
A Kind System for Typed Machine Language

Andrew W. Appel Christopher D. Richards

Princeton University, October 2002

{appel,richards,kswadi}@cs.princeton.edu

Kedar N. Swadi

ABSTRACT
One of the aims of Foundational Proof-Carrying Code (FPCC)
is to incorporate a completely semantic description of types
into the Proof-Carrying Code framework. FPCC describes
types as complex predicates, some of which require proper-
ties like contractiveness, representability, and extensionality
to hold. We keep track of these properties by encoding them
within kinds. In this paper, we give a syntactic kinding sys-
tem with semantic proofs.

1. INTRODUCTION
Some of the early frameworks for Proof-Carrying Code (PCC)
[12] assumed the soundness of the typing rules for a particu-
lar type system. Foundational Proof-Carrying Code (FPCC)
[3] reduces the size of the Trusted Computing Base by giv-
ing semantics to types and instructions in terms of higher-
order logic and arithmetic facts, and using these semantics
in machine-checked proofs of the typing rules.

In the FPCC project at Princeton, we have a type sys-
tem targeted towards compilation, with safety proofs, of
languages such as Java and ML. Among the type operators
in this system are the recursion operator rec, and the refer-
ence operators box (for immutable references) and ref (for
mutable references). Recursive types are written as rec(f),
where f is a type function. In the semantic systems of Mac-
Queen, Plotkin, Sethi [9] and Appel and McAllester [5], the
fold/unfold lemma to manipulate recursive types,

rec f = f(rec f),

is provable only if f is contractive. That is, f must be the
composition of at least one contractive operator with other
contractive and nonexpansive operators. As a result, it be-
comes necessary to keep track of the contractiveness and the
nonexpansiveness of types to ensure well formedness.

To give a model for mutable references, we use the work
of Ahmed et al. [2]. In this model, a reference type ref(τ)
is well formed if τ is representable. To model core ML, we
often require a composition of operators like ∃, ref, and rec

in ways which require us to keep track of properties like
contractiveness as well as representability.

Finally, to model arithmetic dataflow, we use singleton
integer types. When quantifying over such types in dataflow
equations, we also wish to keep track of which types are
singletons.

The previous approaches to semantics of recursive types
explain how to prove the contractiveness of a single-argument
type function, and how to compose single-argument contrac-
tive and nonexpansive type functions. Unfortunately, in the
type systems we use in real life, type expressions often use
many type variables at once. That is, deep inside a type
expression such as

Λα. rec β. α × ∃γ. (γ × β)

there are subexpressions with several free variables. These
are not simply compositions of one-argument type functions.
What we need is an organizing principle for applying the
semantic ideas for recursive types or mutable references to
nontrivial type expressions.

In this paper, we present a kinding system to track these
properties and ensure that all our types are well formed.
Properties we wish to track are encoded into our kinds, the
semantics of which are hidden in their definitions. Our kind-
ing judgments are backed by machine-checked proofs; some
of these proofs are complete and checked in the Twelf sys-
tem; others we are still in the process of implementing from
hand-verified arguments. The syntactic presentation also
allows us to achieve modularity; higher layers in our sys-
tem which use kinds and kinding judgments are shielded
from their semantics. We expect any foundational semantic
model for core ML to require addressing the properties listed
above, and believe that the kinding system to be useful for
all such models.

Our kinding system is restricted to first-order kinds. Since
our current goal in the FPCC project is to be able to compile
core ML, it is enough for us to restrict ourselves to first-order
kinds.

We have type functions arising out of the uses of type
operators like rec and ∃, and we use de Bruijn indices [7]
with explicit substitutions [1] to manage applications of ar-
guments to these type functions. Our de Bruijn numbering
starts at 0. We do not use an explicit Λ anywhere; in our
calculus, the arity of a type expression (possibly with free
variables) is known from the context in which it appears, so
the Λ is unnecessary.

1

Examples.

ref(int)

A mutable reference to an integer.

box(const(6))

An immutable pointer to a value which must be the
constant 6.

∃(0 × 0)

A pair of values, both of which have the same type. In
our system the cartesian product operator × is not a
primitive, but is instead defined as the intersection of
field types.

field(0, const(3)) ∩ field(1, int) ∩ field(2, 0)

A 3-tuple containing a constant integer 3, an integer,
and a free type variable 0. Because this expression has
a free type variable, it must be interpreted in some
context that gives a binding for 0. Note that not even
field(i, τ) is primitive; it is defined as offset(i, box(τ)).
The use of simpler primitives gives the compiler greater
flexibility in arranging data-structure layouts.

The above expression could also be considered as a
function of its free de Bruijn index, as in

λα.(const(3), int, α) ;

or even a function

λα.λβ.(const(3), int, α)

where argument β fails to appear. In our calculus, the
arity of an expression is determined by context.

rec(field(0, const(3)) ∩ field(1, int) ∩ field(2, 0))

An (infinite) list type; the type variable 0 is bound by
the rec operator.

(field(0, const(3)) ∩ field(1, int) ∩ field(2, 0))[char · id]

This is a closed expression in which the explicit sub-
stitution [char · id] replaces 0 with the character type.

2. SEMANTIC MODEL OF TYPES
Our semantic model of types—which is the central motiva-
tion for the kinds in our system—derives from the indexed
model proposed by Appel and McAllester [5]. In the indexed
model, a type τ is a predicate on the tuple (k, v). It uses the
judgment v :k τ to say that a concrete value v has type τ to
approximation k. This means that any program which runs
for less than k instructions cannot tell whether v is of type
τ . For example, if v :3 intlist then v might be a pointer to
a good list of integers, or to a list that has 3 or more good
cons cells followed by a stray pointer; but not to a list that
“goes wrong” in fewer than 3 dereferences.

A concrete value v is a tuple (s, x). In this tuple, s rep-
resents the current state of the machine, and x is an integer
which represents the memory locations holding the value we
are interested in. The state s is itself a tuple (a,m), where
a identifies the allocated region of memory, and m is a map
from memory locations to their contents.

In our calculus, a closed type is a predicate on (k, v),
but a type expression with free variables must also have an
environment ρ in which to look up de Bruijn indices. Thus

a TML type is modeled as a predicate on (ρ, k, v), where ρ
is a function from natural numbers to closed types.

A judgment v :k τ makes sense if τ has no free type
variables, and is an abbreviation for the semantic formula
∀ρ. τ (ρ, k, v).

2.1 Contractive and nonexpansive types
To reason about recursive types using the two-way subtyping
rec τF = τF (rec τF), we must know that τF is contractive
in its first argument. Intuitively, a type constructor F is
contractive if it takes more machine instructions to reach
the bottom of a value of type F (τ) than it does to reach the
bottom of a value of type τ . Constructors such as box and
→ are contractive,1 but constructors such as offset, ∩, and ∪
are not. Intuitively, a value of type τ1 ∩ τ2 is no deeper than
a value of type τ1 or a value of type τ2. However, these op-
erators are all nonexpansive, meaning that the composition
of offset or ∩ with a contractive operator is contractive.

Formally, we define contractiveness as follows. Let �φ�k

be a type representing the kth approximation to the type φ,

�φ�k = λ(j, v).∀j < k. φ(j, v)

and let the replacement of the ith binding in the type en-
vironment ρ by its jth approximation be given by ρ[i �→
�ρ(i)�j]. Then we say a type function is f is contractive in
its ith type argument iff

∀ρ, k, v. fk+1(ρ, v) ≡ fk+1(ρ[i �→ �ρ(i)�k], v)

That is, in judging v :k+1 f(ρ), we will never need to test
ρ(i) at approximation greater than k. This leads to a well-
founded induction when we construct recursive types; in-
deed, Appel and McAllester call this wellfoundedness in-
stead of contractiveness.

Similarly, we say that a type function is f is nonexpansive
in its ith type argument iff

∀ρ, k, v. fk(ρ, v) ≡ fk(ρ[i �→ �ρ(i)�k], v)

Appel and McAllester [5] show rules for deciding the well-
formedness of compositions of single-argument type func-
tions in the indexed model. For example, rec(F) is a well-
formed type if F is contractive in its arguments. While tech-
niques in MacQueen et al. [9], and Appel and McAllester [5]
both can be extended to work for multiple argument func-
tions, they are too unwieldy for writing machine-checkable
implementations. Also, their rules are for very high-level op-
erators. Since we deal with machine-level operators (which
we use to build those high-level operators), we need differ-
ent set of rules. One of the aims of our kinding system is to
make this calculus easier for writing and proving lemmas,
especially in an automated or semiautomated framework.

Consider, for example, the ML type

datatype ’a List = Cons of ’a * ’a List | Nil

A translation of this expression into high-level types would
be Λα.µβ.((α × β) ∪ nil) provided that α × β and nil are
disjoint.
1Following Appel and Felty, we build function closures in
three stages. First-order continuations are modeled with
the codeptr type constructor. A (higher-order) continuation
is a closure, implemented as pair of codeptr and environ-
ment; and then the type of the environment is abstracted
by existential quantification. Finally, functions are made by
composing continuations in continuation-passing style.

2

Figure 1 shows the machine-level view of a cons and a
nil integer instance of this type. Register r1 contains zero
denoting a nil cell. Register r4 contains a nonzero value
(314) denoting the cons cell. This value is interpreted as
a pointer to a two-word structure. The first word contains
integer 10, and the second contains a pointer to the next cell
of the list.

 r1

 r4

.....

Registers Memory

10

512

.....

9

0

512

(nil)

(cons)

0

314

314

Figure 1: Representing nil and cons cells

Using low-level types, we describe the List type as

rec
�
(nonzero ∩ offset 0 (box 1)

∩ offset 1 (box 0))
∪ (const 0)

�

where any nonzero value has the nonzero type. Note that 0,
the parameter to rec, appears deep inside the type expression
within a box operator. The rec constructor requires its ar-
gument to be contractive in order to be well formed. Due to
this wide separation of the binding of the type variable and
its use in the type expression, we require a kinding system
which can keep track of the contractive and nonexpansive
properties of type variables.

2.2 Representable types
The inclusion of references in our semantic model is challeng-
ing. Ahmed, Appel, and Virga [2] give a semantic model of
references. For this model to work, it is necessary for types
to be representable. Informally, if a type is representable
then a value with that type can be stored in a mutable cell
in memory. We give a brief explanation of what it means
for types to be representable.

In the Appel-Felty model of types [4], which can model
immutable pointers and memory allocation but is too weak
to model mutable references, a type is a predicate on mem-
ory M , the allocated set Λ, and a value v. M is a map from
locations to values, while Λ is a finite set of “allocated” lo-
cations. But in conventional syntactic calculi with mutable
references, Λ is a finite map from locations to types; that is,
in addition to telling which locations are allocated, Λ tells
what type of value we may store at each location. These
syntactic calculi have a judgment M : Λ saying that each
element of the memory has an appropriate type.

A naive extension of the Appel-Felty model to a regime
where Λ is a function from locations to types, yields the

following problematic model:

Type τ : M → Λ → v → o.
Memory M : L → v.
Allocated Set Λ : L → τ.
Values v : {0, 1,}
Locations L : {0, 1,}

The problem is that there is a circularity of definition in
the semantic model: types are predicates on alloc-sets, and
alloc-sets are predicates on types. Ahmed et al. remedy this
situation by making the allocation set a map from location
to type syntax, τsyn. τsyn is a tree (or Gödel number) which
gives a syntactic description of the type. Although this re-
moves the circularity, it requires another map from the type
syntax to the semantic type. This map is the representation
function repr. Given a type-syntax encoding, repr gives the
corresponding semantic type. In this new setting we have:

Type syntax τsyn : {0, 1, 2, ...}
Allocated Set Λ : L → τsyn.

repr : τsyn → τ.

For convenience we define a predicate “representable” such
that

representable def= λτ. ∃τsyn. repr(τsyn) = τ .

Types like ref(τ) are meaningful in this model only if there
is a syntax τsyn for the type τ . Not all types are repre-
sentable, though, and therefore this check is necessary. On
the other hand, most type operators do not require that their
argument-type be representable. Type expressions made
only from operators like box and offset are representable and
can go inside mutable references.

Quantifiers, however, are a bit more complex. To have
meaningful quantified type expressions, we may choose to
quantify over representable types, or over all types:

∀r
def= λF.λ(M,Λ, v).∀τ. representable(τ) ⇒ (F τ)

∀a
def= λF.λ(M,Λ, v).∀τ. (F τ)

∃r
def= λF.λ(M,Λ, v).∃τ. representable(τ) ∧ (F τ)

∃a
def= λF.λ(M,Λ, v).∃τ. (F τ)

The operators ∀r and ∃r quantify over representable types,
while ∀a and ∃a quantify over all types.

The semantic model of ∀r must refer to repr. Therefore,
the repr relation cannot itself refer to ∀r, and thus ∀r is
unrepresentable. On the other hand, the model of ∀a does
not refer to repr, and this means that repr can safely refer
to ∀a; that is, ∀a can be representable.

Over which types is it more useful to quantify? It turns
out we need both. To represent the abstype feature of core
ML, we need ∃r, but to represent function closures we need
∃a. To represent polymorphic functions we need ∀r.

We need to keep track of representability of complex type
expressions in an organized way. Representability is encoded
into kinds in our system and the kinding system is then used
externally to impose the representability requirement on the
type expressions.

Throughout the 1980s, the interaction of references and
polymorphism caused much trouble in the type theory of
ML. Our semantic model, and the associated kinding sys-
tem, provides a new explanation of this interaction.

3

3. TYPED MACHINE LANGUAGE
In our FPCC project, we use Typed Machine Language
(TML) as an interface between the semantics built on higher-
order logic and arithmetic, and the syntactic rules used
to provide type checking (and safety proofs) for programs.
That is, at the bottom we have higher-order logic (HOL),
which is quite general and completely undecidable. At the
top, we have a typed assembly language (TAL), which has
a syntax-directed type-checking algorithm but is necessarily
not very general: the TAL is suitable for a particular pro-
gramming language as compiled by a particular compiler
for a particular target machine. Our goal is to define the
semantics of TAL in terms of HOL, and to prove all the
typing rules of TAL as derived lemmas in HOL. We expect
that these proofs will total about a hundred thousand lines
of code, in the LF notation used by the Twelf [13] system.

A hundred thousand lines of software must be well modu-
larized with appropriate abstraction layers, for it could never
be built and maintained otherwise. Our most important ab-
straction layer between HOL and TAL is Typed Machine
Language.

Because TAL must be syntax directed, it cannot include
fully general intersection and union types, subtyping, quan-
tification, and so on. TML has all the primitives necessary to
construct the application-specific types used in TAL; there-
fore TML subtyping cannot be syntax-directed, or even de-
cidable. (See Figure 2 for the full repertoire of TML type
primitives.) We will prove the primitive TML subtyping
rules in HOL, by hand, and check them by machine; then
we will prove the TAL rules in the TML calculus, mostly by
hand, and check them by machine. Finally we can apply the
TAL rules to a given compiled program fully automatically.

Although TML is intended for the construction of TAL,
and not to reason about programs directly, in this paper
we will explain TML by applying it directly to machine-
language programs.

For example, consider the ML program

datatype ’a List = Cons of ’a * ’a List | Nil
...
case x : ’a List

of Cons(h,t) => ...
| Nil => ...

As explained in section 2.1, we encode the datatype as

F = rec
�
(nonzero ∩ offset 0 (box 1)

∩ offset 1 (box 0))
∪ (const 0)

�

where the type expression on the right is an α list. The
program can be compiled to machine code as

{r1 : F (int)}

if r1=0 goto NilCase
ConsCase: r2 := mem[r1+0]

...
NilCase: ...

The case discrimination implicit in the if-goto instruction
requires that r1 belong to a union type. Indeed, there is
a union buried inside F (int), but first we must beta-reduce
(using the explicit substitution calculus) and then unfold the
rec.

Kinds κ ::= Ω0 | ΩR | ΩC | ΩRC

Types τ ::= n | � | ⊥
| codeptr(τ) | offset (τ1, τ2)
| box(τ) | ref(τ)
| rec(τ)
| τ1 ∩ τ2 | τ1 ∪ τ2

| ∀r τ | ∃r τ
| ∀a τ | ∃a τ
| const(τ)
| geq(n) | leq(n) | gt(n) | lt(n)
| plus(τ1, τ2) | minus(τ1, τ2)

Naturals n ::= {0, 1,}

Figure 2: TML Kinds and Types

We have used our semantic model to prove all the con-
ventional syntactic rules of the explicit substitution calcu-
lus, and we have implemented a logic program (in the Twelf
system) that reduces expressions containing substitutions.
Rendering F (int) as F [int · id] and substituting gives us

G = rec
�
(nonzero ∩ offset 0 (box int)

∩ offset 1 (box 0))
∪ (const 0)

�

Now we can apply the UNFOLD rule,

v : F “F is contractive”
v : F (rec F)

UNFOLD

which results in the new typing judgment

r1 : (nonzero ∩ offset 0 (box int)
∩ offset 1 (box G))

∪ (const 0)

After the conditional goto, where it is known that r1 is not
zero, we have:

r1 : nonzero ∩
�
(nonzero ∩ offset 0 (box int)

∩ offset 1 (box G))
∪ (const 0)

�

where nonzero is a type containing all the nonzero integers.
Since (nonzero ∩ const 0) = ⊥, and using the distributivity
law, we can prove

r1 : (offset 0 (box int) ∩ offset 1 (box G))

and thus it is safe (at label ConsCase) to dereference r1.
In FPCC, the UNFOLD rule is a theorem built upon the

semantics of the rec type. It requires F to satisfy a con-
tractiveness property, which we have written informally in
the presentation above. Our kinding system, described in
the next section, captures the semantics of contractiveness
(and other properties) in a formal way, and hides the se-
mantics under an abstraction layer, leaving only an easily
manipulated syntax for the user of TML.

4. KINDING SYSTEM
Previous sections have motivated the need for a kinding sys-
tem which is able to track the extensionality, representabil-
ity, contractiveness, and constancy properties of TML types.

4

ΩRC

ΩR ΩC

Ω0

ΩN

Figure 3: The TML kinding hierarchy as a lattice.

In this section we describe a hierarchy of kinds suited to that
purpose, and give these kinds and the kinding judgment a
semantic model that allows us to prove the kinding rules as
lemmas. Last, we describe the kinding system’s implemen-
tation as a logic program, and this program’s use in assisting
the users of TML in the writing of proofs.

4.1 Kinding hierarchy
The kinding system employs a hierarchy of five kinds: Ω0,
ΩR, ΩC , ΩRC , and ΩN . Except where noted, the reader
may assume the presence of a weakening rule where one
kind implies another.

Ω0 is the most inclusive kind, requiring only that its mem-
bers respect basic properties such as extensionality
over equivalent values and states.

ΩR implies Ω0, and additionally requires its members to
respect representability.

ΩC implies Ω0, and additionally requires its members to
respect contractiveness. While the kind hierarchy in-
cludes this element for completeness, in practice we
have no need of it; it does not figure into the kinding
judgments.

ΩRC implies both ΩR and ΩC .

ΩN is the kind of integer singleton types (those constructed
from const). It can be proved that such types are both
representable and contractive, that is, that ΩN implies
ΩRC . However it is a matter of taste and style whether
the TML calculus include the corresponding weakening
rule. Here we demand that expressions having kind
ΩN be explicitly coerced to kind ΩRC , in preference to
the weakening rule.

The kinding hierarchy thus forms a lattice as per Figure 3.
In the figure, the relation depicted is that of weakening. We
show a dotted line from ΩN to ΩRC to denote that while
such a weakening rule is possible, it remains a matter of
taste whether to include it.

4.2 Semantics of the kinding judgment
In a conventional kinding system the syntax of the kinding
judgment takes the following form:

x0 :: κ0, . . . , xn :: κn � τ :: κ

Because TML uses de Bruijn indices instead of variables,
our kinding judgment need not mention the xi explicitly.
Rather, index i is assumed to have kind κi. We obtain
therefore a judgment of the form

κ0, . . . , κn � τ :: κ

We call the array of kinds to the left of the turnstile Γ, and
denote by Γ(i) the ith kind in the array—the kind of the
prospective term to be substituted for de Bruijn index i.

4.2.1 Model I
Now we must assign semantics to the judgment Γ � τ :: κ.
Let us summarize the concepts at hand and introduce a ty-
pographical convention. An open type τ may contain as sub-
terms some number of free variables represented as de Bruijn
indices. Such an open τ may be closed by applying it to an
environment ρ that maps each index i to type ρ(i). Note
that ρ(i) is itself necessarily a closed type. We use φ to
denote closed types such as τ (ρ) and ρ(i).

Since we associate a kind to each type variable, it is nat-
ural to think of modeling kinds as predicates on closed types.
Since extensionality, representability, and constancy are prop-
erties of type expressions, this approach works well: Model I
captures all the properties of interest except that of contrac-
tiveness.

Now in this model we render kinds as predicates on closed
types φ. Since the kinding judgment Γ � τ :: κ must ulti-
mately involve the open type τ , and since const constructs
an open type, some of the following definitions must make
judicious use of a universally quantified ρ to close the open
types. The kinds in this model are defined as follows:

Ω0
def?= λφ. extensional(φ)

ΩR
def?= λφ. representable(φ) ∧ Ω0(φ)

ΩN
def?= λφ. ∃n. ∀ρ. φ = const(n)(ρ)

and the the kinding judgment, thus:

Γ � τ :: κ
def?= ∀ρ.

�
∀i. Γ(i)

�
ρ(i)

��
⇒ κ

�
τ (ρ)

�

Here, as before, ρ is an environment mapping indices to
closed type expressions. Hence Γ � τ :: κ says that τ belongs
to κ under the assumption that each index i in τ has kind
Γ(i).

4.2.2 Model II
To the detriment of the previous model, contractiveness is
not a property of types but rather of functions from types to
types (hereafter “type functions”). Thus we must reformu-
late our kind calculus so that kinds are predicates on type
functions. In such a formulation, it is simple to produce a
definition for ΩC :

ΩC
def= λf. contractive(f) ∧ Ω0(f)

5

This formulation slightly complicates the definitions of Ω0,
ΩR, and ΩN . The solution is to require the type function
under consideration to yield a result that is extensional, rep-
resentable, or constant, respectively, regardless of its argu-
ment. Thus we write:

Ω0
def= λf. ∀φ. extensional

�
f(φ)

�

ΩR
def= λf. ∀φ. representable

�
f(φ)

�
∧ Ω0(f)

ΩN
def= λf. ∃n. ∀φ. ∀ρ. f(φ) = const(n)(ρ)

For the revised formulation of the kinding judgment we re-
tain the form of the previous incarnation. However, since
the new regime raises the subjects of the kinding judgment
from closed types to functions on closed types, we replace ρ,
a map from integers to closed types i, with R, a map from
integers to functions on closed types. Similarly, on the right
hand side of the implication arrow we replace τ (ρ) with the
analogous type function constructed using R.

Γ � τ :: κ
def=

∀R.
�
∀i. Γ(i)

�
R(i)

��
⇒ κ

�
λφ. τ

�
λi. R(i)(φ)

��

We are left with the problem of how to relate each R(i)
to de Bruijn index ρ(i). To solve this problem, consider the
right hand side of the implication in the new kinding judg-
ment. To relate type function R(i) to i, we can construct a
ρ using R in its definition, such that R(i) perturbs whatever
would otherwise have been the image of i (here written as
φ):

ρ0
def= λi. R(i)(φ)

Naturally, we wish this ρ0 to be the environment used to
close τ :

φ0
def= τ

�
λi. R(i)(φ)

�

Now by λ-abstracting φ, we obtain a function on closed types
suitable for offering to kind κ for judgment.

4.3 Kinding prover
We have implemented the inference rules for the kinding
judgment (see Figure 4) as a logic program in the Twelf sys-
tem. Each inference rule for the kinding judgment appears
as a clause in the logic program. For example, consider the
kinding rules for box and rec, which we write in notation as

Γ � τ :: ΩR

Γ � box(τ) :: ΩRC
,

ΩR,Γ � τ :: ΩRC

Γ � rec(τ) :: ΩRC
.

In the logic program, these inference rules are realized as
clauses thusly:

|-wellformed_box :
|-wellformed Gamma (box @ Tau) omega_RC <-
|-wellformed Gamma Tau omega_R .

|-wellformed_rec :
|-wellformed Gamma (rec @ Tau) omega_RC <-
|-wellformed (omega_R , Gamma) Tau omega_RC .

This Twelf presentation of the logic program’s clauses differs
from that of a traditional Prolog system’s in two salient
ways. First, note that each clause is labeled with the name
of the corresponding inference rule. We will return to this
point below and again in section 5. Second, for clauses Twelf
uses the syntax

label :
head <- subgoal_1 <- ... <- subgoal_n .

whereas a traditional Prolog system would use the syntax

head :- subgoal_1 , ... , subgoal_n .

Twelf permits the use of higher-order abstract syntax, but
we have no need of it here.

The user of the TML calculus would run the logic program
by issuing to Twelf a directive of the form

tau = union
@ (intersection

@ nonzero
@ (offset @ 0 @ (box @ (var @ 1)))
@ (offset @ 1 @ (box @ (var @ 0))))

@ (const @ 0) .

%solve witness :
|-wellformed Gamma tau Kappa .

Ordinarily, tau is ground (the type expression of interest
supplied by the user), and Gamma and Kappa are unification
variables. Should the logic program succeed, Twelf instanti-
ates Gamma and Kappa. Furthermore, Twelf binds to witness
the witness to the program’s success, a tree with nodes la-
beled with the names of clauses. The witness and the in-
stantiated Gamma and Kappa may then be used in subsequent
expressions of concern to the TML user. The user of the
TML calculus is thus free to expend effort on interesting
problems, leaving tedious syntax-directed judgments to the
computer.

5. SEMANTIC PROOFS OF LOGIC
PROGRAMS

Using the Twelf logical framework allows us the convenience
to express our definitions, theorems and proof rules all in a
uniform way. For example, the definition for the kind ΩR is

omega_R :
tm tml_kind =

lam [f] omega_0 @ f and
forall [tau] reppable @ repr @ tau imp

reppable @ repr
@ (lam [sigma] f @ (tau @ sigma)).

This statement in Twelf defines “omega_R” to be of Twelf
metalogic type tm tml_kind, and having a definition follow-
ing the “=” sign. Consider the kinding rule which states that
the union of two types of kind ΩRC is also of kind ΩRC .

τ1 :: ΩRC τ2 :: ΩRC

τ1 ∪ τ2 :: ΩRC
Ω ∪ RC

Below is the corresponding semantic lemma in Twelf named
“omega_union_RC”. It is written in exactly the same syntax
as the definition above:

omega_union_RC :
pf (omega_RC @ T1) ->
pf (omega_RC @ T2) ->
pf (omega_0 @ (union @ T1 @ T2)) =

[p1 : pf (omega_R @ T1)]
[p2 : pf (omega_R @ T2)]
... p1 ...
... p2

6

Γ(i) = κ

Γ � i :: κ
WF VAR

Γ � � :: ΩRC
WF �

Γ � ⊥ :: ΩRC
WF ⊥

Γ � τ :: ΩR

Γ � codeptr τ :: ΩRC
WF CPTR

Γ � τ :: ΩRC Γ � n :: ΩN

Γ � offset (τ1, τ2) :: ΩRC

WF OFFSET

Γ � τ :: ΩR

Γ � box τ :: ΩRC
WF BOX

Γ � τ :: ΩR

Γ � ref τ :: ΩRC
WF REF

ΩR,Γ � τ :: ΩRC

Γ � rec τ :: ΩRC
WF REC

Γ � τ1 :: ΩRC Γ � τ2 :: ΩRC

Γ � τ1 ∩ τ2 :: ΩRC
WF ∩

Γ � τ1 :: ΩRC Γ � τ2 :: ΩRC

Γ � τ1 ∪ τ2 :: ΩRC
WF ∪

ΩRC ,Γ � τ :: ΩRC

Γ � ∀r τ :: Ω0
WF ∀r

ΩRC ,Γ � τ :: ΩRC

Γ � ∃r τ :: Ω0
WF ∃r

Ω0,Γ � τ :: Ω0

Γ � ∀a τ :: ΩR

WF ∀a
Ω0,Γ � τ :: Ω0

Γ � ∃a τ :: ΩR

WF ∃a

Γ � const(n) :: ΩN

WF CONST

Γ � geq(n) :: ΩN

WF GEQ
Γ � gt(n) :: ΩN

WF GT

Γ � leq(n) :: ΩN

WF LEQ
Γ � lt(n) :: ΩN

WF LT

Γ � τ1 :: ΩN Γ � τ2 :: ΩN

Γ � plus(τ1, τ2) :: ΩN

WF +

Γ � τ1 :: ΩN Γ � τ2 :: ΩN

Γ � minus(τ1, τ2) :: ΩN

WF −

Γ � τ :: ΩR

Γ � τ :: Ω0
WF WEAK1

Γ � τ :: ΩC

Γ � τ :: Ω0
WF WEAK2

Γ � τ :: ΩRC

Γ � τ :: ΩR
WF WEAK3

Γ � τ :: ΩRC

Γ � τ :: ΩC
WF WEAK4

Figure 4: Kinding (well-formedness) rules for TML

The Twelf metalogic type of this lemma (the expression fol-
lowing the : sign) is

pf (omega_RC @ T1) ->
pf (omega_RC @ T2) ->
pf (omega_RC @ (union @ T1 @ T2)

and it tells us that given proofs of T1 and T1 having kind
ΩRC , we can derive a proof of union @ T1 @ T2 having the
kind ΩRC . In an automated setting, we would require the
equivalent of the Prolog rule:

omega_RC (union(T1, T2)) :-
omega_RC (T1),
omega_RC (T2).

This Prolog rule, however, is not backed by any semantic
proofs. We can reuse the Twelf notation shown above to get
an equivalent rule with a semantic proof:

RC_union_rule :
pf (omega_RC @ (union @ T1 @ T2)) <-
pf (omega_RC @ T1) <-
pf (omega_RC @ T2) =

[p1 : pf (omega_RC @ T1)]
[p2 : pf (omega_RC @ T2)]
(omega_union_RC @ p1 @ p2).

The last line gives us a justification for this “logic program-
ming rule”. As a result of this validity checking and uni-
formity of syntax, it is now possible for us to use Twelf to
ensure the correctness of a logic program (composed of rules
like RC_union_rule) which automatically generates proofs of
well formedness of types.

6. HIGHER-ORDER KINDS?

6.1 Object logic representation of kinds
We use the Twelf logical framework for our implementation
of FPCC, which allows specification of type constructors
in our object logic. Kinds such as ΩR and ΩN are rep-
resented by higher-order logic definitions such as omega_R
and omega_N. Since these kinding predicates must be able to
fit in the same slots in the kinding judgment, the (higher-
order-logic) type of omega_R must be the same as the type
of omega_N. Indeed, both predicates have the type

(closedtype → closedtype) → o .

It is natural to want to extend the kind system with
higher-order kinds formed by a rule κ ::= κ → κ. How-
ever, the kinding predicates representing higher-order kinds
would have to have (higher-order-logic) types such as

(closedtype → closedtype) → (closedtype → closedtype) → o

and so on. These predicates would not fit into our represen-
tation framework in higher-order logic.

On the other hand, for any bounded degree of higher-order
kinds, we could lift all of our kind predicates to a particular
higher-order level. Indeed, to model the Featherweight Java
type system using techniques described by League et al. [8],
we will require first-level kind functions.

An alternate approach would be to permit different kind
predicates to have different types in our underlying logical
representation. Suppose we had N different types of kind
predicates. Each kind of closed TML type would also be

7

represented by a differently-typed predicate in the logical
representation. Then we could not use a single environment
ρ to map type variables to closed types; we would need to
parameterize τ by N different ρ variables. We could not
use a single series of de Bruijn indices; we would need N
different sets. We could not use just one shift operator in
the explicit substitution calculus; we would need N2 shift
operators. We have decided to avoid this nightmare.

Because we have (at most) bounded higher-order kinds,
it is not clear how our system could represent the proposed
higher-order module system of ML [10]. In fact, we have not
even worked out how to model the Standard ML module
system [11]. We are compiling core ML to proof-carrying
code [6], and building foundational safety proofs.

7. CONCLUSION
Our kind system for foundational PCC allows us to keep
track of semantic properties of types; this is crucial to en-
suring that derived types formed from compositions of ba-
sic types are sound. We believe that any type system for
core ML at the machine code level, that provides sufficient
flexibility to optimizing compilers must keep track of these
properties.

While kinding rules in our system have machine-checked
proofs, we also have a purely syntactic presentation of this
system. This allows the complex semantic model to be hid-
den from users of this system.

We also have a logic program to automate proofs about
well formedness of types using this kinding system. Using
Twelf allows us to provide machine-checkable justification
for these rules and thus prove the logic program correct.

8. REFERENCES
[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Levy.

Explicit substitutions. In Seventeenth Annual ACM
Symp. on Principles of Prog. Languages, pages 31–46.
ACM Press, Jan 1990.

[2] Amal Ahmed, Andrew W. Appel, and Roberto Virga.
Semantics of general references by a hierarchy of
Gödel numberings. In 17th Annual IEEE Symposium
on Logic in Computer Science (LICS 2002), pages
75–86, June 2002.

[3] Andrew W. Appel. Foundational proof-carrying code.
In Symposium on Logic in Computer Science (LICS
’01), pages 247–258. IEEE, 2001.

[4] Andrew W. Appel and Amy P. Felty. A semantic
model of types and machine instructions for
proof-carrying code. In POPL ’00: The 27th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 243–253, New York,
January 2000. ACM Press.

[5] Andrew W. Appel and David McAllester. An indexed
model of recursive types for foundational
proof-carrying code. ACM Trans. on Programming
Languages and Systems, 23(5):657–683, September
2001.

[6] Juan Chen, Dinghao Wu, Hai Fang, and Andrew W.
Appel. Low-level typed assembly language. in
preparation, 2001.

[7] N. G. deBruijn. Lambda calculus notation with
nameless dummies, a tool for automatic formula
manipulation. Indag. Math., 34:381–92, 1972.

[8] Christopher League, Valery Trifonov, and Zhong Shao.
Type-preserving compilation of Featherweight Java.
In Foundations of Object-Oriented Languages
(FOOL8), London, January 2001.

[9] David MacQueen, Gordon Plotkin, and Ravi Sethi.
An ideal model for recursive polymophic types.
Information and Computation, 71(1/2):95–130, 1986.

[10] David B. MacQueen and Mads Tofte. A semantics for
higher-order functors. In Proc. European Symposium
on Programming (ESOP’94), pages 409–423, April
1994.

[11] Robin Milner, Mads Tofte, Robert Harper, and David
MacQueen. The Definition of Standard ML (Revised).
MIT Press, Cambridge, MA, 1997.

[12] George Ciprian Necula. Compiling with Proofs. PhD
thesis, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, September 1998.

[13] Frank Pfenning and Carsten Schürmann. System
description: Twelf — a meta-logical framework for
deductive systems. In The 16th International
Conference on Automated Deduction, Berlin, July
1999. Springer-Verlag.

8

