plicative context, a case construct where one of the branches is an

applicative context or a function bundle where exactly one of the

function bindings has an expression context as body. An expression

e can be placed in the hole of a context C to form expression CJeK.
Similarly, a context C2 can be placed in the hole of a context C2 to

form a composed context C1 ·C2.

We define set BVstem (C) to be the variables bound on the stem

of C , the variables in scope at the hole in the applicative context C :

FV(CJeK) = FV(C) ∪ (FV(e) \ BVstem (C))

For example,

BVstem

(
let x = Con c y⃗ in let f⃗d ++ (f (z⃗) = J K) :: f⃗d′ in e

)
= {x, f } ∪ z⃗ ∪ names(f⃗d ++ f⃗d′)

Logical relation
Our notion of equivalence reuses a step-indexed logical relation

developed by Paraskevopoulou for the proof of correctness of Certi-

Coq’s closure-conversion phase [6]. The main idea is that terms

e1 and e2 are related at index k (e1 �
val

k e2) whenever they are

observationally equal for up to k β-reductions (e1 ≈k e2).

Two values v andw are related (v �valk w) if k = 0 or if:

PPDP’17, 9 – 12 October 2017, Namur, Belgium Olivier {Savary Bélanger} and Andrew W. Appel

• both are constructors with equivalent arguments:v = c v1 ... vn ,

w = c w1 ... wn and ∀ni=1,vi �
val

k wi
• both are functions, and for any related list of arguments, they

evaluate to the related values, which is to say: v = (ρ ′
1
, ⃗fd1, f1),

w = (ρ ′
2
, ⃗fd2 , f2) with (f1 (x⃗) = e1) ∈ ⃗fd1, (f2 (y⃗) = e2) ∈

⃗fd2 and, given two listsv1, ...,vn andw1, ...,wn of related values

(vi �
val

k−1 wi), evaluating the functions’ body after extending the

functions’ environments with these related mappings (for all

fi ∈ ⃗fd1, дi ∈ ⃗fd2 , xi ∈ x⃗ , yi ∈ y⃗, vi ∈ v⃗ and wi ∈ w⃗) produces

related values:

(ρ′
1
; fi 7→ (ρ′

1
, f⃗d1, fi); xi 7→ vi , e1) �

exp

k−1
(ρ′

2
;дi 7→ (ρ′

2
, ⃗fd2, дi);yi 7→ wi , e2)

Two environments ρ1 and ρ2 are related (ρ1 �
env

k ρ2) if, for
every variable x , either x is not present in either, or ρ1 x = v1 and

ρ2 x = v2 and v1 �
val

k v2.
Two terms e1 and e2 are related under environments ρ1 and ρ2

(written (ρ1, e1) �
exp

k (ρ2, e2)) if they evaluate to related values.

More precisely, they are related at indexk if, whenever ρ1 ⊢ e1 ⇓j v1
(with j ≤ k), then there exists some j ′ andv2 such that ρ2 ⊢ e2 ⇓j′ v2
and v1 �

val

k−j v2.

If, for all i and for all environments ρ1 and ρ2 such that ρ1 �
env

i
ρ2, two terms e1 and e2 are related according to (ρ1, e1) �

exp

i
(ρ2, e2), then e1 and e2 are contextually equivalent (e1 ≈ e2).

3 GENERAL REWRITES
Figure 4 shows the rules of our general rewriting system, which

we then prove correct using the above logical relation.

Dead variables
When a variable does not occur statically within its scope, we can

remove its binding without affecting evaluation. Dead variable

rewriting rules have the form let x = _ in e { e , where _ is any
let-binding construct in our object language, for example Con c y⃗,
whenever x is not used in e .

To handle removal of dead mutually recursive functions, things

are a bit more complicated; we use two rules to handle differ-

ent scenarios under which it is safe to remove function bindings.

Dead_bundle, removes a bundle of mutually recursive functions

if none of them occurs in the rest of the term. However, this is too

coarse-grain to handle the case where only some of the functions

in the bundle are dead. For this situation, Dead_fun removes a

function definition if it has no applied occurrences outside its own

body.

Folding and inlining
Folding and inlining rules perform general reduction steps at com-

pile time. One such folding rule is Fold_case, which performs

ι-reduction whenever the correct branch can be statically predicted.

Fold_case would be used to perform this reduction:

let x = Con S y in
match x with (O ⇒ M); (S ⇒ let z = Proj

1
x in N)

{ let x = Con S y in (let z = Proj
1
x in N)

As our language separates pattern-matching into the matching

and the binding of projections, we can simply (using firstMatch)
return the body of the first branch in b⃗ matching c in place of

the match and let other reductions handle the projections, if any.

These projections can then be folded using rule Fold_Proj. It lets

us eliminate making a binding y for the nth projection of the value

bound to x if x is bound in the context to c z⃗ and the nth variable of

z⃗ is not rebound in the term. For example, we could further reduce

the previous example:

let x = Con S y in (let z = Proj
0
x in N)

{ let x = Con S y in (z 7→ y)N

Function inlining replaces a call to a function by the body of

the function. If this was the only call to the function, the function

definition can then be eliminated using the Dead_fun rule. This

rule is only valid if FV(e) and the functions’ name from f⃗d, including
f , are disjoint from the variables bound on the stem of C , and if

the function’s parameters x⃗ and the free variables of e are disjoint
from arguments y⃗, so that there is no variable capture occurring.

General rewrite system
From the rewrite rules shown so far, we create a rewrite system

which will describe the transformations that our optimizations

apply to a program.

We first take the contextual closure of{, denoted{C , defined

as:

e1 = CJe′
1
K e2 = CJe′

2
K e′

1
{ e′

2

e1 {C e2

This allows reductions to happen anywhere in the term, following

the usual notion of general reductions.

We then take the reflexive transitive closure of the contextual

closure of the general rewrite rules to form a system of General
Reduction, denoted e {∗C e ′.

Proof of correctness
Our correctness theorem has the following form: Any two terms re-

lated by general rewrites evaluate, under equivalent environments,

to equivalent values.

Theorem 3.1 (Correctness of GR).

∀e1 e2, e1 {∗C e2 =⇒
∀ρ1 ρ2 k, ρ1 �envk ρ2 =⇒ (ρ1, e1) �

exp

k (ρ2, e2)

We prove a generalization of contextual compatibility that allows

us to prove nonlocal rewrite rules. Contextual compatibility states

that two expressions e1 and e2 are related (at k) under a given

applicative context C in related evaluation environments ρ1 and
ρ2 if, for any related ρ3 and ρ4, e1 and e2 are related (at k). This is
because C will affect related ρ1 and ρ2 in the same way, resulting

in related ρ3 and ρ4.

Remark 3.2 (Contextual Compatibility).

∀e1 e2 C ρ1 ρ2 k,(
∀ρ3 ρ4, ρ3 �envk ρ4 =⇒ (ρ3, e1) �

exp

k (ρ4, e2)
)
=⇒

ρ1 �envk ρ2 =⇒
(ρ1, CJe1K) �

exp

k (ρ2, CJe2K)

Shrink Fast Correctly! PPDP’17, 9 – 12 October 2017, Namur, Belgium

f < FV(e) ∀
(f ′ (y⃗) = e3)∈f⃗d1++ ⃗fd2

, f < FV(e3)

let f⃗d1 ++ (f (x⃗) = e1) :: ⃗fd2 in e2 { let f⃗d1 ++ ⃗fd2 in e2
Dead_fun

∀ f ∈ names(f⃗d), f < FV(e)

let f⃗d in e { e
Dead_bundle

x < FV(e)
let x = _ in e { e

Dead_var

(f (x⃗) = e) ∈ f⃗d (FV(e)
⋃

names(f⃗d))
⋂

BVstem (C) = ∅ (BV(e)
⋃
x⃗)
⋂
y⃗ = ∅

let f⃗d in CJApp f y⃗K { let f⃗d in CJ(x⃗ 7→ y⃗)eK
Inl_fun

x < BVstem (C) (c ⇒ e) ∈ b⃗

let x = Con c y⃗ in CJmatch x with b⃗K { let x = Con c y⃗ in CJeK
Fold_case

x < BVstem (C) zn < BVstem (C)
⋃

BV(e)

let x = Con c z⃗ in CJlet y = Projn x in eK { let x = Con c z⃗ in CJ(y 7→ zn)eK
Fold_proj

Figure 4: General Rewrite Rules

|e |x = 0

let x = _ in e ⇁ e
S_Dead_var

∀ f ∈ names(f⃗d), |e |f = 0

let f⃗d in e ⇁ e
S_Dead_bundle

|let ⃗f d1 ++ ⃗f d2 in Q |f = 0

let ⃗f d1 ++ (f (x⃗) = e) :: ⃗f d2 in Q ⇁ let ⃗f d1 ++ ⃗f d2 in Q
S_Dead_fun

(c ⇒ e) ∈ b⃗

let x = Con c x⃗ in CJmatch x with b⃗K ⇁ let x = Con c x⃗ in CJeK
S_Fold_case

let x = Con c z⃗ in CJlet y = Projn x in eK ⇁ let x = Con c z⃗ in CJ(y 7→ zn)eK
S_Fold_proj

|let f⃗d1 ++ (f (x⃗) = e) :: ⃗fd2 in C |f = 0

let f⃗d1 ++ (f (x⃗) = e) :: ⃗fd2 in CJApp f y⃗K ⇁ let ⃗f d1 ++ ⃗f d2 in CJ(x⃗ 7→ y⃗)eK
S_Shrink_fun

Figure 5: Shrink Rewrite Rules

However, this is too weak to prove the correctness of nonlocal

rules such as Fold_proj, where, for the term that binds the projec-

tion to be related when the binding is substituted with the right

projection, we need to ensure ρ3 and ρ4 still contain the binding of

the constructor.

(ρ1, let x = Con c z⃗ in CJlet y = Projn x in eK)
�
exp

k
(ρ2, let x = Con c z⃗ in CJ(y 7→ zn)eK)

In order to prove this, we bind x in the context:

(ρ1[x 7→ (c, v⃗)], CJlet y = Projn x in eK)
�
exp

k
(ρ2[x 7→ (c, v⃗)], CJ(y 7→ zn)eK)

We cannot apply Contextual Compatibility here, because “let y =
Projn x in e” and “(y 7→ zn)e” are only related in contexts that map

x to (c, v⃗) and zn to vN , even though x and zn cannot appear in C
due the premise of Fold_proj. So wemust be more precise and state

that C will only affect the mapping of variables of ρ1[x 7→ (c, v⃗)]
and ρ2[x 7→ (c, v⃗)]which are bound on the stem ofC . Thus, we can
select a set of variables S not bound in C and only consider ρ3 and
ρ4 that agree with ρ1 and ρ2 on variables from S (this is written

ρ �S ρ ′). In our previous example, we could select S = {x , zn }

Theorem 3.3 (Extended Contextual Compatibility).

∀e1 e2 C ρ1 ρ2 S k, BVstem (C)
⋂
S = ∅ =⇒(

∀ρ3 ρ4, ρ1 �S ρ3 =⇒ ρ2 �S ρ4 =⇒

ρ3 �envk ρ4 =⇒ (ρ3, e1) �
exp

k (ρ4, e2)
)
=⇒

ρ1 �envk ρ2 =⇒ (ρ1, CJe1K) �
exp

k (ρ2, CJe2K)

4 SHRINK REDUCTIONS
We now turn to a second rewrite system which refines the general

rewrite system shown earlier and brings us a step closer to our goal

of proving the correctness of our shrink inlining transformation.

Shrink Rewrites. Most of the rules in Fig. 5 are very similar to the

General rewrite rules given earlier. We write |e |x for the number of

applied occurences of variablex in expression e . Themain difference

is that their assumptions are computational, relying on the number

of occurrences and (globally) on the unique binder property rather

than on sets such as FV and BV. This is an important distinction

which will make our life easier in the proof of correspondence to the

algorithm. Consider for example S_Fold_proj. Due to the unique

binding property, we can drop the assumption that x < BVstem (C).
Other than the assumptions, themain difference between the two

rewrite systems is the use of S_Shrink_fun in place of Inl_fun. In-

deed, the latter does not qualify as a shrink reduction as the overall

size of the program grows when we inline a function and keep its

PPDP’17, 9 – 12 October 2017, Namur, Belgium Olivier {Savary Bélanger} and Andrew W. Appel

definition. S_Shrink_fun is only applicable when the inlined func-

tion has a single applied occurrence. It is admissible (assuming the

unique binding property) from Inl_fun followed by Dead_fun.

The shrink-rewrite system and its correctness
We take the reflexive transitive closure of the contextual closure of

the Shrink-Rewrite Rules presented in Fig. 5 to form a system of

Shrink Rewrites denoted⇁∗C .
We then prove that terms related by shrink reduction are also

related by general reduction:

Theorem 4.1 (GR includes SR).

∀e1 e2, e1 ⇁∗C e2 =⇒ e1 {∗C e2

Moreover, we use the fact that ⇁ is more restrictive than {
to prove certain properties for any term related by it. For exam-

ple, shrink reduction preserves the unique binding property (this

includes the disjointness of the bound and free variables of the

term):

Theorem 4.2 (SR preserves UB).

∀e1e2, e1 ⇁∗C e2 ∧ UB(e1) =⇒ UB(e2)

The set of bound variables does not increase as we shrink a term:

Theorem 4.3 (SR reduces BV).

∀e1e2, e1 ⇁∗C e2 =⇒ BV(e2) ⊆ BV(e1)

It does not introduce free variables, for example at the top level:

Theorem 4.4 (SR reduces FV).

∀e1e2, e1 ⇁∗C e2 =⇒ FV(e2) ⊆ FV(e1)

Therefore, closed terms remain closed under shrink reductions.

5 SHRINK INLINER
Function contract, shown in Figure 6, performs shrink reductions

in a single pass down and up a program (or top-level expression)

P . As contract proceeds down the term e (initially P , then some

e such that ∃C, P = CJeK), we collect in table ρ the functions and

constructors which could respectively be inlined and folded.

In addition to the term e currently being transformed, contract
maintains four tables:

• σ : var → var , is a delayed renaming substitution (mapping

variables to variables) under which e is being considered.
• δ : var → nat, tallies the number of occurrences of each variable

in the whole program.

• ρ : var → Value′, maps function and constructor variables

encountered so far (on the stem of C) to their definitions.

(Value′) V ::= (c, x⃗) | (x⃗, e)

• θ : var → bool, indicates which functions have been inlined.

δ is updated using functions decreaseOcc σ δ x⃗ which decreases

by one the count of each variables in σ x⃗ and decreaseCount σ δ e
which decreases δ (x) by |σe |x , the number of applied occurrences

of x in σe .
In the SML/NJ implementation, these maps are implemented

using imperative arrays with constant access time. As our compiler

is implemented in Gallina, a pure functional language, we instead

represent our variables as positive binary numbers and implement

contract σ δ ρ θ e = match e with

| halt x ⇒ (halt (σx), δ, θ)
| let x = Prim p y⃗ in e ⇒ if δ (x) = 0

then δ ← decreaseOcc δ σ y⃗
contract σ δ ρ θ e

else (e′, δ, θ) ← contract σ δ ρ θ e
if δ (x) = 0

then δ ← decreaseOcc δ σ y⃗
(e′, δ, θ)

else (let x = Prim p (σy⃗) in e′, δ, θ)
| let x = Con c y⃗ in e ⇒ if δ (x) = 0

then δ ← decreaseOcc δ σ y⃗
contract σ δ ρ θ e

else ρ := ρ[x 7→ (c, y⃗)]
(e′, δ, θ) ← contract σ δ ρ θ e
if δ (x) = 0

then δ ← decreaseOcc δ σ y⃗
(e′, δ, θ)

else (let x = Con c (σy⃗) in e′, δ, θ)
| App f y⃗ ⇒ if δ (f) = 1 ∧ ρ f = (x⃗, e)

then δ ← inlineCount δ σ f x⃗ y⃗
σ := σ [x⃗ 7→ y⃗]
θ := θ [f 7→ ⊤]
contract σ δ ρ θ e

else (App (σ f) (σy⃗), δ, θ)
| let x = Projn y in e ⇒ if δ (x) = 0

then δ ← decreaseOcc δ σ y
contract σ δ ρ θ e

else if ρ (σy) = (c, y⃗)
then δ ← foldCount δ σ x y⃗n y

σ := σ [x 7→ (σy⃗n)]
contract σ δ ρ θ e

else (e′, δ, θ) ← contract σ δ ρ θ e
if δ ′(x) = 0

then δ ← decreaseOcc δ ′ σ y
e′

else (let x = Projn (σy) in e′, δ, θ)
| match v with b⃗ ⇒ if ρ (σv) = (c, y⃗) ∧ (c ⇒ e) ∈ b⃗

then δ ← caseCount δ σ b⃗
δ ← decreaseOcc δ σ v
contract σ δ ρ θ e

else (b⃗′, δ, θ) ← contractCase σ δ ρ θ b⃗
(match (σv) with b⃗′, δ, θ)

| let f⃗d in e ⇒ (f⃗d′, δ, ρ′) ← preFun σ δ ρ f⃗d
(e′, δ, θ) ← contract σ δ ρ′ θ e
(⃗fd′′, δ, θ) ← postFun σ δ ρ θ f⃗d′

(let ⃗fd′′ in e′, δ, θ)

Figure 6: Shrink Inliner Algorithm

maps by binary tries, resulting in logarithmic (over the size of

the positive number) access time. As shown in Fig. 11, this is still

quite fast. Moreover, if one wanted to use constant-access-time

impure arrays (a monadic extension to Coq)—thus recovering the

original constant access time—our proof of correctness could easily

be adapted.

At the top-level, function contract_top calls contract after ini-
tializing the maps: σ = id, δ is initialized to have δ (x) = |e |x for

Shrink Fast Correctly! PPDP’17, 9 – 12 October 2017, Namur, Belgium

each variable x appearing in e , ρ is empty and θ maps all variables

to ⊥.

The function contract calls helper functions to process the branches
of a pattern-match (contract_branches, see Figure 9) and blocks of

recursive functions (preFun and postFun, see Figures 7 and 8).

When encountering a let-bound constructor “let x = Con c y⃗ in e”,
we first check, by looking up x in δ , if x does not occur in the whole

program, inwhich casewe can remove the binding of x and decrease

the occurrence count for each variable in y⃗ under σ . Otherwise,
we recursively shrink-reduce e after updating the environment

map with the binding x 7→ (c, y⃗). On return, we check again if x
is dead in the updated counts (i.e., δ). When encountering a let-

bound projection “let x = Projn y in e”, if x is not dead, we look

up σy in our environment map ρ to see if we statically know the

construct (c, y⃗) bound to it. If it is, we can remove the binding of x
and replace in the rest of e (by extending the renaming σ) all occur-
rences of x by the nth projection of σy⃗ and update the count using

“foldCount δ σ x y⃗n y”, setting x to 0, increasing the occurence

count of σy⃗n by δ (x) and decreasing σy⃗ by one.

When converting pattern-matching construct “match v with
b⃗”, we first look up v in ρ to see if we know enough about what

is bound to it to select the correct branch, which is to say that

ρ (σv) = (c, y⃗) and (c ⇒ e) ∈ b⃗, and we proceed to shrink-reduce e
after adjusting δ to account for the removed occurence of σv and

(using caseCount) for the deletion of all other branches. If σv is

not known or if no branches match, we recursively shrink-reduce

each of the branches using contractCase (see Fig. 9)
When we get to an application “App f y⃗”, we first look up σ f in

the environment map ρ to see if it is a known function (x⃗ , e) and if

this is the only occurrence of σ f . In that case, we inline the function
and proceedwith shrink inliningwithin its body e after updating the
renaming substitution with mappings xi 7→ (σyi) for each xi ,yi in
x⃗ , y⃗ and updating the occurrence count with inlineCount σ δ f x⃗ y⃗,
decreasing to 0 all xi ∈ x⃗ and σ f and adding δ (x⃗i) − 1 to each σy⃗i .

We process a block of mutually recursive functions “let f⃗d in e”

by first (using function preFun) adding live functions in f⃗d to the

environment map ρ. We then apply the contract function to e ,

the rest of the program. We then traverse f⃗d a second time with

function postFun, this time converting the body of live, noninlined

functions. The second traversal uses the initial ρ rather than the one
augmented by preFun, such that we don’t inline functions within

their mutually recursive bundle. The algorithms of each of those

pass are given in Figures 7 and 8.

preFun σ δ ρ ⃗fd2 = match
⃗fd2 with

| [] ⇒ ([], δ, ρ)
| (f (x⃗) = eb) :: f⃗d3 ⇒ if δ (f) = 0

then δ ← decreaseCount δ σ eb
preFun σ δ ρ f⃗d3

else (f⃗d′3, δ, ρ) ← preFun σ δ ρ f⃗d3
ρ := ρ[f 7→ (x⃗, eb)]
((f (x⃗) = eb) :: f⃗d′3, δ, ρ)

Figure 7: Pre Function Inlining Algorithm

postFun σ δ ρ θ ⃗fd2 = match
⃗fd2 with

| [] ⇒ ([], δ, θ)
| (f (x⃗) = eb) :: f⃗d3 ⇒ if θ (f)

then postFun σ δ ρ θ f⃗d3
else if δ (f) = 0

then δ ← decreaseCount δ σ eb
postFun σ δ ρ θ f⃗d3

else (e′b, δ, θ) ← contract σ δ ρ θ eb
(f⃗d′3, δ, θ) ← postFun σ δ ρ θ f⃗d3
((f (x⃗) = e′b) :: f⃗d

′
3, δ, θ)

Figure 8: Post Function Inlining Algorithm

preFun σ δ ρ f⃗d is used on the downwards pass through the

term, removing dead functions (and adjusting the occurrence count

map δ accordingly) and adding the live ones to the environment ρ.

postFun σ δ ρ θ f⃗d processes a block of mutually recursive

function f⃗d on the upward pass of contract. For each function

f (x⃗) = e , we first check if it has been inlined (θ (f) = ⊤),
in which case we simply remove the binding of the function and

continue processing the rest of the block (as the count δ has already

been adjusted at the inlining points, as shown in Fig. 6). If the func-

tion isn’t inlined, we check if it is dead (δ (f) = 0), in which case we

delete the binding of f , decrease the count of variables occurring in
the body of the function e under the renaming substitution σ and

continue processing the rest of the block. Finally, if the function is

neither dead nor inlined, we apply the shrink inlining algorithm

(see Fig. 6) to the body of the function before processing the rest of

the block.

contractCase σ δ ρ θ b⃗2 = match b⃗2 with
| [] ⇒ ([], δ, θ)
| (c ⇒ eb) :: b⃗3 ⇒ (e′b, δ, θ) ← contract σ δ ρ θ eb

(b⃗′
3
, δ, θ) ← contractCase σ δ ρ θ b⃗3

((c ⇒ e′b) :: b⃗
′
3
, δ, θ)

caseCount δ σ b⃗ = match b⃗ with

| [] ⇒ δ
| (c′ ⇒ e) :: b⃗ ⇒ if c = c′

then decreaseCount δ σ (snd b⃗)
else δ ← decreaseCount δ σ e

caseCount δ σ b⃗

Figure 9: Case Algorithm

Proof of termination
contract is not structurally recursive. While most recursive calls

are done on a strictly smaller subterm of its term input e , the in-
lining case receives a one-AST-node program (App f y⃗) and calls

contract on the body of f as found in map ρ. However, if we believe
our algorithm is indeed applying shrink reduction to the term, as

we are going to prove next, we know that the size of the overall

program is decreasing. We can use the other inputs of contract to
approximate the size of the whole program. At any point in the al-

gorithm contract e , while converting program P , there exists some

PPDP’17, 9 – 12 October 2017, Namur, Belgium Olivier {Savary Bélanger} and Andrew W. Appel

applicative context C such that P = CJeK. This context C consists

of all of the bindings encountered on the way to e , some of which

(those eligible to be inlined or folded) are reflected in ρ, minus all

of the functions which have already been inlined. Our termination

measure for contract σ δ ρ θ e is |e | + |ρ |θ where |e | is the number

of AST nodes in e and |ρ |θ the environment map size, defined as:

|ρ |θ =
∑

x ∈D(ρ)

if
(
ρ (x) = (x⃗ , e) ∧ θ (x) = ⊥

)
then |e | else 0

Which is to say that we add up to the size of e the size of each
body of noninlined functions (according to θ) in ρ.

This approximation of the size of P is enough to show termina-

tion. For example, in the function inlining case where ρ (f) = (x⃗ , e)
and θ (f) = ⊥, we start we size |App f y⃗ | + |ρ |θ and the recursive

call has measure |e | + |ρ |θ [f 7→⊤] which can easily be shown to be

smaller:

|App f y⃗ | + |ρ |θ = 1 + |ρ\f |θ + |e |
= 1 + |ρ |θ [f 7→⊤] + |e |
< |e | + |ρ |θ [f 7→⊤]

Termination of the helper functions is proven in a similar manner.

For contractCase, we keep track of the fact that the current b⃗ is

a suffix of the original one b⃗ ′, and as such for any (c ⇒ e) ∈ b⃗,

|e | < |match y with b⃗ ′ |, and similarly for postFun with the list of

function declaration f⃗d.

Proof of correspondence
Our proof of correspondence relies on top-level programs being

closed. The main theorem for the correspondence of contractTop
with our shrink-rewrite system is stated as:

Theorem 5.1 (contractTop on closed program is in SR).

UB(P) ∧ CLO(P) =⇒ (P ⇁∗C contractTop P)

where CLO(e) is defined as FV(e) = {}.
This composes with Theorem 4.1 and further with Theorem 3.1

to have:

Theorem 5.2 (Correctness of contractTop).

UB(P) ∧ CLO(P) =⇒ P ≈ contractTop P

We might like to apply the shrink-reducer to open terms as well.

For any term P with the unique-binding property UB(P), there
exists a context C such that CLO(CJPK) and UB(CJPK); where C is

constructed such that for any sequence of rewrites CJPK ⇁∗C e ′,

there exists some e ′′ such that e ′ = CJe ′′K and P ⇁∗C e ′′. Thus, we
can use an alternative function contractTop′ which closes term P
with C , performs shrink reductions and then returns the unpacked

term. For this function, we have:

Theorem 5.3 (Correctness of contractTop′).

UB(P) =⇒ P ≈ contractTop′ P

As we recur down the program P and populate the different

maps carried by contract, we need a generalization of this theorem

where the current term e being converted is related to the state of

the top level program P . Every time the algorithmmodifies the term,

we have to justify it through our shrink-rewrite rules, which may

depend on global properties about the program being transformed.

For example, removing the definition of a dead variable involves

invoking the Dead_var rule which assume that the variable does

not occur in the rest of the program, which would be inconvenient

to calculate every time we want to use it. For that reason, a big

part of the correspondence proof is to show that the maps that are

maintained in the algorithm correctly represent the state of the

whole program. Intuitively, while converting program P , at any
point in the algorithmwhere we call contract σ δ ρ θ e , there exists
some applicative contextC such that P = σ (inline C θ)JσeK, where
inline is a function that removes the definition of any function f in

C such that θ (f) = ⊤. P is the state of the program, and each of the

maps σ , ρ,δ and θ are correct (according to their invariants) for it.

The reductions applied as we process term e affect P and the maps

are adjusted accordingly.

The generalized theorem is:

Theorem 5.4 (contract is in SR).

let P := σ (inline C θ)Jσ eK,
UB(P)∧
CLO(P)∧
INVP (δ)∧
INVC (ρ)∧
INVρ,P (θ)∧
INVσ (inline C θ), (σ e) (σ) =⇒

∃e′ δr θr ,
let P ′ := σ (inline C θ ′)Jσ e′K,
(e′, δr , θr) = contract σ δ ρ θ e ∧
P ⇁∗C P ′∧
INVP ′ (δr)∧
INVρ,P ′ (θ ′)
INVσ (inline C θr), (σ e′) (σ).

which is to say that when running contract e with maps respect-

ing their invariants and corresponding to a program P , contract
returns a term e ′ and modified maps δr and θr describing the up-
dated program P ′, and proofs that P shrink rewrites to P ′ and that

the invariants still hold on current maps on the new state. The

proof goes by induction on the size of the approximation of P given

by |e | + |ρ |θ , just like the proof of termination.

We now detail the invariant on each of the maps and give a

sketch of their importance in the proof of correspondence, before

describing the auxiliary lemmas to handle case and functions.

INVC,e (σ)
σ is a renaming substitution under which the program is being

considered. Its invariant states that any variable in its domain is

not bound in P , and that variables in its range are either dead or

bound on the stem of C:

INVC,e (σ) := ∀x y,
(x 7→ y) ∈ σ =⇒ x < BV(P)

∧|P |y = 0 ∨ y ∈ BVstem (C)

σ is applied everywhere in P , both in e and in C . Due to the

unique binding property, adjustment to σ due to a variable bound

in e will not affect C , because the variable could not occur free (or

otherwise) in C (σweaken). Moreover, the domain of σ is disjoint

from its codomain. Combined with the fact that we only add to σ
mapping from binding we remove (inlined functions arguments,

Shrink Fast Correctly! PPDP’17, 9 – 12 October 2017, Namur, Belgium

folded projections, etc.), we can freely fuse multiple delayed sub-

stitutions together (σ fuse) or stage them as needed, as shown in

Figure 10.

INVρ,P (θ)
θ keeps track of which functions have been inlined by the algorithm.

θ is threaded through the algorithm, and it is shown monotonic,

which is to say that for any variable f , if θ (f) = ⊤ for input θ
then output θr will have θr (f) = ⊤, which is important to prove

termination of contract. For the proof of correctness of contract,
θ ’s invariant states that inlined functions and their arguments do

not appear bound in P .

INVρ,P (θ) := ∀f , θ (f) = ⊤ =⇒
f < BV(P) ∧ ρ (f) = (x⃗, e) =⇒ x⃗ < BV(P)

INVP (δ)
δ accounts for the number of occurrences of each variable in P . Its
invariant is stated as:

INVP (δ) := ∀x, |P |x = δ (x)

We say δ is a correct count for P if for all variables x , δ (x) is
exactly the number of times x occurs in P . In the statement of the

theorem, this accounts for the delayed substitution σ and for the

bodies of inlined functions according to θ .
The unique binding property is important here again to en-

sure the algorithm updates the count correctly. For example, on

“contract let x = Projn y in e”, we knowδ is correct for “(σCθ)Jσ (let x =
Projn y in e)K” for some C which respects the provided maps. In

the case where we fold the projection, we need to prove that δ
after “foldCount δ σ x y⃗n y” is correct for “(σx 7→(σy⃗n) Cθ)Jσ [x 7→
σy⃗n]eK”. We can first observe that x cannot occur in Cθ due to the

unique binding property, so this is equivalent to “(σCθ)Jσ [x 7→
(σy⃗n)]eK”. By the invariant on σ , we know that x is neither in the

domain or the range of σ and as such “σ [x 7→ (σy⃗n)]e” is the same

as “(x 7→ (σy⃗n)) (σe)”, which is to say we can first apply σ before

substituting σy⃗n for x . Finally, by the unique binding property, we

know that x will not be bound in e such that all of its occurrences

will be replaced by σy⃗n , which brings us to the correct count.

INVC (ρ)
ρ is a view of the current context. The invariant for ρ asserts that

it contains every function and constructor on the stem of C and

nothing more.

INVC (ρ) := ∀x,
ρ (x) = (c, y⃗) ↔ ∃C1C2, C = C1 · (let x = Con c y⃗ in C2)
∧

ρ (x) = (y⃗, e) ↔ ∃C1C2 f̃d, C = C1 · (let f⃗d in C2)

∧(x (y⃗) = e) ∈ f⃗d

Some of the function in ρ may have been inlined (such that

they are not in inline C θ) and are thus not eligible to be inlined.

However, this means they do not occur in P , so we will will never

look them up in ρ again.

Auxiliary proofs
When converting case and bundles of functions, we call the auxil-

iary functions shown in figure 9, 7 and 8. Just like for contract, we
need to carefully select a P that best represents the current state

of the program; it is important to be aware of which portions of

the term have already been converted as they no longer need to be

considered under delayed σ and what is available to be folded or

inlined.

Case. When contracting term “match x with b⃗”, we first ver-

ify if we can fold the statement. If this is not possible, we con-

tract each of the branches in b⃗ using function contractCase. As
we progress through the lists of branches, b⃗ is split into the con-

tracted branches b⃗1 (initially empty) and its remaining suffix b⃗2
(empty when the contractCase returns to contract) . When calling

“contractCase σ δ ρ θ b⃗2”, the current state P is

σ (inline C θ)Jmatch x with (b⃗1 ++ σb⃗2)K

The invariant on σ allows us to prove that x = σx and b⃗1 = σb⃗1
such that

match x with (b⃗1 ++ σb⃗2) = σ
(
match x with (b⃗1 ++ b⃗2)

)
On b2 = (c ⇒ eb) ++ b3, we can rewrite the state as

σ
(
inline

(
C ·match x with b⃗1 ++ (c ⇒ J K) :: b⃗3

)
θ
)
Jσeb K

to recur on eb with contract. On return b ′
3
with updated δr and θr ,

the state is

P ′ = σ (inline C θr)Jmatch x with b⃗1 ++ (c ⇒ e ′b) :: b⃗3K

We also return proofs that P ⇁C P ′, that δr is a correct count for P
′
,

that the invariant for θr holds for σ and P ′ and that the invariant

for σ holds for P ′.

Functions. When contract is called on a bundle of functions

“let f⃗d in e”, we first call “preFun σ δ ρ f⃗d”, before converting

e and calling “postFun σ δ ρ θ f⃗d”. The carried maps already ac-

count for some prefix
⃗fd1 for which ⃗fd1 ++ ⃗fd2 = f⃗d, with ⃗fd1 = []

at first.

For “
⃗fd ′2 ← preFun σ δ ρ ⃗fd2”, program P , originally

σ (inline C θ)Jσ (let ⃗fd1 ++ ⃗fd2 in e)K

is updated to

P ′ = σ (inline C θ)Jσ (let ⃗fd1 ++ ⃗fd ′2 in e)K

with P ⇁C P ′. Functions in ⃗fd2 which are already dead have

their bindings removed from
⃗fd ′2 . δr is updated accordingly, and

is correct from P ′. The updated environment ρr adds to ρ all the

functions bound by
⃗fd ′2 . Because the names in f⃗d are disjoint from

the inlined functions as tallied by θ , the resulting P ′ (where ⃗fd1 is
empty) can be rewritten as

σ
(
inline (C · let ⃗fd ′2 in J K) θ

)
JσeK

which is in the right form to contract e .

When we call “postFun σ δ ρ θ f⃗d” from contract, e has already
been converted by the main function, and we turn on to processing

PPDP’17, 9 – 12 October 2017, Namur, Belgium Olivier {Savary Bélanger} and Andrew W. Appel

(σC)Jσ (let x = Proj
2
y in e′)K = (σC)Jlet x = Proj

2
(σy) in (σ e′)K by definition

= (σC)J(x 7→ (σy2)) (σ e′)K by fold_proj(⇁)
= (σC)J(σ [x 7→ (σy2)]) e′K by σ fuse
= (σ [x 7→ (σy2)]) CJ(σ [x 7→ (σy2)]) e′K by σweaken

Figure 10: Example of substitution fusion

the bodies of live, noninlined functions in f⃗d. After converting e ,
the program state P is

σ
(
inline (C · let ⃗fd1 ++ ⃗fd2 in J K) θ

)
Jer K

When
⃗fd2 = (f (x⃗) = eb ; ⃗fd3) for some live f , we need to show

that we can rewrite P to be of the right form for its body eb to be

translated (into e ′b) using convert:

σ
(
inline

(
C · let f⃗d1 ++ (f (x⃗) = eb) :: f⃗d3 in J K

)
θ
)
Jer K

=

σ
(
inline

(
C · let f⃗d1 ++ (f (x⃗) = J K) :: f⃗d3) in er

)
θ
)
Jeb K

By the invariant on σ and θ , we know er is equivalent to σer and
that inline with θ has no effect on er . The proof of correctness for
postcontract carries this fact along to be able to move er in and out

of the context as we recur on functions’ bodies. postFun updates

δr and θr and returns
⃗fd ′3 which can form

⃗fd ′2 = (f (x⃗) = e ′b ;
⃗fd ′3),

with the resulting state being

P ′ = σ
(
inline (C · let ⃗fd1 ++ ⃗fd ′2 in J K) θr

)
Jer K

which can be rewritten as

σ (inline C θr)Jlet ⃗fd1 ++ ⃗fd ′2 in er K

We also return proofs that P ⇁C P ′ and that the maps properly

characterize P ′.

6 PERFORMANCE MEASUREMENTS
We have tested the effect of the shrink inliner on a few programs

when evaluated in the intermediate language on which the transfor-

mation is performed. The results are included in Figure 11. Binom
is an implementation of binomial queues [7] (priority queues with

log-time insert, delete-min, and merge). Color runs a verified imple-

mentation of the Kempe/Chaitin algorithm for graph coloring [8]

on a large graph. Veristar [9] is a verified theorem prover (resolution

theorem proving with paramodulation) for a subset of separation

logic, run over a large entailment.

We see a significant number of functions inlined in a single shrink

inlining (S.I.) pass, resulting in substantially smaller programs that

run 5x faster. Most of the inlined functions are administrative re-

dexes. Although one pass does not always reduce to shrink-normal

form, very few redexes remain for the second and third passes;

this justifies the quasilinear time designation [1] (actually, for our

implementation, quasi-N logN time).

Shrink-inlining is fast: even on a large program such as Veristar,
it takes a fraction of a second. The table shows that it’s important

to shrink-inline both before and after closure-conversion; if not run

before, closure-conversion takes too long; if not after, the compiled

program will run slower.

7 REDUCTION OF ADMINISTRATIVE
REDEXES

Administrative redexes are β-redexes introduced by the CPS trans-

formation and that can safely be reduced without affecting the

original term. For example, an early CPS transformation [4] con-

verts the term “(λx .x) y” as

λk1.(λk2.k2 (λx .λk3.k3 x)) (λm.(λk4.k4 y) (λn.(m n) k1))

Implementations of the CPS transformation in several compil-

ers, in order to generate smaller terms that leave less work for

later optimization phases to do, cleverly avoid producing so many

administrative redexes [10, 11]. Danvy and Nielsen [12] give a com-

prehensive account of different CPS transformations and on the

administrative redexes they introduce.

But these clever CPS transformations that avoid producing ad-

ministrative redexes are more difficult to prove correct [5]. Further-

more, some administrative redexes should not be reduced! They
represent join points of the control flow; reducing them duplicates

the instructions following the join point [13]. This duplication oc-

curs in many optimizing CPS transformations over languages with

pattern-matching [5, 13].

We recommend: use a simple CPS transformation that makes no

effort to reduce administrative redexes; then use shrink-reduction.

This is approximately as efficient as the more clever CPS transfor-

mation, and it reduces just the right set of redexes, including all

the administrative that are not join points.

Theorem 7.1. All administrative redexes with a single applied
occurence will be reduced in a single pass of the shrink inliner.

The proof is a corollary of our proof of correspondence of the

shrink inliner (Theorem 5.4), where we prove that the algorithm

correctly tabulates the number of occurrences for every variables in

the program, such that administrative redexes with a single applied

occurence will be eligible for inlining when we get to them during

the first shrink inlining pass.

8 RELATEDWORK
The shrink inliner we present in Figure 6 is taken almost directly

from Appel and Jim [1], who describe the algorithm implemented

in the SML/NJ compiler. They present a set of rewriting rules which

was the main source of inspiration for our shrink-rewrite system,

and prove its confluence. The main difference is that their algorithm

allowed occurrence-counts to be over-approximations, and they

split the occurrence-counts into applied and escaping in order to

tolerate this approximation. However, with a few changes to the

occurrence updates, we can get the exact number of occurrence in

our map δ , and as such have no reason to split it into the two type

of occurrences.

Shrink Fast Correctly! PPDP’17, 9 – 12 October 2017, Namur, Belgium

Benchmark Binom Color Veristar

Size without Shrink Inlining (AST nodes) 3156 76.6k 82.0k

Size with S.I. (AST nodes) 616 28.5k 14.8k

of evaluation steps without S.I. 4560 120.3M 348.3M

of evaluation steps with S.I. 1132 26.9M 82.9M

Time for one S.I. pass (sec., running extracted in Ocaml) 0.0069 0.34 0.27

inlined functions in one S.I. pass 620 9240 14305

of cases folded by one S.I. pass 2 1 8

of projections folded by one S.I. pass 2 2 14

of dead constructors removed by one S.I. pass 41 52 486

of dead functions removed by one S.I. pass 0 87 51

of shrink reductions performed by second S.I. pass 0 24 16

of shrink reductions performed by third S.I. pass 0 3 0

Size after closure conversion without S.I. (AST nodes) 6390 188.5k 255.8k

Size after closure conversion with S.I. (AST nodes) 1163 34.9k 32.3k

Time for closure conversion without S.I. (s.) 0.30 1039.68 481.43

Time for closure conversion with S.I. (s.) 0.0080 3.28 1.41

of functions inlined by S.I. after closure conversion 0 0 0

of cases folded by S.I. after closure conversion 0 0 0

of projections folded by S.I. after closure conversion 6 136 250

of dead constructors by S.I. removed after closure conversion 4 1261 796

of dead functions by S.I. removed after closure conversion 0 4 0

Figure 11: Performance measurements

Appel and Jim [1] present a second algorithm that reduces all

shrink redexes in linear time using a term representation that heav-

ily uses imperative ref-update. Kennedy [3] further refines this

algorithm. Neither Appel and Jim nor Kennedy prove the correct-

ness of any of their algorithms with repect to an evaluation relation.

The cakeML project [14] includes a verified compiler for a “sub-

stantial subset of Standard ML”. It contains a two-pass optimization

inlining small, non-recursive functions. Inlining decisions are not

updated as inlining is performed, making it similar to the naive al-

gorithm that Appel and Jim show performs much worse than linear

time. The optimization pipeline also includes a constant propaga-

tion and folding phase which, for example, folds if -statements if

their guard can be computed statically. However, doing these opti-

mizations in different phases misses cascading reductions where

further optimizations are enabled by each reduction.

Pilsner [15] is a verified compiler with an ML-like source lan-

guage and CPS-based intermediate language. It includes a simple

function-inlining optimization which does not update its inlining

decisions during the inlining pass, nor does it inline within the

body of inlined functions. It has a dead-variable-elimination phase

deleting dead definition in a single pass up and down a program. It

addition to missing cascading reductions, we find that dead defini-

tions often arise from other optimizations such as projection-folding

which are not currently present in the optimization pipeline of this

compiler.

CompCert [16] is a verified optimizing compiler for C. It includes

a function inlining pass. However, the decisions to inline are taken

in a different pass and are not updated as inlining is done. There is

no attempt (and in a C compiler, less need) to combine inlining, con-

stant folding, and dead-variable elimination into a single efficient

pass.

Administrative redexes in the context of CPS transformations

have been the subject of many papers since being introduced by

Plotkin [4]. Our pipeline which consists of a simple CPS transfor-

mation followed by a pass which reduces administrative redexes

is similar to the two-pass CPS transformation presented by Sabry

and Felleisen [11]. However, our shrink inlining pass is not limited

to reducing administrative redexes; it also performs case-folding,

dead-variable elimination, and reduction of many nonadministra-

tive redexes.

9 CONCLUSION
We have presented a proof of correctness for a shrink inliner com-

pilation phase combining constant folding, function inlining and

dead-variable elimination. The full proof composes multiple cor-

respondence proofs, step-by-step refining a semantic notion of

equivalence into our syntax-driven algorithm.

We believe other transformations could reuse the proof of cor-

rectness of the general rewriting system, either directly or through

a refined system such as shrink rewrites.

Proving correspondence of the algorithm to the shrink-rewrite

system rather than the general one or the logical relation signifi-

cantly simplifies the reasoning. As previously stated, some of the

invariants on the terms and maps, such as closedness, are pre-

served by shrink reductions, and as such do not have to be threaded

through the proof. Moreover, the shrink-rewrite system already

incorporates some optimizations that make it easier to prove the

algorithm correspondence. For example, substitution is performed

PPDP’17, 9 – 12 October 2017, Namur, Belgium Olivier {Savary Bélanger} and Andrew W. Appel

in a global way since the unique binding property prevents any

shadowing and capture of variables. Meanwhile, the notion of sub-

stitution used for the rewrite system is the more usual one which

corresponds closely with the semantics of our language which is

defined for nonuniquely bound terms.

Acknowledgments. We thank Abhishek Anand, Trevor Jim, Steve

Zdancewic and the anonymous reviewers for valuable feedback.

This work was supported in part by NSF grants CCF-1407794 and

CCF-1521602.

REFERENCES
[1] Andrew W. Appel and Trevor Jim. Shrinking Lambda Expressions in Linear

Time. J. Funct. Program., 7(5):515–540, September 1997.

[2] Abhishek Anand, Andrew W. Appel, Greg Morrisett, Zoe Paraskevopoulou,

Randy Pollack, Olivier Savary Bélanger, Matthieu Sozeau, and Matthew Weaver.

Certicoq: A verified compiler for Coq. In CoqPL 2017: The Third International
Workshop on Coq for Programming Languages, January 2017. URL http://conf.

researchr.org/event/CoqPL-2017/main-certicoq-a-verified-compiler-for-coq.

[3] Andrew Kennedy. Compiling with Continuations, Continued. SIGPLAN Not., 42
(9):177–190, 2007.

[4] Gordon D. Plotkin. Call-by-name, call-by-value and the Îż-calculus. Theoretical
Computer Science, 1(2):125 – 159, 1975.

[5] Zaynah Dargaye and Xavier Leroy. Mechanized Verification of CPS Transforma-
tions, pages 211–225. Springer, 2007.

[6] Zoe Paraskevopoulou andAndrewW. Appel. Modular closure conversion, proved

correct in Coq. in preparation, 2017.

[7] Jean Vuillemin. A data structure for manipulating priority queues. Commun.
ACM, 21(4):309–315, April 1978. ISSN 0001-0782. doi: 10.1145/359460.359478.

URL http://doi.acm.org/10.1145/359460.359478.

[8] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E.

Hopkins, and Peter W. Markstein. Register allocation via coloring. Computer
Languages, 6:47–57, 1981.

[9] Gordon Stewart, Lennart Beringer, and AndrewW. Appel. Verified heap theorem

prover by paramodulation. SIGPLAN Not., 47(9):3–14, 2012.
[10] Olivier Danvy and Andrzej Filinski. Representing control: a study of the cps

transformation, 1992.

[11] Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-

passing style. In Conference on LISP and Functional Programming, pages 288–298,
1992.

[12] Olivier Danvy and Lasse R. Nielsen. CPS Transformation of Beta-redexes. Inf.
Process. Lett., 94(5):217–224, June 2005.

[13] Amr A. Sabry. The formal relationship between direct and continuation-passing

style optimizing compilers: A synthesis of two paradigms, 1994.

[14] Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony Fox, Scott Owens,

and Michael Norrish. A New Verified Compiler Backend for CakeML. SIGPLAN
Not., 51(9):60–73, 2016.

[15] Georg Neis, Chung-Kil Hur, Jan-Oliver Kaiser, Craig McLaughlin, Derek Dreyer,

and Viktor Vafeiadis. Pilsner: A Compositionally Verified Compiler for a Higher-

order Imperative Language. SIGPLAN Not., 50(9):166–178, 2015.
[16] Xavier Leroy. Formal Verification of a Realistic Compiler. Communications of

the ACM, pages 107–115, 2009.

http://conf.researchr.org/event/CoqPL-2017/main-certicoq-a-verified-compiler-for-coq
http://conf.researchr.org/event/CoqPL-2017/main-certicoq-a-verified-compiler-for-coq
http://doi.acm.org/10.1145/359460.359478

	Abstract
	1 Introduction
	2 Background
	3 General Rewrites
	4 Shrink Reductions
	5 Shrink Inliner
	6 Performance measurements
	7 Reduction of Administrative redexes
	8 Related Work
	9 Conclusion
	References

