
Under consideration for publication in J. Functional Programming 1

Dependent Types Ensure Partial Correctness of

Theorem Provers

Andrew W. Appel

Princeton University, 35 Olden Street, Princeton, NJ 08544, USA

(e-mail: appel@princeton.edu)

Amy P. Felty,

University of Ottawa, 800 King Edward Ave., Ottawa, Ontario K1N 6N5, Canada

(e-mail: afelty@site.uottawa.ca)

Abstract

Static type systems in programming languages allow many errors to be detected at compile
time that wouldn't be detected until runtime otherwise. Dependent types are more expres-
sive than the type systems in most programming languages, so languages that have them
should allow programmers to detect more errors earlier. In this paper, using the Twelf sys-
tem, we show that dependent types in the logic programming setting can be used to ensure
partial correctness of programs which implement theorem provers, and thus avoid runtime
errors in proof search and proof construction. We present two examples: a tactic-style
interactive theorem prover and a union-�nd decision procedure.

1 Introduction

Many theorem proving systems implement tactics and tacticals, which provide ex-

ible goal-directed proof search. Tactics reduce goals to subgoals, while tacticals are

primitives for combining tactics into larger ones that can perform multiple proof

steps. They also allow programming of proof search strategies. Some of the �rst

provers using this style of proof search (e.g. LCF (Gordon et al., 1979) and HOL

(Gordon & Melham, 1993)) were written in ML, whose pattern matching, excep-

tion handling, and polymorphic type system are useful in writing tactics concisely.

Felty (1993) showed that Lambda Prolog's (Nadathur & Miller, 1988) higher-order

uni�cation, backtracking, and polymorphic type system provided a more expres-

sive notation for writing tactics and tacticals. Speci�cally, higher-order abstract

syntax is more useful and expressive than ML pattern matching, backtracking is

more concise than exception handling, but Lambda Prolog's prenex-polymorphic

type system is essentially similar to ML's.

In this paper we will discuss the advantages of a dependent type system over ML-

style polymorphism for writing theorem provers. Dependent types could be used in a

functional language (such as ML) or a logic-programming language (such as Lambda

Prolog); we use the logic-programming language Twelf (Pfenning & Sch�urmann,

1999). This means that the style of prover we illustrate is similar to those presented

2 Appel and Felty

by Felty (1993), but the issue of ML-style types vs. dependent types is orthogonal

to the issue of ML-style or Prolog-style control and data structures. A decade of

experience with tactical Felty's prover has shown that this technique is expressive

and powerful, and could be used as the core of a full interactive theorem prover

similar in strength to many existing provers such as HOL and Isabelle that have

been used in a variety of large-scale applications; we expect that the dependently

typed variant of Felty's approach would scale just as well.

A problem in the implementation of theorem provers (tactical and other) is that

they may have bugs. That is, the \proof" constructed by the prover may not be

valid. There are at least two ways that industrial-strength theorem provers defend

against invalid proofs:

� Edinburgh LCF (and Isabelle (Paulson, 1994), HOL, etc.) have an unforgeable

abstract data type theorem. An attempt by a prover to construct an invalid

proof will be detected at run time when some (privileged) proof-constructor

function detects mismatched arguments.

� Coq (Barras et al. , 1998) (and Elf, Twelf, etc.) require provers to construct

proof witnesses that can be checked (in principle) by a small and reliable

type-checker that's independent of any (complex, unreliable) theorem prover.

Provers in Coq and Twelf have usually been written in ML (Caml and Stan-

dard ML, respectively); although each of these systems contains a depen-

dently typed language (functional and logic-programming, respectively), that

language is meant for describing objects in the object logic, and not as a

language for programming provers.

But in each case, bugs in the tactics (or other proof-search algorithm) will be

detected only when the tactics are executed: either when they attempt to use a proof

constructor with bad arguments, or when a proof witness fails the type-checker.

Static type systems (such as ML's) have the advantage over dynamic type systems

(such as Lisp's) that many errors are detected much earlier, without needing to run

the program on an adequate sample of test cases. The languages in which the

above-described theorem provers are implemented { Standard ML, Caml, Lambda

Prolog{ all have static checking. But ML-style polymorphism is not strong enough

to catch all programming errors.

We had experience in building a complicated tactical prover prototype (in Lambda

Prolog) for a proof-carrying code application (Appel & Felty, 2000). We had a collec-

tion of complicated, ad-hoc tactics (as required by G�odel's incompleteness theorem,

any suÆciently powerful prover will be complicated and ad-hoc). As we maintained

the prover, from time to time we found that it built invalid proofs; to debug, we

had to do runtime tracing of appropriately stripped-down test cases to isolate the

problem.

As we will show, using a dependently typed programming language can yield a

partial correctness (i.e., soundness) guarantee for a theorem prover: if the implemen-

tation type-checks, then any proof (or subproof) that it builds will be valid. There

is no total correctness (i.e., completeness) guarantee: that is, the prover might still

Correctness of Theorem Provers 3

in�nite-loop or be incomplete in some other way { i.e., fail with a run-time exception

(in ML) or backtracking failure (Prolog).

The source code for all our examples can be found at

www.cs.princeton.edu/~appel/prover/.

2 LF and Twelf

The logical framework LF (Harper et al., 1993) allows the speci�cation of logics, and

implementations of LF such as Twelf (Pfenning & Sch�urmann, 1999) allow checking

of proofs in those logics. Another view of LF/Twelf is that it is a higher-order

dependently typed logic-programming language: Prolog, with higher-order abstract

syntax (as in Lambda Prolog), well-scoped dynamic clauses, and a dependent type

system. We will make use of both views of LF/Twelf: we will specify an object

logic (e.g., �rst-order logic or higher-order logic), and we will also do Prolog-like

programming of the prover tactics.

The Twelf (Pfenning & Sch�urmann, 1999) implementation of LF has (partial)

type inference, proof search (i.e., Prolog-style backtracking), and constraint domains

(e.g., the theory of the rational numbers). Twelf has a distinguished type type,

the type of all types (and the type of logic-programming goals). A constructor

declaration declares an axiom or inference rule of a logic, or a logic-programming

data-constructor, or a logic-programming clause. A de�nition can be used to make

a theorem, a lemma, or a de�ned function or predicate. 1

An object logic. We will use Twelf to write theorem provers. We begin by de�ning

operators and axioms of an object logic: here we use �rst-order logic, which is

encoded by the Twelf declarations in Figure 1. Everything we do in this paper also

works for higher-order and other logics; but we wish to simplify the presentation.

The declaration i : type declares the type i of individuals (over which the quan-

ti�ers range), and o : type declares the type of logical formulas (booleans). The

constant pf is a dependent type constructor: for any formula A, pf (A) is a type;

we interpret this type to mean, \proofs of the formula A." That is, if p has type

pf (false imp true), then p must be a proof of false imp true.

The %use declaration brings in the (built-in) theory of the rational numbers, with

constants 0, 1, 2, 3/2, 248/83, and so on, and operators +, �, > , �. Though we

don't need the full power of the rationals { we use numbers only to index elements

of our hypothesis list { this is Twelf's preferred number system, so it's simplest to

just use it. We de�ne a datatype constructor const : rational ! i to inject rational

constants into our logic's element type.

We de�ne in�x operators imp, and, and or to construct formulas. The proof-

constructor and i (and-introduction) can be read as, \function taking a proof of A

and returning (function taking a proof of B and returning a proof of A and B)."

Thus if p1 : pf (A) and p2 : pf (B), then and i p1 p2 : pf (A and B).

1 Or even a logic-programming clause justi�ed by a proof, though we won't use that capability
in this paper.

4 Appel and Felty

i : type :
o : type :
pf : o ! type :

%use inequality/rationals :
const : rational ! i :

imp : o ! o ! o : %in�x right 10 imp :
imp i : (pf A ! pf B)! pf (A imp B) :
imp e : pf (A imp B) ! pf A ! pf B :

and : o ! o ! o : %in�x right 12 and :
and i : pf A ! pf B ! pf (A and B) :
and e1 : pf (A and B) ! pf A :
and e2 : pf (A and B) ! pf B :

or : o ! o ! o : %in�x right 11 or :
or i1 : pf A ! pf (A or B) :
or i2 : pf B ! pf (A or B) :
or e : pf (A or B) ! (pf A ! pf C) ! (pf B ! pf C) ! pf C :

forall : (i ! o) ! o :
forall i : (fx : ig pf (A x)) ! pf (forall A) :
forall e : pf (forall A) ! fx : ig pf (A x) :

exists : (i ! o) ! o :
exists i : fx : igpf (A x) ! pf (exists A) :
exists e : pf (exists A) ! (fx : ig pf (A x) ! pf B) ! pf B :

false : o :
false e : pf false ! pf A :

Fig. 1. First-order logic.

The proof-constructor imp i (implication-introduction) can be read as, \function

taking (function from proof of A to proof of B) and returning proof of (A imp B)."

Twelf's function notation uses square brackets for lambda, thus ([p] and i p p) is

a function with formal parameter p and result (and i p p). Alternately, we can

read imp i[p : pf A] Q(p) to mean, assuming A is true (with proof p), then the

expression Q(p) is a proof of B; thus A imp B.

In the following lemma, represented as a Twelf de�nition, we apply imp i to this

function to get the proof in the body of the de�nition.

lemma1 : pf (A imp (A and A)) = imp i ([p : pf A] and i p p) : 2

As in most presentations of lambda-calculus, the lambda (square brackets) has a

syntactic scope that extends as far as possible to the right; Twelf can reconstruct

2 Unbound capitalized variables are implictly universally quanti�ed, so Twelf would internally
reconstruct this de�nition to

lemma1 : fA : og pf (A imp (A and A)) = [A : o] imp i ([p : pf A] and i p p) :

where the curly braces construct dependent types: the type of lemma1 is, in e�ect, \function
from formula (call it A) to proofs of A imp (A and A)."

Correctness of Theorem Provers 5

the type of the function argument; and our and binds tighter than imp; so we could

also write

lemma1 : pf (A imp A and A) = imp i [p] and i p p :

Using this style of de�nition and proof, we introduce some useful de�nitions and

lemmas:

not : o ! o = [A] A imp false :

not i : (pf A ! pf false) ! pf (not A) = imp i :

not e : pf (not A) ! pf A ! pf false = imp e :

true : o = not false :

true i : pf (true) = not i [p] p :

Notational de�nitions in Twelf are like type abbreviations in ML: the type-checker

can freely expand them when type-checking. Furthermore, the type-checker's uni�er

uses rules of beta-eta equivalence. Thus, the proof of the true-introduction rule

true i must have type pf (true) which is equivalent (by de�nition) to pf (not false);

the right-hand-side of true i is not i [p] p whose type is indeed pf (not false). Note

that even though not i is de�ned to be imp i, it is really the special case where the

B in imp i is instantiated with false.

These de�nitions { including the proofs of the lemmas not i ; not e ; true i { are

type-checked by the system, so they can't be invalid. This means that we don't

really need a prover at all; we could just write proofs by hand (as de�nitions) and

check them in Twelf's type-checker; and in fact such a method can be quite e�ective

and useful (Appel, 2000).

However, we wish to automate: we will write a program to produce proofs semi-

automatically or automatically, guided by tactical hints. Since Twelf's support for

interactive I/O is minimal, in the prototype we do \interactive" tactical proving by

editing proof-scripts.

3 A theorem prover using tactics and tacticals

Our prover manipulates goals, which are data structures of the form h1 ; ::: ; hn ` h,

where each of the hi is a hypothesis, represented as a formula with attached proof.

For h1 ; ::: ; hn we assume that the proof is already constructed. The conclusion h

is also a formula with attached proof; typically we have not yet found the proof, so

its \attached proof" is an uninstantiated logic variable.

The Twelf declarations for such data structures are as follows. hyp is the type of

a single hypothesis, and hyps is a list of hypotheses:

hyp : type :

hyps : type :

An individual hypothesis is a pair of some formula A and a proof of that formula;

we declare the nonassociative in�x constructor by to construct such formula/proof

6 Appel and Felty

pairs:

by : fA : og pf (A) ! hyp : %in�x none 5 by :

argu
m
ent
1

argu
m
ent
2

resu
lt

This is a dependently typed constructor. Thus, (true by true i) is well typed, but

(false by true i) is ill typed, even though false is a formula and true i is a proof {

it's the wrong type of proof.

In order to write A by P instead of by A P, we declare by as an in�x operator

(nonassociative, binding tightness 5) using the %in�x declaration shown above.

To make hypothesis lists we declare two constructors for hyps, where our cons is

an in�x comma:

nil : hyps :

; : hyp ! hyps ! hyps : %in�x right 4 ; :

Now we can declare the goal type with its in�x constructor `3.

goal : type :

` : hyps ! hyp ! goal : %in�x none 3 ` :

& : goal ! goal ! goal : %in�x right 2 & :

allp : (pf A ! goal) ! goal :

alli : (i ! goal) ! goal :

tt : goal :

In addition to the basic goal h1 ; ::: ; hn ` h we have compound goals G1&G2 to

represent the case where the use of a tactic results in several subgoals (remaining

proof obligations). The empty goal tt is the identity for & and indicates no remain-

ing proof obligations. As we will explain later, we need separate constructors allp

and alli because Twelf is not a polymorphic language. This implementation of goals

can be viewed as the Twelf version of a similar implementation in Lambda Prolog

(Felty, 1993). The programs which manipulate them, in particular the tacticals and

the maptac program below, are similar also. They do not make any essential use of

dependent types, and thus do not contribute to the partial correctness of our tac-

tics. It is mainly the type of the by constructor introduced above that is important

for guaranteeing partial correctness of our tactics.

Tactics. A tactic is a procedure which takes a goal as input and returns subgoals

that remain to be proven. We �rst show some simple tactics that implement the

application of inference rules and lemmas, and later show some more complex tactics

which perform some proof search. We �rst need the type tac of tactic names, and

then we de�ne the names of some tactics:

3 Identi�ers in the real Twelf system must be written in ASCII, of course, so we use the symbol
|- for `.

Correctness of Theorem Provers 7

tac : type :

initial tac : tac :

and r tac : tac :

and l tac : rational ! tac :

imp r tac : tac :

imp l tac : rational ! tac :

We de�ne tactic as the interpreter relation for the logic program; that is, the

expression tactic T G1 G2 is a logic-programming goal that applies the tactic

named T to the proof obligation G1, resulting in remaining proof obligations G2.

tactic : tac ! goal ! goal ! type :

Finally, we de�ne clauses for the tactic relation. Generally, there are one or two

clauses for each tactic-name. Examples are:

t1 : tactic initial tac (Hs ` A by P) tt

nth item N (A by P) Hs :

t2 : tactic and r tac (Hs ` (A and B) by (and i P1 P2))

(Hs ` A by P1 & Hs ` B by P2) :

t3 : tactic imp r tac (Hs ` (A imp B) by (imp i P1))

(allp [p2 : pf A](A by p2 ; Hs ` B by (P1 p2))) :

t9 : tactic (and l tac N) (Hs ` C by P)

((A by (and e1 Q)) ; (B by (and e2 Q)) ; Hs ` C by P)

nth item N ((A and B) by Q) Hs :

t11 : tactic (imp l tac N) (Hs ` C by P)

((Hs ` A by P2) & ((B by (imp e P1 P2)) ; Hs ` C by P))

nth item N ((A imp B) by P1) Hs :

The lines t1 ; t2 ; ::: can be understood as logic-programming clauses, where is

used instead of the Prolog or Lambda Prolog :-. Thus, the rule t1 might be written

in Lambda Prolog as

tactic initial_tac (Hs |- (A by P)) tt :-

nth_item N (A by P) Hs.

where the data constructors |- and by are in�x (of course, in Lambda Prolog the

type-checker can't check soundness of the tactic).

The operational interpretation of a Prolog clause H :- G1; G2; G3 or a Twelf

clause H G1 G2 G2 is, �rst match the head H against the current goal.

If that matches, try and satisfy subgoal G1; if that matches, satisfy subgoal G2,

and so on. Twelf, like Prolog, uses backtracking (so that if G2 fails, then a di�erent

way of satisfying G1 is tried, and so on).

The supporting clauses for nth item N H Hs are straightforward (typed) Prolog,

and de�ne the relation that the Nth item of Hs is precisely H :

8 Appel and Felty

nth item : rational ! hyp ! hyps ! type :

nth item1 : nth item 1 H1 (H1 ; Hs) :

nth itemN : nth item N H1 (H2 ; Hs) nth item (N � 1) H1 Hs :

Thus, initial tac matches a goal Hs ` A by P if there exists an N such that the

hypothesis A by P is the Nth item of Hs (in Isabelle this is called assume tac).

We can let Prolog backtracking �nd the right N for initial tac because the sub-

goals are trivial, but for and l tac it would be unwise to rely on this, because

and l tac has nontrivial subgoals. Therefore the user must supply a number when

using and l tac, but has the option of supplying a Prolog uni�cation variable, which

causes nth item to do a backtracking search for an assumption of the form A and B.

The tactic implementation of most of the right introduction rules of our object

logic is straightforward. The input goal contains the conclusion paired with its

proof, and the output goal contains the hypotheses paired with their proofs. If

there is more than one subgoal, they are connected by &, as in and r tac. Rules

which use nested implication or quanti�cation in Twelf such as imp i and forall i in

Figure 1 must use one of the all goal constructors in their tactic implementations.

For example, the argument to imp i is a function from proofs of A to proofs of

B. In the tactic version (t3 above), the use of allp introduces a bound variable p2

to represent an arbitrary proof of A which gets paired with A and added to the

assumption list Hs of the subgoal.

The tactics for the left introduction rules are implemented so that they perform

forward proof from hypotheses. An argument is given to indicate the position in the

hypothesis list of the hypothesis to which the rule should be applied. The partial

proofs are constructed and added to the hypothesis lists of the subgoals.

For each of the left introduction rules, we provide a second version of the tactic

which removes the hypothesis to which the speci�ed rule is applied when forming

the subgoal. For example, for and-elimination, we have:

t10 : tactic (and l tacR N) (Hs1 ` C by P)

((A by (and e1 Q)) ; (B by (and e2 Q)) ; Hs2 ` C by P)

nth and rest N ((A and B) by Q) Hs1 Hs2 :

where nth and rest is a logic-programming predicate which �nds the Nth formula

in Hs1 and returns the set of hypotheses Hs2 with the Nth one removed. Such

tactics are useful in writing automated proof search procedures so that they can

avoid repeatedly applying the same rule to the same hypothesis.

More tactics. Using these general principles, it's easy to implement a large variety

of tactics. Here we show three more:

forall r tac : tac :

forall l tac : rational ! tac :

resolve2 tac : (pf A1 ! pf A2 ! pf B) ! tac :

Correctness of Theorem Provers 9

t7 : tactic forall r tac (� ` (forall A) by (forall i P))

(alli [t : i](� ` (A t) by (P t))) :

t17 : tactic (forall l tac N) (� ` C by P)

(((A X) by (forall e Q X)) ; � ` C by P)

nth item N ((forall A) by Q) � :

t25 : tactic (resolve2 tac (Thm : pf A1 ! pf A2 ! pf B))

(� ` B by (Thm P1 P2))

(� ` A1 by P1 & � ` A2 by P2) :

To prove a universally quanti�ed formula 8x:A(x), forall r tac introduces an alli

goal; then clause m4 (shown below) will dynamically create an atom of type i, so

that the subgoal, in e�ect, is to prove A with the new atom substituted for x. The

substitution is handled entirely by the Twelf metalogic (the same would be true in

Lambda Prolog).

To make use of a universally quanti�ed hypothesis, forall l tac uses the argument

N to select the Nth hypothesis from the assumptions, which must be of the form

forall A (equivalently, forall [x] A(x)). A logic variableX is introduced to instantiate

the bound variable in A. It can later be uni�ed with a term that is needed to

complete the proof. Then A X is uni�ed with the hypothesis in the goal formula;

although this is higher-order uni�cation (which is undecidable in general), extensive

experience with the use of similar tactics in Lambda Prologhas found them to work

�ne in practice. We can also write a version of this tactic that allows the user to

provide the instantiation term X at the time the tactic is applied. We do this by

adding X to the �rst argument as follows:

forall l tacx : rational ! i ! tac :

t17x : tactic (forall l tacx N X) (� ` C by P)

(((A X) by (forall e Q X)) ; � ` C by P)

nth item N ((forall A) by Q) � :

We have also shown an example of a resolution tactic. Given some theorem T

of the form, pf (A1) ! pf (A2) ! pf (B), the tactic resolve2 tacT matches a

goal B and produces subgoals A1 and A2. A minor disadvantage of doing this in a

well typed way is that we need a di�erent tactic for 2-premise theorems than for

3-premise theorems, and so on. Note that the user need not type in a proof term

for the Thm argument directly. Instead, the name of a previously de�ned Twelf

declaration which expresses a lemma can be given, as long as it has the right type.

By Twelf de�nition expansion, this name is equivalent to the term it abbreviates.

Tacticals. Tacticals implement basic control mechanisms which allow simple tactics

to be combined into more complex ones, and can be used as a programming language

to implement search procedures. Most tacticals assume the input goal is a basic

goal (constructed using ` in our prover). In the logic programming setting, we �rst

implement a maptac tactical which applies tactics to compound goals, reducing

10 Appel and Felty

them to basic goals before passing them on to other tacticals and tactics.

maptac : tac ! goal ! goal ! type :

m1 : maptac T tt tt :

m2 : maptac T (InG1 & InG2) (OutG1 & OutG2)

maptac T InG1 OutG1 maptac T InG2 OutG2 :

m3 : maptac T (allp InG) (allp OutG)

fpg maptac T (InG p) (OutG p) :

m4 : maptac T (alli InG) (alli OutG)

ftg maptac T (InG t) (OutG t) :

m5 : maptac T (Hs ` A by P) OutG

tactic T (Hs ` A by P) OutG :

This tactical reduces the goal to subgoals in a manner consistent with the meaning

of the top-level goal constructor. In the clauses for the all constructors, the quan-

ti�cation within goals is transferred to quanti�cation in Twelf. For example, allp

quanti�es over proofs in the object logic; in the m3 clause, p is introduced as an

arbitrary proof to replace the bound variable in InG. After completion of the Twelf

subgoal, OutG is also an abstraction over p.

Since maptac has the same type as tactic, we could have dispensed with maptac

and writtenm1; ::: ; m4 as clauses for tactic; but this would allow the user less control

of how and when the tactics are applied.

Some common tacticals found in most tactic-style theorem provers are imple-

mented in Twelf with the following clauses.

idtac : tac :

then : tac ! tac ! tac : %in�x left 2 then :

orelse : tac ! tac ! tac : %in�x left 2 orelse :

repeat : tac ! tac :

try : tac ! tac :

complete : tac ! tac :

tactical1 : tactic idtac G G :

tactical2 : tactic (T1 then T2) InG OutG

tactic T1 InG MidG maptac T2 MidG OutG :

tactical3 : tactic (T1 orelse T2) InG OutG tactic T1 InG OutG :

tactical4 : tactic (T1 orelse T2) InG OutG tactic T2 InG OutG :

tactical5 : tactic (repeat T) InG OutG

tactic ((T then (repeat T)) orelse idtac) InG OutG :

tactical6 : tactic (try T) InG OutG tactic (T orelse idtac) InG OutG :

tactical7 : tactic (complete T) InG tt

tactic T InG OutG goalreduce OutG tt :

The idtac tactical returns the goal unchanged and is used mainly in programming

search strategies for ending a series of multiple proof steps. The then tactical per-

forms the composition of tactics. The orelse tactical is also useful in programming

search strategies and allows choice of tactics. The repeat tactical repeatedly applies

Correctness of Theorem Provers 11

a tactic until it can no longer be applied and is de�ned in terms of the others. The

try tactical prevents failure of the given argument tactic by using idtac when tactic

T fails. Finally the complete tactical tries to completely solve the given goal. It

uses goalreduce (not shown) to simplify compound goal expressions by removing

occurrences of tt from them. For example, applying multiple tactics could result in

goal structures such as (allp ([x]tt & tt)) whose only subgoals are tt and so should

reduce to tt.

4 A more intricate tactic

An important property of a tactical prover is that it is extensible, so that its users

can write their own tactics. It is in the checking of user-de�ned tactics that the

dependent type system is particularly useful. To illustrate, we will show a specialized

tactic of the kind that some user might write.

Suppose we have a sum-of-products assertion,

C = (A11 ^A21 ^ A31 ^ >) _

(A12 ^A22 ^ >) _

(A13 ^A23 ^ A33 ^ A43 ^ >) _

?

and we want to prove C implies D, where we know Ai1 ` D, Ai2 ` D, Ai3 ` D, for

a particular i. To handle this we can write a tactic sumprod(i).

This kind of situation comes up, for example, in proving properties of a program

that fetches from an ML-style sum-of-products datatype. Suppose some value x

belongs to an ML datatype that has three constructors (disjuncts), which take

values that are all records (of 3 elements, 2 elements, and 4 elements, respectively).

We would like to fetch and use the 2nd record �eld even before doing the case-

analysis that tells us which disjunct applies. To do this \hoist" operation, we need

to prove that the second �eld exists (in each disjunct) and has the right properties.

The sumprod tactic will be useful in such proofs. But clearly it's a very specialized

situation { therefore this tactic will be user-de�ned, not provided by default.

We start with two preliminary lemmas. The specialized subtactics of sumprod

will apply these specialized lemmas:

or imp : pf (A imp C) ! pf (B imp C) ! pf ((A or B) imp C) =

[p1 : pf (A imp C)] [p2 : pf (B imp C)]

imp i [p3 : pf (A or B)]

or e p3 ([p4 : pf A] imp e p1 p4) ([p5 : pf B] imp e p2 p5) :

and imp: pf (B imp D) ! pf (A and B imp D) =

[p1 : pf (B imp D)] imp i [p2 : pf (A and B)] imp e p1 (and e2 p2) :

We start with an auxiliary tactic prodn(j) that converts the goal Hs ` (A1^A2^

:::^An ^>)! D to the goal Aj ; Hs ` D.

12 Appel and Felty

prodn: rational ! tac :

t136 : tactic (prodn 1) (Hs ` A and As imp D by (imp i [p] P (and e1 p)))

(allp [p] (A by p ; Hs ` D by P p)) :

t137 : tactic (prodn N) (Hs ` A and As imp D by and imp P) G

tactic (prodn (N � 1)) (Hs ` As imp D by P) G :

Finally, the tactic sumprod(i) transforms the goal Hs ` (
W

i

V
j Aij) ! D to the

goal (Ai1 ; Hs ` D)& :::&(Ain ; Hs ` D):

sumprod: rational ! tac :

t134 : tactic (sumprod N) (Hs ` false imp D by (imp i false e)) tt :

t135 : tactic (sumprod N)

(Hs ` (A or As) imp D by (or imp P1 P2)) (G1 & G2)

tactic (prodn N) (Hs ` A imp D by P1) G1

tactic (sumprod N) (Hs ` As imp D by P2) G2 :

To see how the dependent type system ensures that we got this right, let's examine

the typechecking of rule t135. As reconstructed by Twelf's typechecker, we have,

t135 :

{N:rational} {Hs:hyps} {As:o} {D:o} {P2:pf (As imp D)} {G2:goal} {A:o}

{P1:pf (A imp D)} {G1:goal}

tactic (sumprod N) (Hs |- As imp D by P2) G2

-> tactic (prodn N) (Hs |- A imp D by P1) G1

-> tactic (sumprod N) (Hs |- A or As imp D by or_imp P1 P2) (G1 & G2).

Here we have explicit metalevel quanti�cation (using curly braces) of all the im-

plicitly quanti�ed logical variables N ; Hs ; As ; D ; etc. The type of P1 was inferred

from the expression A imp D by P1: it must be pf (A imp D). Therefore the use

of P1 in the expression or imp P1 P2 typechecks.

But suppose we had mistakenly written the rule t135 with

A or As imp D by and imp P2 :

Then this rule wouldn't type-check, and Twelf would report the error,

Type mismatch

Expected: pf (`A or `As imp `D)

Found: pf (X1 and `As imp `D)

When writing tactics such as this (but quite a bit messier) in Lambda Prolog, we

found that mismatches between tactics and the lemmas that they apply were one

of the two common sources of errors in the prover; such errors do not impede us in

Twelf. The other kind of error { incompleteness via in�nite loops or backtracking

failure { continues to be bothersome, of course: dependent types do not save us

there.

Correctness of Theorem Provers 13

5 Union-Find

Not only tactical provers, but also other decision procedures can be dependently

typed to ensure partial correctness. For example, in decision procedures for equality,

the standard eÆcient union-�nd algorithm with path compression (Aho et al., 1974)

is often used to represent equivalence classes.

For each equivalence class, the algorithm maintains a canonical representative.

As new equalities are learned (from some other source), the algorithm is instructed

(by a union a b command) to merge the two equivalence classes to which a and

b belong. To query the data structure, the �nd a B command seeks the canonical

representative of the class to which a belongs, and uni�es it with B. In the context

of our theorem prover, �nd must also produce a proof that a = b.

We have implemented a union-�nd prover in Twelf. Assuming that the logic-

programming engine eÆciently indexes atomic dynamic clauses4, it should run in

O(N �(N)), where �(N) is the inverse Ackermann function.

In our example, we add an equality primitive == to the logic, along with some

axioms. Union-�nd will maintain and query canonical representatives of equivalence

classes:

==: i ! i ! o : %in�x none 20 == :

re : pf (A == A) :

symm : pf (A == B) ! pf (B == A) :

trans : pf (A == B) ! pf (B == C) ! pf (A == C) :

Some of the important constructors and predicates used in this example are

declared as follows.

`: hyps ! pf A ! goal : %in�x none 3 ` :

union : pf (X == Y) ! hyps :

�nd : fxgfygpf (x == y) ! hyps :

canonical : i ! type :

Assume we have a function f and some primitive equality facts:

f : rational ! i :

u35 : pf (f 3 == f 5) :

u79 : pf (f 7 == f 9) :

u75 : pf (f 7 == f 5) :

�nd2 : pf (A == B) ! pf (C == B) ! pf (A == C) =

[pAB][pCB] trans pAB (symm pCB) :

A typical query that our union-�nd can answer is,

union u35 ; union u79 ; union u75 ; �nd (f 9) X P9 ; �nd (f 3) X P3 ; nil

` f 9 == f 3 by �nd2 P9 P3 :

4 Dynamic clauses will be explained in this section. Twelf does not index dynamic clauses, so a
real test of our program's eÆciency has not yet been performed.

14 Appel and Felty

In this prover, the \hypotheses" to the left of the turnstile ` are treated as com-

mands to the union-�nd engine. Associated with each command is a proof: union P

(where P is a proof of A == B) is a command to union the sets to which A and B

belong. �nd X Y P is a command to �nd the canonical representative of X , unify

it with Y , and construct a proof that X == Y ; this proof is then uni�ed with

P. Thus, by the time nil is reached, the proof to the right of the turnstile in our

example, �nd2 P2 P3, must be a proof of f 9 == f 3.

How could such a query fail? In our example, the only possible point is where

the command �nd (f 3) X P3 is executed: here, X has already been instantiated

to the canonical representative of f 9, so if that is not the same as the canonical

representative of f 3, the �nd command will fail and backtrack. In this example,

such failure does not occur.

Our program introduces dynamic clauses of the form canonX Z Pxz to indicate

that Z is the canonical representative of X , with proof Pxz:

canon : fx : igfy : ig pf (x == y) ! type :

That is, these clauses of the Prolog program will be created at runtime by the

execution of other clauses. Standard Prolog has assert and retract to add and

delete clauses to/from the fact database; both LambdaProlog and Twelf have a

dynamically scoped version of this feature, in which dynamically added clauses are

automatically removed when the goals containing them complete successfully, or

when backtracking occurs. A Twelf clause such as

c : expr1 fd : expr2g expr3 :

would operate as follows: if the top-level goal matches expr1, then the subgoal

becomes fd : expr2g expr3; to satisfy this subgoal, �rst the clause d : expr2 is

added to the fact database, then the subgoal expr3 is tried. Once expr3 succeeds

or fails, the dynamic clause d : expr2 is removed.

Our program has 16 clauses and 13 constructor declarations. Instead of showing

the whole program, we will show just one clause to illustrate the use of dependent

types. The following clause \executes" a command �nd X Y P in the case that X

maps in exactly two steps to Y ; in this case, path-compression is performed:

�nd tac2 : �nd X Y P ; Hs ` H

canon X Z Pxz

canon Z Y Pzy

canonical Y !

fd : canon X Y (trans Pxz Pzy)g Hs ` H :

The �rst line matches the �nd command; lines 2 and 3 match the case that X

links to Y in two steps, with proofs Pxz and Pzy respectively; line 4 checks that Y

is its own canonical representative. Then there is a Prolog \cut" (!), to prevent other

interpretations of the �nd command from matching5. Then a new atomic clause is

5 We are using a version of Twelf with \cut"; the standard distribution does not have this oper-
ation.

Correctness of Theorem Provers 15

added to the global database, stating that Y is the canonical representative of X

with proof trans Pxz Pzy ; �nally, the remaining command-list Hs is executed. The

old clause canon X Z Pxz is still there, but by careful use of cuts, the algorithm

will never have occasion to use it.

When �nd tac2 adds a new clause to the global database, the dependent type of

the canon constructor ensures that it must be with a valid proof. When a proof P

is returned after a set of commands Hs ` Aby P, the dependent type of ` ensures

that it proves the theorem that is claimed. The correctness of �nd tac2 and similar

clauses is guaranteed statically.

6 Related Work

Using dependent types in proofs was not possible in the corresponding Lambda

Prolog version of our tactic-style theorem prover. Lambda Prolog, however, has

polymorphic types, which Twelf does not, and these types provide some advan-

tages in a Lambda Prolog implementation of tactics and tacticals. For example, in

Lambda Prolog, only one version of the goal constructor for universal quanti�cation

is needed:

all : (A ! goal) ! goal :

where A is a type variable that can be instantiated with any type. Thus, the im-

plementation of the goal constructors and tacticals does not have to change when

we change object logics. In contrast, in Twelf, one all constructor is needed for

each type that needs to be quanti�ed. Twelf also does not allow quanti�cation over

predicates. In Lambda Prolog, tactics can be implemented as predicates taking two

goals as arguments, which means that tacticals would have predicate arguments.

To illustrate, if this were possible in Twelf, there would no longer be a need for the

tactic constructor and the type goal ! goal ! type would become the de�nition

of the type tac. Some of the code would look like:

tac = goal ! goal ! type :

t1 : initial tac (Hs ` A by P) tt

nth item N (A by P) Hs :

tactical2 : then T1 T2 InG OutG

T1 InG MidG T2 MidG OutG :

Pollack (1995) discusses the use of dependent types in LCF-style provers to avoid

the need for validations. As a �rst step, a modi�cation of the unforgeable abstract

data type theorem is presented. The new data type makes the structure of the

theorem explicit in the ML type, resulting in a more informative type. Then, a

more expressive metalanguage with dependent types is proposed. When taking this

step, the notion of tactic is modi�ed; a tactic in this setting becomes the statement

of a derived or admissible rule along with its proof in the LEGO system (Pollack,

1994). Applying the tactic means applying the new rule as a lemma. Programming

decision procedures for proving subgoals is also mentioned, but example programs

are not given.

16 Appel and Felty

McBride (2001) presents an implementation of �rst-order uni�cation using a de-

pendently typed functional language derived from the LEGO system. The language

is a strongly normalizing type theory, so he is able to establish termination. Bove

(1999) also programs uni�cation in a dependently typed functional language. She

uses Martin-L�of's type theory as a programming language and works within the the

ALF system (Altenkirch et al., 1994). She also establishes termination. In addition,

she provides a methodology for extracting a Haskell program from the type theory

version. It would be interesting to compare these programs to a dependently typed

logic-programming implementation of the same algorithm.

7 Conclusion

We have shown how dependent types can guarantee partial correctness of tactics

in a tactic-style theorem prover written in Twelf. We have also shown that other

proof strategies such as decision procedures can bene�t similarly from the use of

dependent types. In both of these examples, the fact that object-level proofs were

constructed and returned as a result of proof search was a crucial element of the

program. By using dependent types to represent such proofs, it is not possible to

write tactics or other proof procedures that construct proofs that will not check

when submitted to a proof checker.

Both Coq and Twelf contain dependently typed languages intended for describing

object-logic terms. The designers of these systems didn't really intend that large-

scale programs written in these \little" languages would be executed within Coq or

Twelf. We have demonstrated that there's a signi�cant software-engineering advan-

tage to using the little language in Twelf instead of programming in ML, which is

the surrounding implementation's language. The same demonstration could prob-

ably have been done using Coq's object language, a dependently typed functional

language (as contrasted with Twelf's dependently typed Prolog-like language).

Although the tactical prover discussed in this paper is just a prototype, we are

con�dent that these techniques will scale to full-size provers and decision proce-

dures. We have used similar techniques in other dependently typed proof-manipulation

programs in Twelf, and the dependent types assist, not impede, program develop-

ment.

References

Aho, Alfred V., Hopcroft, John E., & Ullman, Je�rey D. (1974). The design and analysis

of computer algorithms. Reading, MA: Addison-Wesley.

Altenkirch, Thorsten, Gaspes, Veronica, Nordstr�om, Bengt, & von Sydow, Bj�orn. (1994).
A user's guide to ALF. Tech. rept. Chalmers University of Technology, Sweden.

Appel, Andrew W. (2000). Hints on proving theorems in Twelf. www.cs.princeton.edu/
~appel/twelf-tutorial.

Appel, Andrew W., & Felty, Amy P. (2000). A semantic model of types and machine
instructions for proof-carrying code. Pages 243{253 of: POPL '00: The 27th ACM

SIGPLAN-SIGACT symposium on principles of programming languages. New York:
ACM Press.

Correctness of Theorem Provers 17

Barras, Bruno, et al. . (1998). The Coq Proof Assistant reference manual. Tech. rept.
INRIA.

Bove, Ana. (1999). Programming in Martin-L�of type theory: Uni�cation, a non-trivial

example. Licentiate Thesis, Chalmers University of Technology and G�oteborg University.

Felty, Amy. (1993). Implementing tactics and tacticals in a higher-order logic programming
language. Journal of automated reasoning, 11(1), 43{81.

Gordon, M. J. C., & Melham, T. F. (1993). Introduction to HOL|a theorem proving

environment for higher order logic. Cambridge University Press.

Gordon, Michael J., Milner, Robin, & Wadsworth, Christopher P. (1979). Edinburgh LCF:

A mechanised logic of computation. Lecture Notes in Computer Science, vol. 78. New
York: Springer-Verlag.

Harper, Robert, Honsell, Furio, & Plotkin, Gordon. (1993). A framework for de�ning
logics. Journal of the ACM, 40(1), 143{184.

McBride, Conor. (2001). First-order uni�cation by structural recursion. Journal of func-
tional programming. To appear.

Nadathur, Gopalan, & Miller, Dale. (1988). An overview of lambda prolog. Bowen, K., &
Kowalski, R. (eds), Fifth international conference and symposium on logic programming.
MIT Press.

Paulson, Lawrence C. (1994). Isabelle: A generic theorem prover. Lecture Notes in Com-
puter Science, vol. 828. Springer-Verlag.

Pfenning, Frank, & Sch�urmann, Carsten. (1999). System description: Twelf | a meta-
logical framework for deductive systems. The 16th international conference on auto-

mated deduction. Berlin: Springer-Verlag.

Pollack, Robert. (1994). The theory of LEGO: A proof checker for the extended calculus

of constructions. Ph.D. thesis, University of Edinburgh.

Pollack, Robert. (1995). On extensibility of proof checkers. Pages 140{161 of: Dybjer, P.,
Nordstrom, B., & Smith, J. (eds), Types for proofs and programs: International workshop

types'94, b�astad, june 1994, selected papers. LNCS, vol. 996. Springer Verlag Lecture
Notes in Computer Science.

