
Hot-Sliding in ML

Andrew W. Appel
Princeton University
appel@princeton.edu

December 1994

Abstract

To upgrade a embedded program while it is run-
ning is a daunting task. But the Standard ML of
New Jersey system has several features that enable
a clean solution: “applicative” module linking, in-
terface inheritance, concurrency, and garbage col-
lection of machine code.

1 Replacing running modules

A long-running embedded program, such as the soft-
ware running a telephone switch, must sometimes be up-
graded in the field. Bugs must be fixed, or new features
added. Furthermore, the upgrade must be done while
the program is still running: the downtime required to
boot up a new version of the software is unacceptable,
and there are certain long-running transactions (such as
telephone calls) that cannot be interrupted. How can a
software module be replaced while it is running, without
interrupting the work it is doing?

Switch

Lines

Accounting

Task Scheduler

Module Manager

NewSwitch

Figure 1: Installing a new module

Consider the example diagrammed in figure 1. The
Lines module interfaces to the hardware, connecting
telephone lines to each other and disconnecting them.
The Switch module scans for requests (when users pick
up the phone and dial), instructs Lines what connections

to make, and remembers the duration of each call. At
the completion of each call, Switch sends Accounting a
billing record. This is in a concurrent programming lan-
guage, let us suppose, so that Lines, Switch and Account-
ing can each have several lightweight tasks performing
various operations. The are in a shared address space, so
that they can communicate without crossing expensive
hardware protection barriers; and the program is struc-
tured as a set of modules communicating with each other
by ordinary procedure calls.

After several phone calls have been initiated, we wish
to install a new version of the Switch module that uses
different internal algorithms and data structures, and
perhaps even supports new features. But the old Switch
module is still handling some active phone calls; these
might be modem connections that don’t want to discon-
nect for weeks to come.

How can NewSwitch be linked to Accounting and
Lines while Switch is still linked? How can Switch con-
tinue to run smoothly while NewSwitch also runs?

A conventional program linker will edit the machine
code of the Switch module so that procedure calls in
Switch can jump directly into the Lines module and Ac-
counting modules; and will edit the machine code of
Accounting so that Accounting can jump directly into
Switch. When it is time to install NewSwitch, it is easy
enough to edit NewSwitch’s code for calls into Lines
and Accounting, but how can Accounting be modified to
jump to NewSwitch while Switch is still running and cur-
rent connections still require Accounting? Finally, when
all the calls handled by Switch eventually complete, how
can the code and data for that module be removed from
the system?

I will outline a solution to these problems, using the
Standard ML language and the Standard ML of New Jer-
sey compiler and runtime system for that language.

Acyclic module structure Standard ML has an
acyclic module structure. That is, the import/export
graph of module dependencies has no loops. If module
Accounting imports (makes use of) functions and val-
ues from module Switch, then Switch does not import
components of Accounting. In cases where two-way
communication is necessary, Accounting can import a
function run from Switch, and then pass a function to

1

Switch.run:

structure Switch . . .

fun run(tell) =
connect calls; disconnect calls;
tell(this_call) . . .

end

structure Accounting . . .
fun record(call) =

write call to accounting file
...
Switch.run(record)

end

Applicative module linking Pascal or Scheme can be
compiled re-entrant, so that one activation of a function
f does not interfere with another activation of the same
function because the two activations keep their data in
different places. Each activation access its data through
a stack pointer register instead of through hard-coded
addresses.

Standard ML of New Jersey extends the principle of
re-entrance even to module linking; it does not link
modules together by editing their machine code.

The principle of “free variables” is used. If a module
Accounting imports (fields of) two other modules Switch
and Scheduler, then these other modules are free vari-
ables of the Accounting module. Many programming
languages, such as Algol and Pascal, allow access to
nonlocal (but not quite global) variables, usually imple-
menting this access through the technique of static links
(also called access links). Languages such as Scheme
and ML that support higher-order functions with nested
scope use closures, which are quite similar.

Whenever any function within Accounting runs, it can
expect that a designated machine register points to a clo-
sure record pointing to Switch and Scheduler. In fact,
this closure points to the closures of Switch and Sched-
uler. For Accounting to call a function f in Switch, it
must fetch Switch’s closure from its own closure record.
Switch’s closure contains the machine-code entry ad-
dress for f , as well as the closures for modules that
Switch imports.

This is illustrated in figure 2. The machine code seg-
ments do not point to each other. Instead, each proce-
dure call in the code knows at what offset in the closure
to find its target address. The extra indirection at every
external procedure call is not too costly.

This module-linking technology has been used suc-
cessfully for several years in the SML/NJ system [1],
and for many years before that in other systems whose
implementers were too lazy to implement “real” link-
editing.

Switch

Lines

Accounting

Task Scheduler

Machine code Closures

Figure 2: Closures for module linking. The named boxes
are machine code, which contain no outgoing pointers; the
pointer-containing boxes are closures. When a function in
Switch is executing, a closure-pointer in registers gives access
to any other modules it might want to call.

Now suppose we want to install NewSwitch. The
structure of closures is shown in figure 3. The new clo-
sures are installed without disturbing the old closures
at all. The module-linking of Accounting is re-entrant:
there are two versions now running, sharing machine
code but pointing to two different closures for the Switch
modules.

Inheritance Suppose that the Switch module is im-
proved to export a richer interface, with the intention of
implementing a new Accounting module at a later date
that can take advantage of this. The signature thinning
(interface inheritance) feature of the ML module sys-
tem makes this easy. As long as Switch exports a super-
set of what Accounting imports, everything works very
straightforwardly.

Concurrent programming How can two different
Switch modules, or two similar Accounting modules,
run at the same time? The most straightforward ap-
proach is to have them run as coroutines or lightweight
tasks. Several concurrent extensions to ML have been
proposed and implemented, and almost any of them
will suffice. They have in common a ready queue of
runnable threads, with each thread represented as a clo-
sure containing machine-code resumption point and var-
ious other saved register values. Any realistic con-
current programming system will have a mechanism
for synchronization between threads, with associated
queues of threads waiting to synchronize, but for the
purposes of this Switch example I will not need this level
of detail.

Let us assume that the Scheduler module exports
three functions:

2

Switch

Lines

Accounting

Task Scheduler

Machine code Closures

NewSwitch

New Closures

Figure 3: Replacing a module. The new closures at right allow a new version of Switch, and another invocation of the existing
Accounting, to run without destroying the old Switch and Accounting.

structure Scheduler = . . .
val spawn : (unit->unit) -> unit
val yield : unit -> unit
val exit: unit -> ’a

where Scheduler.spawn(f) forks a new thread to run the
function f , and returns immediately, not waiting for f
to finish; Scheduler.yield() allows other tasks to make
progress; and Scheduler.exit() terminates the thread that
calls it.

When the Switch and its Accounting module are run-
ning, there may be several threads executing the ma-
chine code of these modules. When these threads are
on the ready queue, their “saved state” closures will
naturally point to closures for Switch and Accounting
(among other things).

When NewSwitch is installed and a new closure for
Accounting is built, a new thread is spawned to run it.
This in turn may spawn other threads; the new threads
will share the same ready queue with the older threads of
the Switch module. (We dare not replace the Scheduler
itself!)

Garbage collection of code The Switch module must
stop handling new calls, and it should gradually re-
lease all of its old calls and associate resources so that
NewSwitch can take over. Switch must be programmed
so that we can send it a message, or call a function, or
set a variable so that it knows that it must stop. At this
point, it stops handling new calls; eventually all the old
calls terminate, and it can tell Accounting that it’s done.
At this point, the (old invocation of) Accounting can also
terminate.

When Switch terminates, its machine code should be
deleted from the system. How is this done? The ML
system has automatic garbage collection of any unreach-
able data, including machine-code segments. Only those
data reachable from registers are kept; everything else is

reclaimed. So perhaps the better question is, what keeps
the Switch code alive?

First, there is a module manager that handles the
installation of new or replacement modules, such as
NewSwitch. This manager points to the closures
for modules such as Accounting or NewSwitch for
any of two reasons: (1) the pointer to any module
(e.g. NewSwitch) imported by another (e.g. Account-
ing) if a replacement module (NewAccounting) must
be installed; (2) any replaceable module (Accounting,
NewSwitch) has a stop function that may need to be in-
voked later, to tell it to begin releasing its resources.

But after the installation of NewSwitch, the module
manager does not need a pointer to Switch, so this is not
what is keeping Switch’s machine code alive.

Runnable threads on the Scheduler’s ready queue
contain pointers to the machine code in which they will
resume (see figure 4). If Switch has not yet finished its
shut-down actions (because certain long calls have not
completed), then there will be a closure on the ready
queue (or on some other synchronization queue, or actu-
ally executing in registers) pointing at the machine code
for Switch. Or, if that thread is executing a subroutine
in some other module, then the code for Switch is reach-
able by some chain of return-address pointers.

When the Switch code eventually notices that its last
call has completed, and it has released all of its phone
lines and other resources, it calls Scheduler.exit(), which
removes it from any queues. The scheduler invokes
some other ready thread, and the machine code of the
Switch module can finally be garbage-collected.

2 A worked example

To demonstrate these ideas, I have prepared a complete,
working example.

3

Switch

Lines

Accounting

Task Scheduler

Machine code Closures

NewSwitch

New Closures

Module manager

Figure 4: Scheduler keeps code live. The old Switch is not garbage collected, because a runnable task points to its closure.

2.1 Permanent modules

The infrastructure of permanent modules cannot be re-
placed with new versions.

Scheduler The Scheduler is the smallest possible ab-
straction of Concurrent ML[3] or ML-Threads[2]. It
lacks synchronization and communications primitives,
which are not needed for this simple example. The use
of first-class continuations to implement co-routines is
well known [4].

signature SCHEDULER =
sig

val spawn : (unit -> unit) -> unit
val yield : unit -> unit
val exit: unit -> ’a

end

structure Scheduler : SCHEDULER =
struct

val rdyQ = ref (nil: unit cont list)
fun put k = rdyQ := !rdyQ @ [k]
fun get () = let val k::rest = !rdyQ

in rdyQ := rest; k
end

fun exit () = throw (get()) ()

fun yield() = callcc(fn k =>
(put k; exit()))

fun spawn f =
(callcc (fn k =>

(put k; f (); exit()));
())

end

Lines We assume a simple interface to the telephone
switch hardware. There are N phone lines; any one of
them can be “on hook” (inactive) or “off hook” (active).
The Lines module exports a list of the phone lines it han-
dles; a special line busysignal is connected to the ap-
propriate tone generator. The get dial function reports
what number the user has dialed as he picked up the
phone. Finally, any two lines may be connected or dis-
connected.

The module Lines is abstract, so users cannot manip-
ulate the data structures directly. But there is a “back
door:” a non-abstract interface Simulate Lines so that
we can simulate users making telephone calls.

This interface is a very simplified view of how tele-
phones work; for example, it assumes that people pick

4

up the receiver and dial a number in one atomic oper-
ation; and that instead of ringing, phones have a little
device to push the receiver off the hook automatically!

signature LINES =
sig

type line
val lines : line list
val lookup: int -> line
val number: line -> int
val busysignal : line
val offhook : line -> bool
val connected: line -> bool
val get_dial : line -> int
val connect: line * line -> unit
val disconnect: line * line -> unit

end

structure Simulate_Lines =
struct
val N = 10
type line = int

val busysignal = 1

val lines = let fun f(i) =
if i=N then nil
else i :: f(i+1)

in f 2
end

fun lookup(i) = i
fun number(i) = i

val offhook’ = Array.array(N,false)
fun offhook i = Array.sub(offhook’,i)

val dial = Array.array(N,0)
fun get_dial i =

let val d = Array.sub(dial,i)
in Array.update(dial,i,0);

d
end

val connections = Array.array(N,0)

fun connected(i) =
Array.sub(connections,i) > 0

fun connect(i,j) =
(Array.update(connections,i,j);
Array.update(connections,j,i);
Array.update(offhook’,j,true))

fun disconnect(i,j) =
(Array.update(connections,i,0);
Array.update(connections,j,0))

end

abstraction Lines : LINES =
Simulate_Lines

Simulate Input This module generates phone calling
activity in the Lines module.

structure Simulate_Input =
struct

structure L = Simulate_Lines

val rand = Rand.mkRandom 1.498572
fun random(n) =

Rand.range(0,n-1) (rand())

fun run() =
let val c1 = 2+random(L.N-2)

and c2 = 2+random(L.N-2)
and any = random(5)

in if any>0 then ()
else if L.offhook(c1)
then Array.update(

L.offhook’,c1,false)
else (Array.update(

L.dial,c1,c2);
Array.update(

L.offhook’,c1,true));
Scheduler.yield();
run()

end

end

Manager The module manager installs new and re-
placement versions of the telephone switch software. In
this simple example, a new software module is installed
by compiling and evaluating it; a more realistic example
would install a previously compiled module.

The manager reads one line from an input stream; if
the line is N dots, then the manager waits N time steps
(by yielding control N times to the round-robin sched-
uler). If the line is a piece of ML code, the manager
calls on the compiler (with use stream) to compile and
evaluate it.

5

structure Manager =
struct

val doit = ref (fn()=>())

fun invoke f = doit := f

fun wait 0 = ()
| wait n = (Scheduler.yield();

wait(n-1))

fun run infile =
let val s = input_line infile
in if size s = 0

then ()
else if substring(s,0,1) = "."
then (wait(size s); run infile)
else (use_stream(open_string s);

let val f = !doit
in doit:=(fn()=>());

Scheduler.spawn f
end;
Scheduler.yield();
run infile)

end

end

2.2 Replaceable modules

Switch The Switch module exports two interface func-
tions, run and stop. Invoking run(account,done) starts
the switch software with two arguments, each of which
is a function. Invoking stop() tells the switch software
not to handle any new calls, but to continue handling old
ones.

account is called to generate billing information at the
completion of each call; done is called when the last old
call terminates. Presumably these two functions will be
passed to run by the Accounting module.

Switch.run loops, calling in turn two functions, new-
Calls to initiate new calls (when it notices that phone
lines have just gone off hook), and hangups to discon-
nect calls (when it notices that phone lines have gone
back on hook). But if the live variable is false, then
newCalls will be skipped. All the stop function has to
do is set live to false.

When live is false and the last active call ends, done
is called and then run exits.

signature SWITCH =
sig

val run: (int*int->unit) * (unit->unit)
-> unit

val stop: unit -> unit
end

functor Switch(structure Lines: LINES)
: SWITCH =

struct

val live = ref false

fun newCalls (line::lines,calls) =
if Lines.offhook(line) andalso

not(Lines.connected(line))
then
let val number = Lines.get_dial(line)

val try = Lines.lookup(number)
val other = if Lines.offhook(try)

then Lines.busysignal
else try

in Lines.connect(line,other);
(line,other) ::

newCalls(lines,calls)
end
else newCalls(lines,calls)

| newCalls (nil,calls) = calls

fun hangups(accounting,(c1,c2)::calls) =
if not (Lines.offhook(c1))

orelse not (Lines.offhook(c2))
then (Lines.disconnect(c1,c2);

if Lines.number c2 <>
Lines.number Lines.busysignal

then accounting(Lines.number c1,
Lines.number c2)

else ();
hangups(accounting,calls))

else (c1,c2) ::
(hangups(accounting,calls))

| hangups(_,nil) = nil

fun run(accounting,done) =
let fun loop calls =

(Scheduler.yield();
if !live
then loop(

hangups(
accounting,
newCalls(Lines.lines,calls)))

else case hangups(accounting,calls)
of nil => ()
| calls’ => loop calls’)

in live := true; loop nil; done()
end

fun stop() = live := false

end

What happens if there are two instances of Switch
running simultaneously? Each one “owns” a subset of
the connected lines; when a line goes “off hook,” new-
Calls can grab it. It’s important that the body of new-
Calls, from the offhook test to the connect operation, be

6

atomic, but in the simple co-routine version shown here
that’s accomplished just by omitting any yield call.

Ordinarily, only one Switch is running; and when two
are more are running, only one will be live. The non-
live switch modules will not be aquiring new resources
(connected lines), and will be gradually releasing them.

Accounting The Accounting module just writes the
billing information to a file. The done function (passed
to Switch.run) writes to the file the information that a
switch has terminated. The id parameter just identifies
the invocation of Accounting that writes each entry in
the file.

signature STOPPABLE =
sig

val start: unit -> unit
val stop : unit -> unit

end

functor Account(
structure Switch: SWITCH
val id : string) : STOPPABLE =

struct

val file = open_append "Accounting"

fun accounting (c1:int, c2:int) =
let val s = implode[id, ": ",

makestring c1, " called ",
makestring c2, "\n"]

in output(file,s);
output(std_out,s)

end

fun done() = (print id;
print ": exiting\n";
close_out file)

fun start() = Scheduler.spawn(
fn()=>Switch.run(accounting,done))

fun stop() = Switch.stop()

end

Test input

After loading all these modules, we invoke Manager.run
on a file containing:

Manager.invoke Simulate_Input.run;
structure S1 = Switch(structure Lines = Lines);
structure A1 = Account(structure Switch = S1

val id = "A1");
Manager.invoke A1.start;
..
use "switch2.sml";
.............................
structure S2 = Switch(structure Lines = Lines);
..................................
structure A2 = Account(structure Switch = S2

val id = "A2");
.......................
A1.stop();
Manager.invoke A2.start;
.......................................
.......................................
.......................................
.......................................
.......................................
.......................................
....................................

This starts the phone-activity simulator; creates a clo-
sure S1 for the Switch module; creates a closure A1 for
the Accounting module; and tells A1 to start.

Then it waits 40 time steps while phone calls are initi-
ated. Next it compiles a new version of the Switch mod-
ule that uses different internal data structures; creates a
closure S2 for the new switch module; and waits some
more.

Then it creates a new accounting closure A2 using
the new Switch module, but doesn’t start it running; and
waits.

Now it tells A1 to stop, and A2 to start; and waits
another 200 time steps.

The output looks like this:

7

invoke Simulate˙Input.run
structure S1 : SWITCH
structure A1 : STOPPABLE
invoke A1.start
A1: 5 called 3
A1: 6 called 8
functor Switch (compile switch2.sml)
A1: 3 called 0
structure S2 : SWITCH
A1: 6 called 3
structure A2 : STOPPABLE
A1: 2 called 8
stop A1
start A2
A1: 3 called 9
A2: 4 called 5
A2: 8 called 7
A2: 3 called 4
A2: 4 called 5
A1: exiting
A2: 8 called 9
A2: 3 called 2
A2: 5 called 8

3 Conclusion

This entire example was done as an ordinary user pro-
gram in Standard ML of New Jersey, without any special
access to the internals of compiler or runtime system.
Features of ML and SML/NJ that make this possible are:

Re-entrant module linking. Allows two activations of
the same module to run simultaneously.

Acyclic module system. When a new Switch is in-
stalled, re-entrant invocations of any modules
above it in the hierarchy must be created. This
would be a problem in the presence of cycles.

Concurrency or continuations. Multithreading is es-
sential to allow the old and new code to run simul-
taneously.

Interface thinning (inheritance). Allows piecemeal
enriching of module interfaces. Upgrading imple-
mentations sometimes means upgrading interfaces,
too.

Garbage collection. SML/NJ’s garbage collector can
reclaim code space as well as data space.

References

[1] Andrew W. Appel and David B. MacQueen. A Standard
ML compiler. In Gilles Kahn, editor, Functional Pro-
gramming Languages and Computer Architecture (LNCS
274), pages 301–24, New York, 1987. Springer-Verlag.

[2] Eric C. Cooper and J. Gregory Morrisett. Adding threads
to Standard ML. Technical Report CMU-CS-90-186,
School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, December 1990.

[3] John H. Reppy. CML: A higher-order concurrent lan-
guage. In Proc. ACM SIGPLAN ’91 Conf. on Prog. Lang.
Design and Implementation, pages 293–305. ACM Press,
1991.

[4] Mitchell Wand. Continuation-based multiprocessing. In
Conf. Record of the 1980 Lisp Conf., pages 19–28, New
York, August 1980. ACM Press.

8

