
Verified Correctness, Accuracy, and Convergence
of a Stationary Iterative Linear Solver:

Jacobi Method

Mohit Tekriwal1, Andrew W. Appel2, Ariel E. Kellison3, David Bindel3, and
Jean-Baptiste Jeannin1

1 University of Michigan, USA {tmohit, jeannin}@umich.edu
2 Princeton University, USA appel@princeton.edu

3 Cornell University, USA {ak2485, bindel}@cornell.edu

Abstract. Solving a sparse linear system of the form Ax = b is a com-
mon engineering task, e.g., as a step in approximating solutions of differ-
ential equations. Inverting a large matrix A is often too expensive, and
instead engineers rely on iterative methods, which progressively approxi-
mate the solution x of the linear system in several iterations, where each
iteration is a much less expensive (sparse) matrix-vector multiplication.
We present a formal proof in the Coq proof assistant of the correctness,

accuracy and convergence of one prominent iterative method, the Jacobi
iteration. The accuracy and convergence properties of Jacobi iteration are
well-studied, but most past analyses were performed in real arithmetic;
instead, we study those properties, and prove our results, in floating-
point arithmetic. We then show that our results are properly reflected
in a concrete implementation in the C language. Finally, we show that
the iteration will not overflow, under assumptions that we make explicit.
Notably, our proofs are faithful to the details of the implementation,
including C program semantics and floating-point arithmetic.

Keywords: Formal Verification, Numerical Methods, Jacobi Method

1 Introduction

Many scientific and engineering computations require the solution x of large
sparse linear systems Ax = b given an n×n matrix A and a vector b. There are
many algorithms for doing this; Gaussian elimination is rare when n is large,
since it takes O(n3) time. The widely used stationary iterative methods have an
average time complexity of O(nsk), where sparseness s is the number of nonzeros
per row (often s� n) and k is the number of iterations (often small). Even where
iterative methods are not the principal algorithms for solving Ax = b, they are
often used in transformations of the problem (preconditioning) before using other
workhorses such as Krylov subspace methods [28].

When using a stationary iterative method, one starts with an initial vector
x0 and uses A and b to derive successive vectors x1, x2, . . . that—one hopes—will
converge to a value xk such that the residual Axk − b is small and xk is close

To appear in 16th Conference on Intelligent Computer Mathematics (CICM 2023),
September 4, 2023. Proceedings to be published in the Springer LNAI series.

2 Tekriwal, Appel, Kellison, Bindel, Jeannin

to the true solution. Because these methods are often used as subroutines deep
within larger computational libraries and solvers, it is quite inconvenient to the
end user if some such subroutine reports that it failed to converge—often, the
user has no idea what is the subproblem A, b that has failed. Thus it is useful
to be able to prove theorems of the following form: “Given inputs A and b with
certain properties, the algorithm will converge to tolerance τ within k iterations.”

Since these methods are so important, analyses of their convergence prop-
erties have been studied in detail. However, most of these analyses assume real
number arithmetic operations [28], whereas their implementations use floating-
point; or the analysis uses a simplified floating-point model that omits subnor-
mal numbers [15]; or the analysis is for a model of an algorithm [20] but not
the actual software. And when one reaches correctness and accuracy proofs of
actual software, it’s useful to have machine-checked proofs that connect in a
machine-checkable way to the actual program that is executed, for programs
can be complex and as programs evolve one must ensure that their correctness
theorems evolve with them.

We focus on Jacobi iteration applied to strictly diagonally dominant matri-
ces, i.e., in which in each row the magnitude of the diagonal element exceeds the
sum of the magnitudes of the off-diagonals. Strict diagonal dominance is a sim-
ple test for invertibility and guarantees convergence of Jacobi iteration in exact
arithmetic [28]. Strictly diagonally dominant matrices arise in cubic spline inter-
polation [1], analysis of Katz centrality in social networks [19], Markov chains
associated with PageRank and related network analysis methods [13], and mar-
ket equilibria in economic theory [25], among other domains.

We present both a Coq functional model of floating-point Jacobi iteration
(at any desired floating-point precision) and a C program (in double-precision
floating-point), with Coq proofs that:

– the C program (which uses efficient sparse-matrix algorithms) correctly im-
plements the functional model (which uses a simpler matrix representation);

– for any inputs A, b and desired accuracy τ that satisfy the Jacobi precondi-
tions for a given natural number k, the functional model (and the C program)
will converge within k iterations to a vector xk such that ||Axk − b||2 < τ ;

– this computation will not overflow into floating-point “infinity” values;
– and the Jacobi preconditions are natural properties of A, b, τ, k that (1) are

easily tested and (2) for many natural engineering problems of interest (men-
tioned above), are guaranteed to be satisfied.

Software packages not written in C can still be related to our functional model
and make use of our floating-point convergence and accuracy theorems. And
even for inputs that do not satisfy the Jacobi preconditions, we have proved
that our C program correctly and robustly detects overflow.

Together, these theorems guarantee that a Jacobi solver deep within some
larger library will not be the cause of a mysterious “failed to converge” message;
and that when it does believe it has converged, it will have a correct answer.

Verified Correctness, Accuracy, and Convergence of Jacobi 3

Contributions. First convergence proof of Jacobi that takes into account floating-
point underflow or overflow; first machine-checked proof of a stationary iterative
method; first machine-checked connection to a real program. Our Coq formal-
ization is available at:

https://github.com/VeriNum/iterative_methods/tree/v0.1.0

2 Overview of Iterative Methods and our Proof Structure

Stationary iterative methods [28] are among the oldest and simplest methods
for solving linear systems of the form Ax = b, for A ∈ Rn×n, b ∈ Rn. The non-
singular matrix A and vector b in such systems typically appear, for example, in
the solution of a partial differential equation. In stationary methods, matrix A is
decomposed into A = M +N where M is chosen such that it is easily invertible;
for Jacobi it is simply the diagonal of A and we will often call it D. Rather than
solving the system Ax = b exactly, one can approximate the solution vector x
using stationary iterations of the form

Mxm +Nxm−1 = b, (1)

where the vector xm is an approximation to the solution vector x obtained after
m iterations; we typically start with x0 = 0. The unknown xm is therefore

xm = M−1(b−Nxm−1) that is for Jacobi, xm = D−1(b−Nxm−1) (2)

This iterates until xk satisfies ‖Axk − b‖2 < τ , or until the program detects
failure: overflow in computing xk, or maximum number of iterations exceeded.
Throughout this paper, we let ‖·‖ denote the infinity vector norm and its induced
matrix norm, and we let ‖ · ‖2 denote the `2 norm on vectors.

For our model problem, the steps are as follows.

1. Write a C program that implements (2) by Jacobi iterations (and also im-
plements an appropriate stopping condition).

2. Write a floating-point functional model in Coq (a recursive functional pro-
gram that operates on floating-point values) that models Jacobi iterations
of the form (2). This model must perform almost exactly (see §7.1) the same
floating-point operations as the C program. (As we will explain, we have two
statements of this model and we prove the two models equivalent.)

3. Prove that the program written in Step 1 implements the floating-point
functional model of Step 2, using a program logic for C.

4. Write a real functional model in Coq that performs Jacobi iteration xm =
D−1(b−Nxm−1) in the exact reals. Of course, it is impractical to compute
with this model, but it is useful for proofs.

5. Prove a relation between xk (the k-th iteration of the floating-point model)
and the real solution x of of the real functional model: the Jacobi forward
error bound. If one could run the Jacobi method purely in the reals, this is

https://github.com/VeriNum/iterative_methods/tree/v0.1.0

4 Tekriwal, Appel, Kellison, Bindel, Jeannin

obviously contractive: ‖xk+1 − x‖ < ρ‖xk − x‖, where ρ < 1 is the spectral
radius of D−1N . But in the floats, there is an extra term caused by roundoff
error.

6. Prove floating-point convergence: under certain conditions (Jacobi precondi-
tions), this extra term does not blow up, and within a specified k iterations
the residual ‖Axk − b‖2 is less than tolerance τ .

7. Compose these to prove the main theorem: the C program converges to an
accurate result.

Jacobi
preconditions

R MathComp
model

F MathComp
model

F list
model

C
program

Floating-point convergence

Jacobi forward
error bound

models
equivalent

C program
implements

functional model

Main Theorem:
C program is correct, accurate, converges

Fig. 1. Theorem dependency. Bottom row: models and definitions; middle row: theo-
rems relating models.

Figure 1 shows our correctness and accuracy theorem as a modular composi-
tion of reusable models and lemmas. We have two float-valued models: for prov-
ing the relation of the float-valued model to the real solution we use the Math-
Comp library (in Coq). For proving the C program implements the float-valued
model, we use the Verified Software Toolchain (in Coq). But MathComp [23] and
VST [11] prefer different notations and constructions for specifying data struc-
tures such as matrices and vectors; so we write the same functional model in each
of the two styles, and prove their equivalence. We used Coq for our formalization
because of Coq’s expressive general-purpose logic, with powerful libraries such as
MathComp, Flocq [9], VCFloat [3], LAProof [22], Coquelicot [8], VST, support
both high-level mathematical reasoning and low-level program verification.

The float-valued model will experience round-off errors compared to the real-
valued model; we prove bounds on these errors in a forward error bound lemma
(Section 4). Under certain “Jacobi preconditions” the float-valued model is guar-
anteed to converge to a result of specified accuracy without ever overflowing;
this is the Jacobi iteration bound lemma (Section 5).

3 Parametric models and proofs; important constants

We have proved accuracy bounds for any floating-point precision. That is, our
floating-point functional models, and the proofs about them, are parameterized
by a floating-point type, expressed in Coq as type:Type, with operations: [3]

Verified Correctness, Accuracy, and Convergence of Jacobi 5

fprec: type → Z (∗ number of mantissa bits ∗)
femax: type → Z (∗ maximum binary exponent ∗)
ftype: type → Type (∗ floating−point numbers ∗)

So for t:type, we have x:ftype(t) meaning that x is a floating-point number in
format t. We will write p for fprec(t) and emax for femax(t). The maximum rep-
resentable finite value is Fmax = 2emax(1 − 2−p). If |r| ≤ Fmax then rounding
r to the nearest float yields a number f such that f = r(1 + δf) + εf , where
|δf | ≤ δ = 1

221−p and |εf | ≤ ε = 1
223−emax−p.

Given a floating-point format t and matrix-dimension n, the following func-
tions will be useful in reasoning:

gδ(n) = (1 + δ)n − 1 gε(n) = nε(1 + gδ(n− 1)) (3)

For example, suppose t is double-precision floating-point (p = 53, emax = 1024),
n = 106 (Jacobi iteration on a million-by-million matrix), s = 5 (the million-
element sparse matrix has 5 nonzeros per row). Then some relevant quantities
are,

δ = 2−54 = 5.6 · 10−17 gδ(n) = 5.6 · 10−11 gε(n) = 2.5 · 10−318

ε = 2−1075 = 2.5 · 10−324 gδ(5) = 2.8 · 10−16 gε(5) = 1.2 · 10−323.

Our error analyses will often feature formulas with δ, ε, gδ, gε; remember that in
double-precision these are small quantities (in single- or half-precision, not so
small). Henceforth we will write gδ, gε for gδ(n), gε(n).

4 Forward error bound for dot product

In separate work, Kellison et al. [22] prove (in Coq) the correctness and ac-
curacy of floating-point dot-product and sparse matrix-vector multiply, as Coq
functional models and as C programs.

Define dot-product 〈u, v〉 between two real vectors u and v as
∑

0≤i<n uivi.
A matrix-vector multiplication Av can be seen as the dot-product of each row
of A with vector v. Forward error bounds for a matrix-vector multiplication are
therefore based on forward error bounds for dot-product.

Our implementation and functional model of the dot-product use fused multiply-
add (FMA), which computes a floating-point multiplication and addition (i.e.,
a⊗ b⊕ c) with a single rounding error rather than two.

Definition dotprod {t: type} (u v: list (ftype t)) : ftype t :=
fold_left (fun z a ⇒ FMA (fst a) (snd a) z) (List.combine u v) (Zconst t 0).

The parameters to the dotprod functional model are the floating-point format t
and two lists of floating-point numbers. The algorithm zips the two lists into a
list of pairs (using List.combine) and then adds them from left to right, starting
with a floating-point 0 in format t.

We denote floating-point summation by
⊕

, so the floating-point dot product
is
⊕

0≤i<n uivi; real-valued summation is denoted as
∑

0≤i<n uivi. The notation

6 Tekriwal, Appel, Kellison, Bindel, Jeannin

finite(z) signifies that the floating-point number z is within the range of the
floating-point format (not an infinity or NaN).

Theorem 1 (forward error + no overflow). Let u, v be lists of length n of
floats in format t = (p, emax), in which every element is ≤ vmax, and no more
than s elements of u are nonzero. The absolute forward error of the resulting dot
product is ∣∣∣∣∣∣

⊕
0≤i<n

uivi −
∑

0≤i<n

uivi

∣∣∣∣∣∣ ≤ gδ(s)
∑

0≤i<n

|uivi| + gε(s). (4)

Proof. See Kellison et al. [22].

Subnormal numbers. When some of the vector elements are order-of-magnitude
1, the term gε(s) is negligible. But if the u and v vectors are composed of sub-
normal numbers, then neglecting the underflow-error term would be unsound.
Most previous proofs about dot-product error (and about Jacobi iteration), and
all previous machine-checked proofs to our knowledge, omit reasoning about
underflow.

5 Jacobi forward error

We prove an explicit bound on the distance between the approximate solution xk
at step k and the exact solution x of the problem. Such bounds are commonly
studied in computational science, but rarely take into account the details of
floating-point arithmetic (including underflow and overflow). They also usually
have paper proofs while we provide a machine-checked proof.

Theorem 2 (jacobi_forward_error_bound). After k Jacobi iterations, if
no iteration resulted in an overflow, then the distance between the approximate
(floating-point) solution xk and the exact (real) solution x is bounded:

‖x− xk‖ ≤ ρk‖x− x0‖+
1− ρk

1− ρ
dmag

where ρ is a bound on the spectral radius (largest eigenvalue) of D−1N , adjusted
for floating-point roundoff errors that arise in one iteration of the Jacobi method.
The (small) value dmag is the floating-point roundoff error in computing the
residual ‖Axk − b‖. In Coq,

Theorem jacobi_forward_error_bound {ty} {n:nat}
(A: ’M[ftype ty]_n.+1) (b: ’cV[ftype ty]_n.+1): ∀ x0: ’cV[ftype ty]_n.+1,
forward_error_cond A x0 b →
∀ k i, finite (x_{k, i})) ∧
(f_error k ≤ rho^k ∗ (f_error 0) + ((1 − rho^k) / (1−rho)) ∗ d_mag.

where f_error(k) is ‖x − xk‖, and the conditions on A ∈ F(n+1)×(n+1), x0 ∈
F(n+1)×1, b ∈ F(n+1)×1 for n ≥ 0, are characterized as follows:

Verified Correctness, Accuracy, and Convergence of Jacobi 7

Definition forward_error_cond {ty} {n:nat}
(A: ’M[ftype ty]_n.+1) (x0 b: ’cV[ftype ty]_n.+1) :=
(∀ i, finite (A _{i,i}) ∧ (rho < 1) ∧ invertible A ∧ (∀ i, finite (1 / A_{i,i})) ∧
(∀ i, finite (x_{o,i}) ∧ (∀ i j, finite(N_{i,j})) ∧ (∀ i, finite (b_i) ∧
size_constraint n ∧ input_bound A x0 b.

size_constraint n is a constraint on the dimension n of the matrix A (in
double-precision, about 6 · 109). The predicate input_bound provides conditions
on the bounds for the inputs A, b, x0; it is implied by the Jacobi preconditions
(Definition 1) defined in the next section.

Proof. Assuming no overflow, the floating-point iteration satisfies

xk+1 = D̃−1 ⊗ (b	 (N ⊗ xk))

where the operators ⊗, 	 represent the floating-point multiplication and sub-
traction operations respectively. D̃−1 is the floating-point (not exact) inverse of
the diagonal elements. The forward error at step k + 1 is defined as

fk+1 = ‖xk+1 − x‖ = ‖(D̃−1 ⊗ (b	 (N ⊗ xk)))− (D−1(b−Nx))‖

Here, we write the true solution as x = D−1(b−Nx) which can be derived from
Ax = b. To move forward, we will be using the following auxiliary error bounds
on matrix-vector operations.

– Matrix-vector multiplication: ‖N ⊗ x−Nx‖ ≤ ‖N‖‖x‖gδ + gε. This bound
is derived from the dot product error bound that we stated in Section 4,.
In the ‖ · ‖ norm, the dot product errors directly give the error bound for
matrix-vector multiplication.

– Vector subtraction: ||(b	 (N ⊗ xk)− b(N ⊗ xk)|| ≤ (||b||+ ||N ⊗ xk||)δ.
Here, we use the fact that |x	 y − (x− y)| ≤ (|x|+ |y|)δ.

– Vector inverse: ||D̃−1 −D−1|| ≤ ||D−1||δ + ε. Here, we make use of the fact
that inverting each element of the vector D satisfies, |(1�Di)− (1/Di)| ≤
|(1/Di)| δ + ε.

We use these norm-wise errors to expand the error definition fk+1:

fk+1 ≤ ((||D̃−1|| (||b||+ ||N || ||xk||(1 + gδ + gε))(1 + δ)gδ + gε)+

||D̃−1|| (||b||+ ||N || ||xk||(1 + gδ) + gε)δ+

||D̃−1|| (||N || ||xk||gδ + gε)+

(||D−1||δ + ε) (||b||+ ||N || ||xk||) + ||D−1|| ||N ||fk

We then collect the coefficients of ||xk|| and expand using the error relation for
fk as ||xk|| ≤ fk + ||x|| to get the error recurrence relation:

fk+1 ≤ ρfk + dmag

where dmag is a constant independent of k depending only on ||x||, δ, ε, gδ, gε.
We can then expand the above error recurrence relation to get

8 Tekriwal, Appel, Kellison, Bindel, Jeannin

fk+1 ≤ ρk+1fo + (1 + ρ+ ρ2 + . . .+ ρk)dmag

This geometric series converges if ρ < 1 with closed form

fk+1 ≤ ρk+1fo +
1− ρk+1

1− ρ
dmag

Note that if the above iterative process were done in reals, then we would only
require ρr := ||D−1N || to be less than 1. Thus, the presence of rounding errors
forces us to choose a more conservative convergence radius ρ.

6 Convergence guarantee: absence of overflow

Theorem 2 had the premise, “if no iteration resulted in an overflow.” Most previ-
ous convergence theorems for Jacobi iteration [28] have been in the real numbers,
where overflow is not an issue: multiplying two finite numbers cannot “overflow.”
Higham and Knight [15] proved convergence (but not absence of overflow), on
paper, in a simplified model of floating-point (without underflows). Let us now
state a theorem, for an accurate model of floating-point, not conditioned on
absence of overflow.

Theorem 3 (jacobi_iteration_bound_lowlevel). If the inputs A, b, desired toler-
ance τ , and projected number of iterations k satisfy the (efficiently testable)
Jacobi preconditions, then the floating-point functional model of Jacobi iteration
converges, within j ≤ k iterations, to a solution xj such that ‖Axj − b‖2 < τ ,
without overflowing.

Proof. The proof for this theorem follows by the following cases:

– If A is diagonal thenN is a zero matrix. Therefore, the solution vector at each
iteration is given by the constant vector xk = D̃−1⊗b. Hence, the solution of
Jacobi iteration has already converged after the first step, assuming certain
bounds on b and A implied by the Jacobi preconditions.

– If A is not diagonal but the vector b is small enough, Jacobi iteration has
already converged, without even running the iteration.

– Suppose A is not diagonal and the vector b is not too small. Then
(a) The residual does not overflow for every iteration ≤ j. This follows from

the Jacobi preconditions and Theorem 2.
(b) We can calculate kmin such that the residual < τ within kmin iterations.

The Jacobi preconditions (Definition 1) are efficiently computable: a straight-
forward arithmetic computation with computational complexity linear in the
number of nonzero matrix elements.

Definition 1 (jacobi_preconditions_Rcompute). A, b, τ, k satisfy the Ja-
cobi preconditions when:

Verified Correctness, Accuracy, and Convergence of Jacobi 9

– All elements of A, b, and D̃−1 are finite (representable in floating-point);
– A is strictly diagonally row-dominant, that is, ∀i. Dii >

∑
j |Nij |;

– τ̃2 is finite;
– τ̃2 > gε + n(1 + gδ)(gε) + 2(1 + gδ)(1 + δ)‖D‖(d̂mag/(1− ρ̂))2;
τ̃2 > n(1 + gδ)(‖D‖(‖D̃−1‖(‖A‖d̂mag/(1− ρ̂) + gε)(1 + δ)(1 + gδ) + gε)(1 +
δ)(1 + gδ) + gε)

2 + gε;
– kmin ≤ k;
– n < ((Fmax−ε)/(1+δ)−gε−1)/(g(n−1)+1); n < Fmax/((1+g(n+1))δ)−1

– ∀i. |Aii|(1 + ρ̂)xbound + 2d̂mag/(1− ρ̂) + 2xbound < vmax − ε)/(1 + δ)2;
– ∀i, j. |Nij | < vmax;
– ∀i. |bi|+ (1 + gδ)((2xbound + d̂mag/(1− ρ̂))

∑
j |Nij |) + gε < Fmax/(1 + δ);

– ∀i. |D̃−1ii |(|bi|+(1+gδ)(2xbound+d̂mag/(1−ρ̂))
∑
j |Nij |)+gε < Fmax/(1+δ);

– (1 + ρ̂)xbound + 2d̂mag/(1− ρ̂) + 2xbound < Fmax/(1 + δ);
– ∀i. |bi| < (Fmax − ε)/(1 + δ);
– ∀i. |D̃−1ii ||bi| < (Fmax − ε)/(1 + δ);
– ∀i. |D̃−1ii ||bi|(1 + δ) + ε < (Fmax − ε)/(1 + δ);
– ∀i. |Aii|(|D̃−1ii ||bi|(1 + δ) + ε) < (vmax − ε)/(1 + δ).

where d̂ = (‖D̃−1‖ + ε)/(1 − δ) is a bound on ‖D−1‖. Defining R = d̂ ‖N‖, we
define an upper bound on the norm of the solution x to Ax = b as xbound =
d̂‖b‖/(1− R). ρ̂ is the adjusted spectral radius (ρr = ‖D−1N‖) of the iteration
matrix, obtained by accounting for the floating-point errors in its computation.
For the iteration process to converge in presence of rounding, we want ρ̂ < 1.
d̂mag is a bound on the additive error in computing the residual ‖Axk − b‖, the
difference between computing the residual in the reals versus in floating-point.
τ̃2 = τ ⊗ τ is the floating-point square of τ . The minimum k for which we
guarantee convergence is calculated as

kmin = 1 +

ln

(
xbound(1+δ)

((
√

(τ̃2−gε)/(n(1+gδ))−gε)/((1+gδ)+‖D‖(1+δ)))−2d̂mag/(1−ρ̂)

)
ln(1/ρ̂)

Indeed these conditions are quite tedious – one might have difficulty trusting
them without a machine-checked proof. But they are all easy to compute in
linear time. And, although we state them here (mostly) in terms of operations on
the reals, they are all straightforwardly boundable by floating-point operations.

Remark 1 (not proved in Coq). The Jacobi preconditions can be computed in
time linear in the number of nonzero entries of A.

Proof. Let S be the number of nonzeros. Then n < S since the diagonal elements
are nonzero. The inverse diagonal D̃−1 is computed in linear time. The infinity
norm (‖N‖, ‖D‖, d̂, ‖b‖) is simply the largest absolute value of any row-sum (for
matrix) or element (for vector), which can be found in O(S) time. Then the
values xbound, ρ̂, d̂mag, vmax, kmin can all be computed in constant time. Then
each of the tests in Definition 1 can be done in O(S) time.

10 Tekriwal, Appel, Kellison, Bindel, Jeannin

7 An efficient and correct C program

Our C program uses standard numerical methods to achieve high performance
and accuracy: sparse matrix methods, fused multiply-add, efficient testing for
overflow, and so on. What’s not so standard is that we have proved it correct,
with a foundational machine-checked proof that composes in Coq with the nu-
merical accuracy (and convergence) proof of our functional model.

7.1 Sparse matrix-vector multiply

Many implementations of stationary iterative methods, including Jacobi, are on
large sparse matrices. A naive dense matrix-vector multiply would take O(n2)
time per iteration, while sparse representations permit O(sn) time per iteration,
there are s nonzeros per row. Our program uses Compressed Row Storage (CRS),
a standard sparse representation [4, §4.3.1].

Kellison et al. [22] describe the Coq floating-point functional model, an im-
plementation in C, and the Coq/VST proof that the C dot-product program
correctly implements the model. VST (Verified Software Toolchain) [11] is a tool
embedded in Coq for proving C programs correct. From that, here we prove that
the Jacobi program implements its model.

For sweep-form Jacobi iteration it is useful to have a function that com-
putes just one row of a sparse matrix-vector multiply, which in CRS form is
implemented as,

double crs_row_vector_multiply(struct crs_matrix ∗m, double ∗v, unsigned i);
/∗ compute dot−product of row i of matrix m with vector v ∗/

Separation of concerns. The floating-point accuracy proof should be kept com-
pletely separate from the sparse-matrix data-structure-and-algorithm proof. This
function is proved to calculate (almost) exactly the same floating-point compu-
tation as the naive dense matrix multiply algorithm.

Almost exactly – because where Aij = 0, the dense algorithm computes
Aij · xi + s where the sparse algorithm just uses s. In floating-point it is not the
case that ∀y. 0 · y+ s = s, for example when y is ∞ or NaN. Even when y and s
are finite, it is not always true that y · 0 + s is the same floating-point value as
s: it could be that one is +0 and the other is −0. And finally, even when matrix
A and vector x are all finite, we cannot assume that intermediate results s are
finite—there may be overflow.

So we reason modulo equivalence relations (using Coq’s Parametric Morphism
system for rewriting with partial equivalence relations). We define feq x y to
mean that either both x and y are finite and equal (with +0 = −0), or neither
is finite. Our function will have a precondition that A and x are all finite, and
postcondition that the computed result is feq to the result that a dense matrix
multiply algorithm would compute.

Verified Correctness, Accuracy, and Convergence of Jacobi 11

7.2 Jacobi iteration

Listing 1.1. C program for a single iteration of Jacobi iteration

double jacobi2_oneiter(double ∗A1, struct crs_matrix ∗A2, double ∗b, double ∗x,
double ∗y) {

unsigned i, n=crs_matrix_rows(A2); double s = 0.0;
for (i=0; i<n; i++) {
double u = b[i] − crs_row_vector_multiply(A2,x,i);
double a1 = A1[i], new = (1/a1)∗u, r = a1∗(new − x[i]);
s = fma(r,r,s);
y[i] = new;
}

return s;
}

The C program in the Lisiting 1.1 loops over rows i of the matrix, which is also
elements i of the vectors b and x. For each i it computes a new element yi of the
result vector, as well as an element ri of residual vector. It returns s, the sum of
the squares of the ri. By carefully computing ri from yi, and not vice versa, we
can prove (in Coq, of course) that all overflows are detected: if s is finite, then
all the yi must be finite.

The program in the Listing 1.2 runs until convergence (s < τ2), giving up
early if there’s overflow (tested by s∗0=0.0, since if s overflows then s∗0 is NaN)
or if maxiter iterations is reached.

Listing 1.2. C program for Jacobi iteration until convergence

double jacobi2(double ∗A1, struct crs_matrix ∗A2, double ∗b, double ∗x, double τ2,
unsigned maxiter) {

unsigned i, n=crs_matrix_rows(A2);
double s, ∗t, ∗z=x, ∗y = (double ∗)surely_malloc(n∗sizeof(double));
do { s = jacobi2_oneiter(A1,A2,b,z,y);

t=z; z=y; y=t;
maxiter−−;

} while (s∗0==0.0 && s ≥ τ2 && maxiter);
if (y==x) y=z; else { for (i=0; i<n; i++) x[i]=y[i]; }
free(y);
return s;

}

This program starts with x(0) in x, computes x(1) into y, then x(2) back into x,
and so on. It mallocs y for that purpose and frees it at the end. Depending on
whether the number of iterations is odd or even, it may need to copy from y to
x at the end.

This program is conventional and straightforward. Our proof tools allow the
numerical analyst to use standard methods and idioms—and nontrivial data
structures—and still get an end-to-end correctness proof. For each of these func-
tions we prove in VST that the function exactly implements the functional model,

12 Tekriwal, Appel, Kellison, Bindel, Jeannin

modulo equivalence relations on floating-point numbers. At this level there are no
accuracy proofs, the programs exactly implement the functional models, except
that one might have −0 where the other has +0, and one might have different
NaNs than the other, if any arise.

Correctness theorem The jacobi2 function is specified and proved with a VST
function-spec that we will not show here, but in English it says,

Theorem 4 (body_jacobi2). Let A be a matrix, let b and x(0) be vectors, let
A1p be the address of a 1-dimensional array holding the diagonal of A, let A2p
be the address of a CRS sparse matrix representation of A without its diago-
nal, let bp and xp be the addresses of arrays holding b and x(0), let τ be desired
residual accuracy, and let maxiter be an integer. Suppose these preconditions
hold: the dimension of A is n × n, b and x(0) have length n, 0 < n < 232,
0 < maxiter < 232, all the elements of A, b, x, acc2 (as well as the inverses of A’s
diagonal) are finite double-precision floating-point numbers; the data structures
A1p,A2p,bp have read permission and xp has read/write permission. Suppose one
calls jacobi2(A1p,A2p,bp,xp,acc,maxiter); then afterward it will satisfy this postcon-
dition: the function will return some s and the array at xp will contain some
x(k), such that (s, x(k)) ' jacobiAbx τ2,maxiter, where ' is the floating-point
equivalence relation and jacobi is our functional model in Coq of Jacobi iteration;
and the data structures at A1p,A2p,bp will still contain their original values.

8 The main theorems, residuals, and stopping conditions

The C program jacobi2() (and its functional model jacobi) satisfies either of two
different specifications:

Theorem 4 (above): if A, b, x satisfy the basic preconditions4 then perhaps
Jacobi iteration will return after maxiter iterations—having failed to converge—
or might overflow to floating-point infinities and stop early. But even so, the
result (s, y) will be such that the (squared) residual s = |Ay − b|22 accurately
characterizes the result-vector y: if y contains an ∞ then s =∞, but if

√
s < τ

then y is indeed a “correct” answer. That’s because the functional model preserves
infinities in this way, and the C program correctly implements the model.

Theorem 5: if A, b, x,maxiter satisfy the Jacobi preconditions then the result
(s, y) will be such that s = |Ay − b|22, and

√
s < τ and indeed y is a “correct”

finite answer. In fact this is our main result:

Theorem 5 (main_jacobi). If the inputs satisfy the Jacobi preconditions, then
the C program will converge within k iterations to an accurate result.

Proof. Using Theorems 3 and 4, with some additional reasoning about the stop-
ping condition in the functional model of the C program.
4 A an n×n matrix; b and x dimension n; 0 < n < 232; A, b, x all finite; A, b, x stored
in memory in the right places—but nothing else about the values of A, b, x.

Verified Correctness, Accuracy, and Convergence of Jacobi 13

Jacobi iteration on inputs not known to satisfy the Jacobi preconditions Theo-
rem 4 is useful on its own, since there are many useful applications of stationary
iterative methods where one has not proved in advance the convergence con-
ditions (e.g., Jacobi preconditions)—one just runs the program and tests the
residual. For such inputs we must take care to correctly stop on overflow.

The induction hypothesis, for 0 < k ≤ maxiter iterations, requires that xk
has not yet overflowed, otherwise our sparse-matrix reasoning cannot be proved
(see §7.1). Therefore the program must check for floating-point overflow in xk
after each iteration. In order to do that efficiently, the program tests s ⊗ 0 = 0
(which is a portable and efficient way of testing that s is finite); and if so, then
xk+1 is all finite.

9 Related Work

Convergence of Jacobi iteration The standard error analysis for Jacobi iteration
in exact arithmetic is well-described in standard books on iterative solvers [28].
A floating-point error analysis of Jacobi and related iterations was carried out
by Higham and Knight in the early 90s [15], and is summarized along with
references to related work in [14, Ch. 17]. The style of analysis is similar to
what we present in this paper. However, earlier analyses implicitly assumed that
all intermediates remain in the normalized floating-point range, and did not
consider the possibility of underflow or overflow.

Formalization of numerical analysis has been facilitated by advancements in
automatic and interactive theorem proving [8,12,24,26]. Some notable works in
the formalization of numerical analysis are the formalization of Kantorovich the-
orem [27], matrix canonical forms by Cano et al. [10], Perron-Frobenius theorem
in Isabelle/HOL [31], Lax–equivalence theorem for finite difference schemes [29],
consistency, stability and convergence of a second-order centered scheme for the
wave equation [5,6], formalized flows, Poincaré map of dynamical systems, and
verified rigorous bounds on numerical algorithms in Isabelle/HOL [16,17,18].
However, these works do not study the problem of iterative convergence for-
mally. Even though the iterative convergence has been formalized in exact arith-
metic [30], the effect of rounding error on iterative convergence has not been
formalized before.

End-to-end machine-checked proofs There are few truly end-to-end (C code to
high-level accuracy) machine-checked formal proofs in the literature of numerical
programs. Our approach has been to prove that a C program exactly implements
a functional model (using VST), prove how accurately the functional model
approximates a real-valued model, prove the accuracy of the real-valued model;
and compose these results together. Something similar has been done for scalar
Newton’s method [2] and for ordinary differential equations [21], but those works
did not leverage the power of the Mathematical Components and MathComp
Analysis libraries for the upper-level proofs.

14 Tekriwal, Appel, Kellison, Bindel, Jeannin

Other previous work [7] verified a C program implementing a second-order
finite difference scheme for solving the one-dimensional acoustic wave equation,
with a total error theorem in Coq that composes global round-off and discretiza-
tion error bounds; this was connected (outside of Coq) to a Frama-C correctness
proof of the C program. The inexpressiveness of Frama-C’s assertion language
was a challenge in that verification effort.

10 Conclusion and Future Work

In this paper, we have presented a formal proof in Coq of the correctness, accu-
racy, and convergence of Jacobi iteration in floating-point arithmetic. The same
type of analysis should generalize to many other iterative methods, for both lin-
ear and nonlinear problems. Even within the scope of stationary iterations for
linear problems, there are several avenues for future work.

We have not fully taken advantage of sparseness in our error bound; many
of our gδ(n) and gε(n) could be gδ(s), gε(s)—functions of the number of nonzero
elements per row. It would be useful to tighten the bound.

Jacobi iteration is one of the simplest stationary iterative methods. More
complicated stationary methods involve splittings A = M+N , whereM is not a
diagonal matrix. Solving linear systems with suchM is more complicated than
diagonal scaling, and requires algorithms like forward and backward substitution
that may require their own error analysis. Formalizing the floating-point error
analysis of these solvers is an important next step.

Strict diagonal dominance is not a necessary condition for the convergence
of Jacobi. We would like to formalize other sufficient conditions for con-
vergence of Jacobi and related iterations. For example, irreducible diagonal
dominance is sufficient for convergence of Jacobi in general, while positive defi-
niteness is sufficient for convergence of Gauss-Seidel. However, while these con-
ditions guarantee convergence, they do not guarantee an easy-to-compute rate
of convergence in the same way that strict diagonal dominance does, and hence
we expect the analysis to be more subtle.

Finally, we would like to extend our analysis to mixed precision methods,
in which computations with M are done in one precision, while the residual
is computed in a higher precision. These methods are often used to get errors
associated with a higher floating-point precision while paying costs associated
with a lower precision. However, the use of multiple precisions opens the door
for a host of potential problems related to overflow and underflow, and we see
formal verification as a particularly useful tool in this setting.

Efforts and challenges: The formalization effort in this work includes about 1,826
lines of Coq proof script for C program verification and about 14,000 lines of
Coq proof script for the convergence and accuracy proofs. A total of about 60
lines of C code were verified, which includes 12 lines for header files, 5 lines for
surely_malloc, 14 lines of crs_row_vector_multiply, and about 31 lines for jacobi2
and jacobi2_oneiter. It took us about 5 person-months for the formalization of

Verified Correctness, Accuracy, and Convergence of Jacobi 15

accuracy and convergence of the functional model. The most time-consuming
part was the proof of absence of overflow, which involved deriving and formalizing
bounds on the input conditions. The proof of correctness of C programs with
respect to the functional model, including developing an understanding of what
the termination condition should be, determining best ways to compute residuals
such that the program properly detects overflow, developing functional models
and proving properties about termination of the functional model took us about
a couple of weeks.

The main challenge, in an end-to-end verification, is that each layer’s theo-
rem must be sufficiently strong to compose with the next layer. The published
theorems about Jacobi convergence were insufficient (no treatment of underflow,
error bounds relating the wrong quantities, no handling of -0, inadequate treat-
ment of overflow), and new methods were required, which we address in this
work.

Acknowledgements We thank Yves Bertot for feedback on earlier drafts of this
paper. This research was supported in part by NSF Grants CCF-2219997 and
CCF-2219757, by a US Department of Energy Computational Science Fellowship
DE-SC0021110, and by the Chateaubriand fellowship program.

References

1. Ahlberg, J.H., Nilson, E.N.: Convergence properties of the spline fit. J. Soc. Indust.
Appl. Math. 11, 95–104 (1963)

2. Appel, A.W., Bertot, Y.: C-language floating-point proofs layered with VST and
Flocq. Journal of Formalized Reasoning 13(1), 1–16 (Dec 2020)

3. Appel, A.W., Kellison, A.E.: VCFloat2: Floating-point error analysis in Coq
(2022), https://github.com/VeriNum/vcfloat/blob/master/doc/vcfloat2.pdf

4. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout,
V., Pozo, R., Romine, C., van der Vorst, H.: Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods. SIAM (1994)

5. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Wave
equation numerical resolution: a comprehensive mechanized proof of a C program.
Journal of Automated Reasoning 50(4), 423–456 (2013)

6. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Trust-
ing computations: a mechanized proof from partial differential equations to actual
program. Computers & Mathematics with Applications 68(3), 325–352 (2014)

7. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Trust-
ing computations: A mechanized proof from partial differential equations to actual
program. Computers and Mathematics with Applications 68(3), 325–352 (2014)

8. Boldo, S., Lelay, C., Melquiond, G.: Coquelicot: A user-friendly library of real
analysis for Coq. Mathematics in Computer Science 9(1), 41–62 (2015)

9. Boldo, S., Melquiond, G.: Flocq: A unified library for proving floating-point al-
gorithms in Coq. In: 2011 IEEE 20th Symposium on Computer Arithmetic. pp.
243–252. IEEE (2011)

10. Cano, G., Dénès, M.: Matrices à blocs et en forme canonique. In: Pous, D., Tasson,
C. (eds.) JFLA - Journées francophones des langages applicatifs. Aussois, France
(Feb 2013), https://hal.inria.fr/hal-00779376

https://github.com/VeriNum/vcfloat/blob/master/doc/vcfloat2.pdf
https://hal.inria.fr/hal-00779376

16 Tekriwal, Appel, Kellison, Bindel, Jeannin

11. Cao, Q., Beringer, L., Gruetter, S., Dodds, J., Appel, A.W.: VST-Floyd: A sepa-
ration logic tool to verify correctness of C programs. J. Autom. Reason. 61(1-4),
367–422 (Jun 2018)

12. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical
structures. In: International Conference on Theorem Proving in Higher Order Log-
ics. pp. 327–342. Springer (2009)

13. Gleich, D.F.: Pagerank beyond the web. SIAM Review 57(3), 321–363 (2015)
14. Higham, N.J.: Accuracy and Stability of Numerical Algorithms. SIAM (2002)
15. Higham, N.J., Knight, P.A.: Componentwise error analysis for stationary iterative

methods. In: Linear Algebra, Markov Chains, and Queueing Models. pp. 29–46.
Springer (1993)

16. Immler, F.: A Verified ODE Solver and Smale’s 14th Problem. Dissertation, Tech-
nische Universität München, München (2018)

17. Immler, F., Hölzl, J.: Numerical analysis of ordinary differential equations in Is-
abelle/HOL. In: International Conference on Interactive Theorem Proving. pp.
377–392. Springer (2012)

18. Immler, F., Traut, C.: The flow of ODEs: Formalization of variational equation
and Poincaré map. Journal of Automated Reasoning 62(2), 215–236 (2019)

19. Katz, L.: A new status index derived from sociometric analysis. Psychometrika
18(1), 39–43 (1953)

20. Kellison, A., Tekriwal, M., Jeannin, J.B., Hulette, G.: Towards verified rounding
error analysis for stationary iterative methods. In: 2022 IEEE/ACM Sixth Inter-
national Workshop on Software Correctness for HPC Applications (Correctness).
pp. 10–17 (2022). https://doi.org/10.1109/Correctness56720.2022.00007

21. Kellison, A.E., Appel, A.W.: Verified numerical methods for ordinary differential
equations. In: 15th Int’l Workshop on Numerical Software Verification (2022)

22. Kellison, A.E., Appel, A.W., Tekriwal, M., Bindel, D.: LAProof: a library of formal
accuracy and correctness proofs for sparse linear algebra programs (2023), https:
//www.cs.princeton.edu/~appel/papers/LAProof.pdf

23. Mahboubi, A., Tassi, E.: Mathematical components. Online book (2021)
24. Martin-Dorel, É., Rideau, L., Théry, L., Mayero, M., Pasca, I.: Certified, efficient

and sharp univariate Taylor models in Coq. In: 15th Int’l Symp. on Symbolic and
Numeric Algorithms for Scientific Computing. pp. 193–200. IEEE (2013)

25. McKenzie, L.: Matrices with dominant diagonals and economic theory. In: Arroa,
K., Karlin, S., Puppes, S. (eds.) Mathematical Methods in the Social Sciences, pp.
47–60. Stanford University Press (1960)

26. O’Connor, R.: Certified exact transcendental real number computation in Coq. In:
International Conference on Theorem Proving in Higher Order Logics. pp. 246–261.
Springer (2008)

27. Pasca, I.: Formal Verification for Numerical Methods. Ph.D. thesis, Université Nice
Sophia Antipolis (2010)

28. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM (2003)
29. Tekriwal, M., Duraisamy, K., Jeannin, J.B.: A formal proof of the Lax equiva-

lence theorem for finite difference schemes. In: Dutle, A., Moscato, M.M., Titolo,
L., Muñoz, C.A., Perez, I. (eds.) NASA Formal Methods. pp. 322–339. Springer
International Publishing, Cham (2021)

30. Tekriwal, M., Miller, J., Jeannin, J.B.: Formal verification of iterative convergence
of numerical algorithms (2022). https://doi.org/10.48550/arXiv.2202.05587

31. Thiemann, R.: A Perron-Frobenius theorem for deciding matrix growth. Journal
of Logical and Algebraic Methods in Programming p. 100699 (2021)

https://doi.org/10.1109/Correctness56720.2022.00007
https://doi.org/10.1109/Correctness56720.2022.00007
https://www.cs.princeton.edu/~appel/papers/LAProof.pdf
https://www.cs.princeton.edu/~appel/papers/LAProof.pdf
https://doi.org/10.48550/arXiv.2202.05587
https://doi.org/10.48550/arXiv.2202.05587

	Verified Correctness, Accuracy, and Convergence of a Stationary Iterative Linear Solver: Jacobi Method

