A Semantic Model of Types and Machine Instructions for
Proof-Carrying Code

Andrew W. Appel

Bell Laboratories'and Princeton University

Amy P. Felty
Bell Laboratories

July 16, 1999

Abstract

Proof-carrying code is a framework for proving the
safety of machine-language programs with a machine-
checkable proof. Such proofs have previously defined
type-checking rules as part of the logic. We show a uni-
versal type framework for proof-carrying code that will
allow a code producer to choose a programming lan-
guage, prove the type rules for that language as lemmas
in higher-order logic, then use those lemmas to prove
the safety of a particular program. We show how to
handle traversal, alocation, and initiaization of values
in awide variety of types, including functions, records,
unions, existentials, and covariant recursive types.

1 Introduction

When a host computer runs an untrusted program, the
host may want some assurance that the program does
no harm: does not access unauthorized resources, read
private data, or overwrite valuable data. Proof-carrying
code [Nec97] is a technique for providing such assur-
ances. With PCC, the host — called the “ code consumer”
— specifies a safety policy, which tells under what condi-
tions a word of memory may be read or written or how
much of a resource (such as CPU cycles) may be used.
The provider of the program — the “code producer” —
must al so provide a program-verification-styleproof that
the program satisfies these conditions. The host com-
puter mechanically checks the proof before running the
program.

Two significant advantages of PCC are that (1) these
proofs can be performed on the native machine code, so

*On sabbatical 1998-99.

that no unsoundness can be introduced (e.g., by a just-
in-time compiler) in trandation from the proved pro-
gram to the program that will execute, and (2) for suffi-
ciently simple safety policiesand for programs compiled
from type-safe source languages, the proofs can be con-
structed fully automatically.

Necula has demonstrated two instances of PCC safety
policies: one for a subset of C [Nec98] and another for
an extremely restricted subset of ML [Nec97]. In our
work we have generalized the approach and removed
many restrictions:

1. Instead of building type-inference rules into the
safety policy, we model the types via definitions
from first principles, then prove the typing rules
as lemmas. This makes the safety policy indepen-
dent of the type system used by the program, so
that programs compiled from different source lan-
guages can be sent to the same code consumer.

2. We show how to prove safe the alocation and ini-
tialization of data structures, not just the traversal
of data.

3. We show how to handle a much wider variety of
types, including records, tagged variants, first-class
functions, first-class labels, existential types (i.e.
abstract datatypes), uniontypes, intersection types,
and covariant recursive types.

4. We move the machine instruction semantics from
the verification-condition generator to the safety
policy; this simplifies the trusted computing base
at the expense of complicating the proofs, which is
the right trade-off to make.

upd(f,d,x, f') =gt VZzd =2zAf'(2) =xvd#zA ' (2) = f(2)

add(d,s1,s)(r,mr’,m) =ge upd(r,d,r(s1) +r(s),r') Am=nt.

addi(d,s,c)(r,m,r’,m) =g¢ upd(r,d,r(s)+c,r') Am=nt

load(d,s,c)(r,m,r’,m') =q¢ readable(r(s) +c) Aupd(r,d, m(r(s) +c),r') Am=mn

store(s1, s, C) (r,m,r’,m’) =q¢ Writable(r(sp) +¢) Aupd(m,r(sp) +¢,r(s1),m)Ar =r’
jump(d,s,c)(r,m,r’.m) =g 3r”. upd(r,17,r(s) +c,r"”) Aupd(r”,d,r(17),r') Am=m
bat(s1,s2,¢)(r,mr’,m) =ger r(s1) > r(s) Aupd(r,17,r(17)+c,r') Am=m Vr(s) <r()Ar=r' Am=m
beq(s1,s2,¢)(r,m,r',m) =qe r(s1) =r(s) Aupd(r,17,r(17)+c,r'y Am=m Vr(s)) #r()Ar=r' Am=nmnl

Figure 1: Semantic definition of machine instructions.

2 Example

To illustrate, we use an imaginary word-addressed ma-
chine with a simple instruction set and instruction en-
coding.

OPCODE
add |0d s S | rqg«rs +rs,
addi |1d sc|rqg«rs+cC
load |2d s ¢ | rg«m(rs+c)
store | 3515 € | M(fs, +C) < s
jump|4d s c|rq«pc pc«rs+cC
bgt |5s1s ¢ |ifrs, >rs, thenpc«— pc+c
beq |6s1s c |ifrs, =rs, thenpc«— pc+c

Example 1. We wish to verify the safety of the fol-
lowing short program. The code producer will provide
the program (i.e., in this case the sequence of integers
(2210,4070)) and aproof that if these integersareloaded
at address 100 then it will be safeto jump there. The pro-
gram’s precondition is that register 1 points to a record
of two integers and register 7 points to areturn address.

100: 2210 rp <« m(ry)
101: 4070 jump(r7); ro <« pc

The logic comprises a set of inference rules and a
set of axioms. The inference rules are standard natural-
deduction rules of higher-order logic with natural num-
ber arithmetic and induction, augmented with just afew
predicates and rules concerning the readability, writabil-
ity, and “jumpability” of machine addresses, and the de-
coding and semantics of machine instructions.

We refer to the axioms as the safety policy. For Ex-
ample 1, we will use the following safety policy:

Yv. (v > 50) — readable(v)

Y. (v > 100) — writable(v)
vr,m.(r(17) =r%(7)) — safe(r,m)
r(1) > 50

r0(17) = 100

m°(100) = 2210

m°(101) = 4077

Noak~hwdNE

Axioms 1 and 2 describe what addresses are readable
and writable. Axioms 3—7 describetheinitial state of the
machine, comprising a register-bank r° and a memory
mP, each of which isafunction from integersto integers.
Axiom 3 says that any future state r, m whose program
counter r(17) is equal to what'sin r0(7) is a safe state;
or in common terms, initially r7 isavalid return address
(we write r(7) and ry interchangeably). Axiom 4 says
that r? is an address in the readable range, and axiom 5
says that the program counter r17 isinitialy 100. The
remaining axioms describe the untrusted code that has
just been loaded.

We have implemented our logic in Twelf [PS99],
which is an implementation of the Edinburgh logical
framework [Pfe91]. All the theoremsin this paper have
been checked in Twelf.

Theorem. safe(r®, mP).

This theorem is the one that the code producer must
prove; the code consumer will check the proof before
jumping to address 100. But before describing the proof,
we must show the inference rules for reasoning about
machine instructions.

format(w,a,b,c,d) =gef 0<a< 16A0<b<16A0<c<16A0<d< 16AW=ax*16%+bx16%+c*16+d.

decode(v,m, i) =qef

(3d,s1,s. format(m(v),0,d,s1,5) Al = add(d, s1,%))

V (3d,sg,c. format(m(v),1,d,s1,¢) AT = addi(d,s1,c)) V...

Figure 2: Instruction decoding.

3 Instruction execution

Each instruction defines a relation between the machine
state (registers, memory) before execution and the ma-
chine state afterwards. We treat the program counter as
part of the register set (r17) even though it's not really
namable in an instruction opcode. Figure 1 shows the
definition of thisrelation for each of theinstructionsadd,
addi, load, and so on.

On a von Neumann machine, each instruction is rep-
resented in memory by an integer. Our decode relation
(Figure 2) is a predicate on three arguments (v, m, i) and
says that address v in memory m contains the encoding
of instructioni.

We can now write relation step(r,m,r’,m’) (Figure 3)
which says that the execution of oneinstructionin state
(r,m) leadsto state (r',m). This holds only for safe and
legal instruction executions, because the definition of the
load relation requires that the loaded address be read-
able, and the definition of store requires that the stored
address be writable, and the decode relation fails to hold
at al forillegal instructions.

Finally, we capture the notion of continued execu-
tion by the inference rule multistep (Figure 3), which
is a coinduction principle based (loosely) on the Floyd-
Hoare whilerule.

4 Theglobal invariant

To prove our program safe, we construct an invariant Inv
that holdsat all times. We start by informally annotating
each instruction with a precondition.

l100(r,m) = jumpable(r7) A readable(rq)
100: 2210 rp«—m(r1)
l101(r,m) = jumpable(rz)
101: 4077 jump(r7)
where

jumpable(v) =get Vr',m.r'(17) = v — safe(r’, nT)).

Our definitions allow for the possibility that a store
instruction will overwrite the program, which allows us
to prove the safety of self-modifying code. But our sim-
ple example does not overwrite itself, and this fact is a
necessary part of our invariant:

decode(100,m, load(2,1,0))
Adecode(101, m, jump(0, 7,0))

prog(m) =gef

Now our global invariant is just the combination of
the prog invariant with all the local ones:

Inv(r,m) =qe prog(myA
(r(l7) =100A |100(r, m)
\Y r(l7) =101A |1o;|_(r, m)
V jumpable(r (17)))

To prove our theorem safe(r® m®) we use the mul-
tistep rule. First we show Inv(r® m®), then that Inv is
preserved under the step relation.

Axioms 6 and 7, aong with the definition of the
decode relation, prove that prog(m®) holds. Axiom 5
(r°(17) = 100) means that the remaining proof obliga-
tion for Inv(r®, m®) is I100(r®, m"), which can be proved
directly from axioms 3, 4, and 1.

To show that the invariant is conserved, we work by
cases:

e r17 = 100 A l300(rt,mt). By prog(m') we have
decode(r;,mt,l0ad(2,1,0)). Letting r? = ri[17
rf + 1,2 — mi(r})] and m? = mt, and using
readable(r}) from ligo, we have step(rl,mt,r2,m?).
Sinceri =r2, by I100 we havejumpable(r2). Thusr2, =
101 A l301(r?,m?) is proved. Since mt = n?, prog(n?)
holds.

e rl, = 101 A l101(rt,mt). By prog(m!) we have
decode(r1,, mt,jump(0,7,0)). Letting r? = ri[17
r3,0 — rk], we have jump(0,7,0)(r[17 — rk +
1],mt, r2,m') by the definition of jump. Thus we
have step(r!,m!,r2, mt). We can use the definition
of the upd relation, along with jumpable(r%), to show

step(r,m,r’,m’) =g Ji,r”.decode(r (17),m,i) Aupd(r,17,r (17) + 1,r") A

Inv(r,m)

vrt mb Inv(rt, mb) — (safe(rt,mt) v (3r?, nP.step(rt, mt, r? m?) Alnv(r?, mé)))

i(r” mr’ m)

safe(r,m)

multistep

Figure 3: The multistep inference rule of the logic.

jumpable(r%), which satisfies one of the diguncts of the
Inv relation.

e jumpable(r};) implies safe(rl, m) directly by the
definition of jumpable with r’, nv instantiated by r*, mt.

5 Types

We have demonstrated that it is possible to prove a pro-
gram safe. But for applications in proof-carrying code,
it will be necessary to prove safety of large programs
completely automatically. Such proofs can be based on
dataflow or on types.

Although it is possible to construct proofs by purely
datafl ow-based techniques such as software fault isola-
tion [WLAG93], in this paper we will concentrate on
types. Necula's PCC logic for an ML subset [Nec97]
has inference rules such as the following (expressed in
dightly different notation):

VimT1 X T2
readable(v) A readable(v+ 1)
AMV) im T AMV+1) imT2

record2_e

Vimlist(1)
readable(v) A readable(v+ 1)
AMV) :mTAMV+1) i, list(t)

V7 0iig e

These rules relate typing judgements directly to the
layout of typed values in machine memory, which is es-
sential to proofs of machine-language programs. We
write the judgement v :, T with the colon subscripted
by a machine memory m, since a judgement that holds
in one memory state might not hold in another. (Necula
writesmkv: t.)

The disadvantage of inferencerulesfor types. Nec-
ula’'s PCC system includestyping rulesin the safety pol-
icy, that is, in the trusted computing base. He proves
the soundness of these rules by a metatheorem. Such a

safety policy will require the code producer to use a par-
ticular type system, with values laid out in memory in
a particular way — in effect, the safety policy will force
the use of a single programming language and a single
compiler.

Our approach allows each code producer to define the
type system that its own mobile code uses. Of course,
the type system must be sound; we allow the code pro-
ducer to prove the typing rules as lemmas (provable in
the object logic) rather that define new inference rules
with a soundness metatheorem (which would be difficult
for the code consumer to check).

We view the judgement v iy T as an application of the
predicate T to memory m and integer (or address) v, that
is, t(m)(v). Toillustrate, we will define the untagged in-
teger type, cartesian product type, and list type as pred-
icates, and prove (as theorems) the typing rules shown
above.

Any one-word bit pattern qualifies as an untagged in-
teger, so theint predicate accepts any valuein any mem-
ory:

int(m)(v) =ger true.

Cartesian products can be defined in terms of the con-
tents of two adjacent memory words:

recordy (1, T2) MV =gef
readable(v) A readable(v+ 1)
Atam(mv) Atom(m(v+ 1))

Now the record2_e rule shown above can be proved as a
theorem, directly from the definition of records.

We can go on to define union types, list types, and so
on, with corresponding traversal theorems. But Necula's
PCC system gives no rules for creation (i.e., allocation
and initialization) of data structures such as records and
lists. From our definition of record, we could certainly
prove the theorem,

readable(v) A readable(v+ 1)
M(V) im T AMV+1) ;12
VimT1 X T2

record?._i

But this is not enough! Any program that creates a
new record value must initialize it by storing two values
into memory. The step rule for the store instruction is

store(sy, S, C) (r,m,r’ m’) =get
writable(r (sp) + C)A
upd(m,r(s2) +c,r(s1), M) Ar=r’

which relates a memory m (before the store) to a mem-
ory m' (after the store). Now suppose we have the fol-
lowing program fragment:

l103(r,m) =r1 mintx (intx int) Arg:mint
103: m(ry) «<r3
l104(r,m) = rq :mint x (int x int)
Arg:mintAm(ra) =rs
104: m(ra+1)«—r3

l105(r,m) =r1 :mintx (int xint) Ara:mintxint

After storing two integers into memory at addresses r;
and r2 + 1 we can legitimately use the record2.i rule to
provers iy int x int with respect to the new memory m'
towhich 1105 will be applied. But unfortunately, we can-
not provers :py int x (int x int), because |10z establishes
that fact about r1 in a different version of m. Practically
speaking, we don’'t know whether one of the store in-
structions overwrites a field of the record at r1 so as to
invalidate the typing judgement.

The following theorem is certainly provable:
upd(mx,y,m) Xx#v Xx#v+1

Vi T1 X T2

VinT1 X T2

but how can we organize the proof so as to establish that
X#V?

The solution is to reason carefully about heap alloca
tion, distinguishing the allocated region of the heap from
the unallocated region, as the next section will explain.

6 Heap Allocation

A call-by-value pure functional program allocates new
data-structure values on a heap, and never updates old
values. (Imperativelanguages are much harder to reason
about, so we leave that for future work.) The program
(and run-time environment) keeps track of which loca-
tions are allocated and which are free on the heap. In a
very simple system an allocation pointer — a register or
memory |location — points to the boundary between allo-
cated and unallocated memory. A more complex system

might use a data structure to keep track of which blocks
of memory are allocated.

The typing judgement v :m, T1 x T2 should imply that
the addresses v and v+ 1 are in the allocated set. We
can make this explicit by making the allocated set a a
parameter of the typing judgement: v:amT. Now we
define record types a bit differently than in the previous
section (where a is an alocation predicateand v € ais
syntactic sugar for a(v)):

I'eCOI’dz(Tl, Tz) (a, m) V =(ef
vean(v+l)eca
A readable(v) A readable(v+ 1)
Atz (a,m) (mv) Atz (a,m)(m(v+1))

Maintaining the allocation pointer. Consider a pro-
gram that usesregister rg as an allocation pointer, so that
the “standard” allocated predicateis

a(V) =dgf V<Tg
Abstracting over r and m, we say that
stda(r,m)(v) =qet vV < 1(6)

If all memory beyond address 100 is readable and
writable, and the program itself occupies addresses 100—
299, then we might start withrg = 300 and increaserg as
the program executes. The program will initialize (i.e.,
store) new data structures beyond rg; to ensure that the
prog invariant holds, we must continually maintain the
invariant rg > 300.

Allocating a record. Figure 4 shows a program
that creates a new record value by storing the two
fields at locations rg and rg + 1 and then increasing
re¢ by 2. Clearly, a the point lig9 Iy satisfies all
the conditions in the right-hand side of the definition
of recordy(t,t)(stda(r,m),m), proving the judgement
r2 ‘stda(r,m),m T X T

But at the same time, there is a pre-existing record
valuein rq that will still be needed to use after the new
value — that is, both the precondition |10 and the post-
condition 130 mentionry :amT. Thetrick isto maintain
this judgement even as the stores create “different” m's
and increasing rg creates “ different” a sets.

l106(r,m) =re > 300 A1 ‘gdar,m),m T
106: m(rg) «r1

l107(r,m) =re > 300 AT1 gdarr.m),m TAM(re) ‘sdar.m),mT

107 m(r6+ 1) —1rI

l108(r,m) = re > 300 AT1 “ggarr,m),m TAM(re) ‘stdar,m),m TAM(6 + 1) ‘stdagr,m),m T

108: ro«rg+0

l109(r,M) = re > 300 A1 “ggarr,m),m TAM(r2) ‘sdar,m)m TAM(I2+ 1) ‘gdarmmTAr2="re

109: rg«rg+2

|110(I’7 m) =rg>300ATr7 :S[da(r,m),mTA 2 sda(r,m),mTX T

Figure 4: A program that allocates and initializes a record.

We will define a valid type as one satisfying these
conditions:

valid(t) =def
Va,@,mv. (aca) —t(amv—rt(@,mv
A Ya,mm v, (Vx € a m(x) =n'(x)) —
t(a,myv—t(am)v

The first condition is that a typing judgement v:gm T is
invariant under increasing the size of the allocated st;
the second is that the judgement is invariant under stor-
ing any value at any unallocated |ocation.

If T isavalid type, then the judgement ry :am T will
be preserved through all the operations between | 196 and
l110. Each typing predicate that we wish to use in our
proof of safety must be proved valid. We will show such
theorems in the next section.

Morrisett et al. [MWCG98] show how to prove safety
of alocation based on atype system for partially initial-
ized records. We have not chosen to do this; instead, the
approach we have shown in this section uses dataflow
analysis to reason about the contents of the partialy ini-
tialized record. We believe this will work well, since
recordinitializationis an essentially local phenomenon.

7 Typeconstructors

Almost all thetypesused in ML programscan be defined
and proved valid in our system: record types, tagged
union datatypes, functiontypes, abstract types, polymor-
phic types, and covariant recursive types. We have not
yet succeeded in defining contravariant recursive types,
as the next section will discuss.

We start with some primitives:

consttyi (a,m)v=gg V=1
The constant type, that is, 6 :5 m constty(6).

char (a,m)v =g 0<Vv< 256
The character (or tiny integer) type.

boxed(a,m)v=gg V> 256
The type of boxed (honcharacter) values.

ref t(a,m)v=qe V€ aAreadable(v) At(a,m)(mv)
The type of (immutable) references to memory
words containing values of typet.

aref T(a,m)v=qgg V€ aAreadable(v) A
Ja.a canvga At(a,m)(mv)
The type of acyclic references, that is, the refer-
enced data structure does not contain pointers back
to address v.

offsetit(a,m)v=qgs t(a,m)(V+i)
Thetype of valuesv such that v+ i hastypet.

fieldi T =g Offseti(ref 1)
The type of arecord field at offset i containing a
vaue of type 1. If acyclic records are desired, then
aref can be used instead of ref.

union(t1,T2) (&, M)V =ge T1(a,M)VV12(8,M)V
The type 11 U T2 of values that belong either to 13
or To.

intersection(t1,t2) (a,M)V =gt T1(8,M)VAT2(a,m)Vv
ThetypetiN1o.

I'eCOI’dz(Tl,’L'z) =qef fieldOty N fidld 112
A definition of the two-element record type equiva
lent to the one given in section 6 but more concise.

SUM(T1,T2) =def
recordy(constty 0, t1) U recordy(constty 1, 12)
A tagged digoint sum type.

money =g recordy(constty O, int)
U recordy(constty 1, int)
U recordz(constty 2, int, int)
Equivalent to the ML datatype,
money = COIN of int
| BILL of int
| CHECK of int * int

existential (F) (a,m)v =q¢ 31. (F1)(a,m)vAvalid(t)
An existential type, useful in defining abstract data
types [MP88] and function closures [MMH96].

universal(F) (a,m)v =q¢ V1. vdid(t) — (Ft)(a,m)v
An universal type, useful for polymorphic func-
tions.

Now we must prove all these types and constructors
valid. The types constty, char, boxed are invariant with
respect to increasing a or updating m at an unallocated
location because their definitions don’t use the a or m
argument at all.

Typeref(t) isvalidif T isvalid:

1 acd —t(amw — t(a,mw for al w, so the
implication will hold for the particular w = m(v).

2.if m=m a 4al alocated locations, then
t(a,m)(m(v)) — t(a,m)(m(v)) by vaidity of
1. And since v € a, then m(v) = m'(v), so
t(a,m)(m(v)) — t(a,m’)(m'(v)) by congruence.

Offseti tisvalidif tisvalid by instantiation of v+ i
for vin the definition of validity of 1.

Union and intersection types are valid (if their com-
ponents are valid) by an equally simple argument.

A valid type constructor is one that preservesvalidity,
asdo ref and offset(i). Itiseasy to show that the compo-
sition of valid constructors preserves validity; therefore,
field types, record types, and sum types are valid if their
component types are valid.

Itistrivia to provethat thetypeexistential (F) isvalid
if F isavalid constructor.

8 Function types

We will build function values (and function types)
in three stages. First-order continuations — that is,

machine-code addresses with arguments— belong to the
codeptr type. A continuation closure (cont) is a code
pointer with an environment. And a function closure
(func) is also a code pointer with an environment, but
the arguments of this code pointer include a cont. A
compiler could generate these closures by following the
typed closure conversion algorithm of Morrisett et a.
[MWCG9s].

A codeptr is an address to which control may be
passed provided that its precondition is met. In atype-
based proof, the precondition is mainly in the form of
typing judgements. We can take address 106 from Fig-
ure 4 as an example; we can jump to location 106 from
any machine state satisfying 110 and the prog invariant.
Let us separate this invariant into two parts, the “ stan-
dard” invariant and the part specific to entry-point 106:

stdp(r,m) =

l0s(r,m) =

prog(r,m) Arg > 300

I'1 ‘stda(r,m),m T

Notice that entry-point 106 uses the “standard” repre-
sentation of the allocated set, that is, stda(r,m). Not all
program locations do; a program is free to spill rg to a
memory location, or to defer incrementing rg until a se-
ries of allocations is complete. In such cases, aprogram
point’s allocated-set would be represented as v < m(ap)
or v < rg+ kinstead of stda(r,m)(v) = v < r(6). How-
ever, we can make the restriction that any address to
which we attribute the codeptr type must use stda.

We can abstract stda from |1, to yield the component
of theinvariant that dealsjust with the formal -parameter
type(s) of that entry point;

Pros(@,m)r =r1:am1t

This predicate has almost the form of atype, except with
an r parameter instead of v. That is, it specifies the
“type” of the register bank, or rather, the types of some
subset of the registers — the formal parameter types.

For any such parameter-precondition P, we define

codeptr(P) (a,m) Vv =g
vr'm . r'(17) =v
Astdp(r’, m')
AP(stda(r’,m'),m)(r")
— safe(r’,n)

This says that v is a codeptr with formal parameters
P if, for any future register-bank r’ and memory n,

if the program-counter is at location v, the standard-
precondition stdp holds, and the types of the registers
satisfy P, then it's safe to continue.

In order for codeptr(P) to beavalid type, P must bea
valid register-type—that is, it must be invariant with re-
spect to increasing the allocated set or modifying mem-
ory at unallocated locations. It is easy to show that Pigg
isvalidif tisvalid. Ingeneral if t1,1p,... arevalid types,
then the predicate

ril :aﬁm T1 A... r|k :a’m Tk

isavalid formal-parameters predicate.
Let us define afamily of predicates params, —for var-
ious k —asthe standard calling sequence of k arguments:

params; (1) (a,M)r =gef
M1 amT1

params, (11712) (aa m)r —def
M amTiAl2amT2

params; (T1,72,13) (&, M)r =gef
M amTiAr2amT2/Ar3 amT3

Thus, with respect to the program of Figure 4 we can
make the following judgement:

stdp(r,m) — 106 :gqa(r,m),m COdeptr(params, (1)).

Continuation closures. In a programming language
with nested lexical scopes for function definitions, an
inner function may have free variables (which are bound
only in an outer scope). The implementation of such a
function must include both control (e.g., a code pointer)
and environment (adata structurein which valuesfor the
free variables can be found). Since two functions of the
same type may have different sets of free variables, the
type of the environment should not be part of the func-
tion type. We solve this problem in the standard way:
we use an existential type to hide the type of the envi-
ronment [MMH96].

A continuation is a function that never returns (or
rather, its return is the completion of the whole pro-
gram). Continuations, like functions, need closures and
environments. For any typet, cont(t) isthe continuation
taking at argument in register 1. However, the code en-
try point will also have to take an environment (of type
o) in register 2.

cont(t) =ef
existential (Ac. recordz(codeptr(params,(t,c)), ©))

To apply a continuation value v, one must first fetch
the codeptr ¢ from m(v+ 0) and put it in some register,
say rs. One must put a value of type tinry. One must
fetch the environment efromm(v+-1) into r,. One must
ensure that the standard precondition stdp(r,m) holds.
Theorem: Then it is safe to jump to the address con-
tained inrs. Proof: by expansion of definitions.

Function closures. A function is just a continuation
with an additional argument that is itself a continuation.
That is, the function type oo — B takes one argument
that is a value of type o, and another argument of type
cont(f). Since functions may have free variables, we
make function closures in the same way as for contin-
uations — so the codeptr component of a function has
another argument of type G, the environment type.

func(o, B) =de
existential (Ac.
record;(codeptr(params;(a., cont(B),c)), ©))

Calling a function is done almost exactly as caling a
continuation, except that r; contains the argument, ro
contains the continuation-closure, and r3 contains the
function environment.

Thetype-constructors cont and func are valid because
they are just compositions of other valid constructors
(existential, record, codeptr, params).

We have described functionswith heap-all ocated con-
tinuations — not stack-allocated frames — because they
are easier to reason about, easier to implement, suit-
ably efficient, and used by a compiler [Sha98] that can
plausibly serve as a front-end for our PCC system. Of
course it is also possible to reason effectively about
stack-allocated frames [MCGW98, KKR'86].

9 Recursive Datatypes

In order to define recursive datatypes, we introduce a
subtyping relation defined as logical implication:;

subtype(t1,T2) =der Va,m,v. T1(a,m)(v) — t2(a,m)(v).

We write t1 C 12 to denote thisrelation. Using thisrela-
tion, we define the following rec predicate:

rec(f) =g V1. valid(t) — (1) Ct— 1(a,m)(V)

The recursive types are all types rec(f) for which the
least fixed point of the argument function f isrec(f). It

can be shown that any function f that preservesvalidity
and also satisfies the following monotone predicate has
this property.

monotone(f) =g VT1,T2. 1 C T2 — f(Tl) C f(‘Cz)

In particular, we prove that whenever f satisfies these
properties, both f(rec(f)) C rec(f) and rec(f) C
f(rec(f)) hold, and thus the following theorem holds.

preserves.validity(f) monotone(f)

rec(f)(a,m)(v) — f(rec(f))(am)(v) roll_unroll

This theorem alows us to fold and unfold recursive
types. Unfolding is useful for proofs of safety for pro-
grams that traverse recursive datatypes, while folding is
useful in proofs involving allocation. Using the rec op-
erator we can define (for example) polymorphiclists:

list(t) =ger rec(At’. constty O
U boxednrecordy(int,t))

The address used for pointers to cons cells must not be
0, so we use a boxed address to point to cons cells.

In order to build arbitrary recursive datatypes using
any of the constructors of section 7, we have proved that
they preserve both validity and monotonicity. For the
constructor ref, for example, we proved monotone(ref).
For constructorsthat take two arguments, we must show
that the constructor is monotone in both. For example,
we showed monotone (union), where:

monotonex(f) =gef V11,72, 77, To.
WET -1 E1h— f(1,7) C f(12,75)

We want to be able to automate the proofsthat show that
any datatype built from these constructors is monotonic
and preservesvalidity. Thisautomationisin fact easy as
long as we prove the right set of lemmas. The lemmas
we have proved allow usto structure proofsfor arbitrary
datatypes so that they contain exactly one lemma appli-
cation for each constructor that appears in the datatype.
The following lemmaabout unionillustrates the form of
the lemmas that we use for this purpose:

valid_-mono(f) valid_-mono(g)

vaidmono(At. (ft)u(gr)) omen

wherevalid_-mono is:

valid_mono(f) =qe preserves.vaidity(f)Amonotone(f).

We prove analogous lemmeas for ref, aref, offset, field,
intersection, sum, and records of any number of argu-
ments.

Allowing function types in recursive datatypes
presents a further challenge. Not all types satisfy the
monotone criterion; only covariant types do. In these
types occurrences of the type being defined can only ap-
pear positively, that is, they must appear to the left of an
even number of function arrows in an ML declaration.
For instance, in the following examples:

T1 =cy of int| cz of int — 19

T2 =cy of int | ¢z of T2 — int

13 =cy of int | ¢z of (13 — int) — 13

14 =cy of int | ¢z of ((T4 — int) x int) — (14 X int)

thefirst, third, and fourth satisfy the restriction. Proving
that they do requires proving antimonotone(codeptr),
where we define:

antimonotone(f) =ge V11,72. T1 C T2 — f(12) C f(T1).

Theantimonatonicity of codeptr results from the appear-
ance of the argument-type predicate to the left of anim-
plication arrow in codeptr’s definition.

We prove the composition of a monotone with an an-
timonotone operator, or vice versa, is antimonotone; and
that the composition of antimonotoneoperatorsis mono-
tone. Then it follows easily that cont is antimonotone,
and that func(t1,12) is monotonein a. if T4 isantimono-
tonein o and T2 is monotone in o.. Note that To appears
inside two nested cont operators, establishing its mono-
tonicity.

Theseand similar resultsallow usto provethe validity
of the recursive types 11, T2, T4 shown above. We must
prove (anti)monotonicity lemmas for al the construc-
tors of section 7. The next section includes an example
of their use.

10 Implementation in Twelf

Our encoding of higher-order logic (the object logic) is
illustrated by the following declarations in Twelf (the
metalogic).

tp: type.
int: tp.
form: tp.

arrow: tp -> tp -> tp.
$infix right 14 arrow.

tm: tp -> type.

form: tp.

pf: tm form -> type.

lam: (tm T -> tm U) -> tm (T arrow U).
@: tm (T arrow U) -> tm T -> tm U.

%$infix left 20 @.
and: tm form -> tm form -> tm form.
$infix right 12 and.

forall: (tm T -> tm form) -> tm form.
and i: pf A -> pf B -> pf (A and B).
and el: pf (A and B) -> pf A.
and e2: pf (A and B) -> pf B.
forall i: ({X:tm T}pf (A X))

-> pf (forall A).

forall e: pf(forall A)
-> {X:tm T}pf (A X).

A metalogic (Twelf) type is a type, an object-logic
typeisatp, and a programming-languagetypeisaty
(which is not in the core logic since it is a definition at
the discretion of the code producer). Object-logic types
are constructed from int, the type form of formulas
of the object logic, and the arrow constructor. Object-
level terms of type T have type (tm T) in the meta-
logic. Quantifying at the metalevel allows us to encode
polymorphic object-level types. Terms of type (pf A)

are terms representing proofs of object formulaa.

The declarations beginning with 1am introduce con-
stantsfor constructing terms and formulas. Note that the
universal quantifier forall is polymorphic; uppercase
letters denote variables, and free variables are implicitly
guantified at the outermost level. Braces are used for
explicit quantification. The last five declarations encode
the introduction and elimination rules of natural deduc-
tion for conjunction and universal quantification. The
complete encoding (about 100 lines of Twelf) includes
the remaining inference rules of higher-order logic, an
encoding of integers (including arithmetic operators and
natural number induction), the multistep rule, and the
axioms of the safety policy. All other objects are defini-
tions and theorems built from this core signature.

The following are the Twelf definitions of some of
the type constructors as well as the polymorphic lists
presented in section 9.

ty : tp = state arrow int arrow form.

10

ref : tm (ty arrow ty) =
lam3 [T] [S][V] fst S @ V and
readable @ Vand T@ S @ (snd S @ V).

offset : tm (int arrow ty arrow ty) =
lam4 [I][T][S][VI(T@ S @ (V + I)).

field : tm (int arrow ty arrow ty) =

lam2 [I] [T] (offset @ I @ (ref @ T)) .

record2 : tm (ty arrow ty arrow ty) =
lam2 [T] [U] (intersect @

(field @ 0 @ T) @ (field @ 1 @ U)).

listf : tm ty -> tm (ty arrow ty) =
[T] (lam [T’] (union @
(constty @ (const 0)) @
(intersect @ boxed
@ (record2 @ T @ T')))).
list : tm (ty arrow ty) =
(lam [T] (rec @ (listf T))).

The ty declaration gives the type for predicates repre-
senting ML types. Some definitions are omitted. For ex-
ample1lam4 isdefinedintermsof 1am and binds4 vari-
ables, and state is (pair allocset memory)

where pair is polymorphic, defined in the usual way
with A-calculus. The following theorem justifies the use
of rec inthe definitionof 1ist.

vm_listf : pf (validtype @ T)
pf (valid mono @ (listf T)) =
[P:pf (validtype @ T)]
(vim_union vm_constty

(vm_intersect vm_boxed
(vm_record2
(vim_validtype P) wvm_id))).

->

This theorem illustrates the application of one lemma
per type constructor. These are the lemmas stating that
the constructor preservesvalidity and monotonicity. The
vm_union theorem, for instance, was presented in the
previous section.

11 Conclusion and Future Work

We have described a framework for proof-carrying code
which should be sufficiently general to accommodate
real programming languages on real machines.

Machine instruction sets. To handle real machines,
we plan to encode instruction set architectures such as
the Sparc and Pentium; we will have to handle variable
sizeinstructions and byte addressing.

Contravariant recursive types. Many real program-
ming languages—ML, Java, C—have contravariant re-
cursive types such as this one:

datatype exp APP of exp * exp

| LAM of exp -> exp

Our current type framework cannot handle this type be-
cause of the occurrence of exp to the left of the arrow
in the LAM constructor. We plan to adapt the model of
types in MacQueen et a. [MPS86] or in Mitchell and
Viswanathan [MV96] to our notion of types as predi-
cates on machine states. Doing so requires the formal-
ization of the Banach fixed point theorem on complete
metric spaces.

Mutablefields. We also plan to describe mutable data
structures, such as ML refs and Java objects. Handling
referenceswill involve alowing for mutable memory lo-
cations, which will require amore complex notion of al-
location, and thus a more complex valid type predicate.

Fe. Our longer-range plan is to cover more of types
used by a production compiler for a language such as
ML. In particular, we planto incorporatethe type system
of the FLINT intermediate language [Sha98] (which will
also compile Java [LST99]), for which we will have to
encode the types and kinds of the F,, polymorphic A-
calculus[Gir72, Rey74].

Other type systems. To show that our approach to
safety policies (which moves information from the
trusted computing base into a semantic model built from
first principles) is truly universal, we plan to build a
model of a type system that is possibly quite different
from that of ML. One possibility is the type system of
Touchstone [Nec98] which has mutable records, but no
recursive types or union types; or the typed assembly
language of Morrisett et al. [MWCG9S].

Concurrency. Our model is sequential. Concurrency
and asynchronous exceptions can be handled by assum-
ing (in the step relation) that some portions of memory
can change between successive machine instructions,
and some portionswill not. The safety policy must guar-
antee that certain memory locations (i.e. unshared vari-
ables of this thread) are preserved unchanged.

11

Automating proof. In an earlier version of our sys
tem, we built a prototype theorem prover which auto-
matically proved safety of simple programsthat traverse
and alocate lists. We have lots of ideas about how to
augment this prover. In doing so, it will be necessary to
keep proofs small. Our godl is to develop a set of lem-
masthat allow usto build proofsfully automatically that
are linear in the size of the type-annotated intermediate
representation of the compiled program; we believe this
is possible for the kinds of safety proofs we are consid-
ering. An exampleillustrating thisideaisthevm_1ist
theorem in the previous section whose proof uses ex-
actly as many lemma constructors as the description of
the 1ist £ type usestype constructors.

Acknowledgements. We thank Neophytos Michael
for assistance in implementing the toy-machine de-
code function in Twelf; Robert Harper, Frank Pfenning,
Carsten Schirmann for advice about encoding logicsin
Twelf; Doug Howe, David MacQueen, and Jon Riecke
for advice about recursive types, Greg Morrisett for
comments on an early draft of the paper.

References
[Gir72] J-Y. Girard. Interprétation Fonctionnelle et
Elimination des Coupures dans I’ Arithmétique
d Ordre Supérieur. PhD thesis, University of
ParisVII, 1972.

D. Kranz, R. Kelsey, J Rees, P. Hudak,
J. Philbin, and N. Adams. ORBIT: An opti-
mizing compiler for Scheme. S GPLAN Notices
(Proc. Sgplan’ 86 Symp. on Compiler Construc-
tion), 21(7):219-33, July 1986.

Christopher League, Zhong Shao, and Valery
Trifonov. Representing java classes in a typed
intermediate language. In Proc. 1999 ACM SIG-
PLAN International Conference on Functional
Programming (ICFP’ 99), page (to appear), New
York, 1999. ACM Press.

Greg Morrisett, Karl Crary, Neal Glew, and
David Walker. Stack-based typed assembly lan-
guage. In ACM Workshop on Types in Compila-
tion, Kyoto, Japan, March 1998.

Yasuhiko Minamide, Greg Morrisett, and Robert
Harper. Typed closure conversion. In POPL
'96: The 23rd ACM SIGPLAN-SGACT Sympo-
sium on Principles of Programming Languages,
pages 271-283. ACM Press, January 1996.

[KKR*86]

[LST99]

[MCGW98]

[MMHO6]

[MP8S]

[MPS86]

[MV96]

[MWCGOS]

[Nec97]

[Necog]

[Pfe91]

[PS99]

[Rey74]

[Shaog]

[WLAGO3]

John C. Mitchell and Gordon D. Plotkin. Ab-
stract types have existential type. ACM
Trans. on Programming Languages and Systems,
10(3):470-502, July 1988.

David MacQueen, Gordon Plotkin, and Ravi
Sethi. An ideal model for recursive poly-
mophic types. Information and Computation,
71(1/2):95-130, 1986.

JC. Mitchell and R. Viswanathan. Effec-
tive models of polymorphism, subtyping and
recursion. In 23rd International Colloguium
on Automata, Languages, and Programming.
Springer-Verlag, 1996.

Greg Morrisett, David Walker, Karl Crary, and
Nea Glew. From System F to typed assem-
bly language. In POPL '98: 25th Annual ACM
S GPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 85-97. ACM
Press, January 1998.

George Necula. Proof-carrying code. In 24th
ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 106—
119, New York, January 1997. ACM Press.
George Ciprian Necula Compiling with
Proofs. PhD thesis, School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh,
PA, September 1998.

Frank Pfenning. Logic programming in the LF
logical framework. In Gérard Huet and Gor-
don Plotkin, editors, Logical Frameworks, pages
149-181. Cambridge University Press, 1991.

Frank Pfenning and Carsten Schirmann. System
description: Twelf — a meta-logical framework
for deductive systems. In The 16th International
Conference on Automated Deduction. Springer-
Verlag, July 1999.

John C. Reynolds. Towards a theory of type
structure. In Proc. Paris Symp. on Programming,
volume 19 of Lecture Notes in Computer Sci-
ence, pages 408-425, Berlin, 1974. Springer.

Zhong Shao. Typed cross-module compila-
tion. In Proc. 1998 ACM SIGPLAN Interna-
tional Conference on Functional Programming
(ICFP ’98), pages 141-152, New York, 1998.
ACM Press.

R. Wahbe, S. Lucco, T. Anderson, and S. Gra-
ham. Efficient software-based fault isolation. In
Proc. 14th ACM Symposium on Operating Sys-
temPrinciples, pages 203-216, New York, 1993.
ACM Press.

12

