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Abstract

We describe an implementation of hash-consing for the Standard ML
of New Jersey compiler. Hash-consing can eliminate replication among
heap-allocated data, which may allow the use of fast equality checking
and may also improve the locality of reference of a program. The cost
of a hash table lookup for each record allocated may, however, offset any
gains from the elimination of replication.

Our hash-consing scheme is integrated with a generational garbage col-
lector. Only records that survive a garbage collection are “hash-consed,”
thus avoiding the cost of a table lookup for short-lived records. We discuss
some issues related with the implementation of this scheme and present a
performance evaluation.
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1 Introduction

In heap-allocated programming languages, such as ML and Lisp, values are
represented by memory records and complex objects by pointers to graph-like
collections of records. One major drawback of this scheme is that a value that
is used in more than one place in a program may be represented by more than
one record. This may increase the space complexity of a program. It may also
increase the time complexity, due to the need for structural comparison instead
of a simple pointer comparison in order to determine the equality of two values
(e.g. use of equal instead of eq in Lisp). Moreover, the duplication of storage
for values is likely to affect the locality of reference of the program, causing
an increase in cache misses and virtual memory page faults, which may further
increase its running time.

Ershov [11] showed how to collapse trees to minimal DAGs by traversing
trees bottom-up, using hashing to eliminate common subexpressions. Goto [13]
implemented a Lisp system with a built-in hash-cons operation: his “h-cons”
cells were rewrite protected and free of duplicate copies.

The technique of hash-consing guarantees that two identical objects will
share the same records on the heap, and thus will be represented by the same
pointer. The basic idea is very simple. Whenever a new record is allocated (or
“consed”) we Check whether there is already an identical record in the heap.
If so, we avoid the allocation and simply use the existing one. Otherwise, we
perform the allocation as usual. A hash table is used to search the heap for a
duplicate record.

Hash-consing can be applied only to pure values, that is, values that never
change during the execution of a program. For if two updatable records have
identical values now, they might not be identical later, and so merging then
could lead to incorrect results. This implies that 1t would be difficult to use
hash-consing in a language like Lisp, where all cons cells are potentially up-
datable (using rplaca/rplacd), even though very few, if any, of the allocated
cells are actually updated during the execution of a typical program. In ML,
however, most records are immutable; the few updateable “ref-cells” are easily
distinguishable at compile time and run time. Therefore, it 1s possible to add
hash-consing to ML, without changing its semantics.

Hash-consing can offer many advantages by eliminating the drawbacks of
replication described above, but not without cost. First, allocation is much
more expensive. Every record allocation must check for the existence of a copy
of the new record and, even if this can be done in constant time, the extra cost
can be quite significant. If allocation is very frequent, as is often the case in
ML, this could easily make the program much slower, instead of making it faster
as we would expect. Another problem is the space needed for the hash table,
which can be large. This could offset the gain in space introduced by sharing;
worse yet, the hash table is now competing for the cache and main memory.

In this paper we describe an experience with the implementation of a modi-



fied hash-consing scheme for the Standard ML of New Jersey compiler [3]. The
SML/NJ compiler divides the heap in two main areas, the newer generation,
where records are initially allocated and the older generation which contains
the records that survive garbage collections. In our new hash-consing imple-
mentation, only those records that survive at least one garbage collection are
“hash-consed”. Thus, only the older generation is guaranteed not to have du-
plicate records. The motivation for this scheme is to avoid the cost of a hash
table lookup for the large number of records that have a very short life (i.e. do
not survive any garbage collections), while still taking advantage of some of the
benefits of a full hash-consing scheme.

2 Overview of the SML/NJ Runtime System

This section contains a brief overview of the SML/NJ runtime system. For a
more detailed description see Appel[l, 2].

The SML/NJ compiler uses a generational garbage collector, with two gener-
ations. The heap is divided in three main areas: the newer generation, where all
records are initially allocated, the older generation, which contains all records
that survive at least one garbage collection, and the reserve space, between the
two generations. During a garbage collection, live records in the newer genera-
tion are copied to the reserve space, starting at the side adjacent to the older
generation. Once the garbage collection is completed, the filled portion of the
reserve space is added to the older generation, the rest of the heap (i.e. the
newer generation and the unfilled portion of the reserve space) is divided evenly
in a newer generation and a reserve space and the process starts all over again.
This is the most common form of garbage collection and is called a minor col-
lection. Occasionally, the older generation grows too large, and must also be
collected (this is a major collection).

The garbage collection algorithm copies records from a fromspace to a
tospace. The fundamental operation 1s to forward a pointer to a record. Three
cases must be considered: 1) the pointer does not point into the fromspace—in
this case there is nothing else to do; 2) the pointer points into the fromspace and
the record pointed to has not been copied yet—in this case the record is copied
to the next free location in the tospace, the record’s new address is stored in
its first word and the pointer is set to point to the new record address; 3) the
pointer points into the fromspace and the record pointed to has already been
copied to the tospace—in this case the pointer is set to the new address of the
record, that is stored in its first word.

Garbage collection begins by forwarding a set of root pointers. Then the
pointers in the records that were copied to the reserve space are forwarded,
until there are no more pointers to forward. This corresponds to a breadth-first
traversal of the live records, with the reserve area acting as a queue for the
breadth-first search algorithm.



Heap records can contain four kinds of objects: ML records, arrays, strings
and bytearrays. The important distinction between these kinds is that ML
records and arrays may contain pointer values, and arrays and bytearrays may
be updated. Each heap record is preceded by a one word tag that contains its
kind and size. The low order bit is used to distinguish between pointer and
non-pointer values in ML records and arrays. All objects are aligned to word
boundaries.

3 Hash-consing during Garbage-collection

Our implementation does hash-consing “between generations” of the genera-
tional collector. We keep a hash table with all non-updatable records in the
older generation. The hash table is indexed by the contents of the records and
each entry contains a pointer to the record. While forwarding a pointer to an
non-updatable record in the newer generation we do a hash table lookup to
check for the existence of an identical record in the older generation. If such a
record exists, then no copy i1s made and the pointer is set to the existing copy
in the older generation. Otherwise, the record is copied, inserted into the hash
table, and the pointer is set to the new address. Updatable objects are copied
in the usual way, without using the hash table.

In order for this scheme to work correctly, we must be careful to copy objects
in a bottom-up way[11]: given a DAG, we can only forward a node (i.e. arecord)
after we have forwarded all of its descendants. This bottom-up forwarding can
be easily achieved with the use of a depth-first algorithm to traverse the live
objects in the newer generation.

The main advantage of this approach over a standard hash-consing scheme is
that it avoids the cost of a hash table lookup and insert for short-lived objects,
that is, those objects that do not survive any garbage collection. The premise
of generational garbage collection is that most allocated objects tend to have a
very short life[18]. By eliminating replication, we reduce the size of the older
generation. There will be no space savings in the newer generation, but we
don’t lose much here since the space of this generation will be reused after each
“minor” garbage collection.

A conventional hash-consing implementation can test structural equality of
two objects (Lisp “equal”) by means of a simple pointer equality test (Lisp
“eq”). Our scheme can do this only for objects in the older generation. To
compare two arbitrary objects for structural equality, we must perform struc-
tural comparison for any part of the structure resident in the younger generation;
once the recursion escapes into the older generation, it can be cut off with a
pointer-equality test.

The main problem with our scheme is that garbage collection time may
be considerably increased, and this may offset the gains from the reduction of
replication in the older generation.



forward(R) =
mark record pointed to by R
for i:= 1 to length(R) do
if R[i] is a pointer into fromspace
and record pointed to by R[i] is not marked then
R[i] < forward(R[i])
endif
endfor
{ all of R’s fields are already forwarded }
copy record pointed to by R to location NEXT
R[] — NEXT
NEXT — NEXT + length(R)
return R[1]

Figure 1: The Depth-First Search forwarding algorithm. R is a pointer to a
record in the fromspace. NEXT is a pointer to the next free location of the
reserve space. length(R) returns the length of the record pointed to by R.

4 A Depth-First Search Collector Algorithm

As explained in the previous section, a hash-consing garbage collector must
traverse the heap “bottom-up.” This suggests the use of a depth-first traversal
algorithm. Since the SML/NJ compiler used a breadth-first algorithm, our first
task was to rewrite the garbage collector.

Our depth-first search algorithm is not quite conventional (see Figure 1). To
forward a record R that is not yet marked we mark the record and recursively
forward the fields of R. Only then we copy the record R to to-space. A con-
ventional depth-first copying algorithm copies the unforwarded record before
recursively forwarding its fields. We choose this approach because it makes it
posible to fit a stack in to-space. On the other hand, a conventional depth-first
copy can correctly handle cycles; our algorithm may find marked records which
do not yet have a forwarding pointer installed. We discuss cyclic structures
below. For now, we will assume that the algorithm simply does not forward
pointers to marked records, leaving those pointers pointing into from-space.

A nice property of the breadth-first algorithm is that it can use the records
just copied as an implicit queue and, thus, does not require any auxiliary storage.
Depth-first algorithms require either an auxiliary stack or a complicated pointer-
reversal scheme [14]. However, if we use the scheme described above, we need
not allocate any additional memory area for the stack. It turns out that there
is just enough space in the to-space to put the stack. As shown in Figure 2,
the stack grows downward from the high end of the to-space, while records are
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Figure 2: Location of the depth-first stack

copied starting at the low end. By ensuring that each record is popped from the
stack before it 1s copied to to-space, we can guarantee that the stack occupies
memory that would have been unused anyway.

In order to better explain the implementation of the stack in to-space, we
present a non-recursive version of the depth-first search algorithm in Figure 3.
Besides a pointer to the record which is currently being processed (R), the algo-
rithm uses three other pointers: NEXT, which is a global variable that points to
the next free location in the to-space; current_field, which points to the field
of the record pointed to by R that is currently being processed and stack-ptr
which points to the top of the stack. The bottom of the stack is location MAX
which is the highest address of the destination region.

The stack starts at the end of to-space and grows backwards. It is not
difficult to show that the stack pointer and the NEXT pointer (which marks the
end of the copied data) never overlap, as long as the to-space is large enough
to hold all the live data. Each stack item is two words long, and each record
(including its kind-and-size descriptor) is at least two words long. For each live
record, there is at most one item on the stack or one copy in the to-space, but
never both simultaneously.

Suppose that at a given time the stack contains n records. By the algorithm
of Figure 3, a record is copied to the reserve space only after all of its fields have
been processed and at this point the record will not be pushed on the stack
again (this is guaranteed by the statement if current field < length(R)).
Since the size of the stack is 2 * n words, the stack-pointer points to location
MAX — 2% n. Assuming that there is enough space to copy all records, NEXT can
not be greater than MAX — 2 % n, since the size of each record is at least two
words. It is always the case on a minor collection that there is enough space to
copy all records, since the newer generation and the reserve space have the same
size. On major collections, however, since the area used as the reserve space
may be of size less than the fromspace (the older generation), it is possible that
the pointers overlap. But this means that the garbage collector has run out of
memory and the program execution is aborted.

5 Dealing with Cycles

The depth-first search algorithm given above does not handle cycles properly. It
relies on the fact that, when copying record R, all of R’s children have already



forward(Root) =
R + Root
stack_ptr — MAX
current_field « 1
mark record pointed to by R
loop
{ R points to a marked record }
while current_field < length(R)
and R[current_field] is not a pointer into fromspace
and record pointed to by R[current_field] is not marked do
current_field « current field+ 1
endwhile
if current_field < length(R) then
push(R, current_field)
R — R[current_field]
mark record pointed to by R
current field «— 1
continue
endif
{ all of R’s fields are already forwarded }
copy record pointed to by R to location NEXT
R[1] — NEXT
NEXT — NEXT + length(R)
if stack is empty then
return R[1]
else
new_address — RJ[1]
(R, current_field) «— pop()
R[current field] — new_address
current_field « current field+ 1
endif
endloop

Figure 3: The Depth-First Search forwarding algorithm. R is a pointer to a
record in the fromspace. NEXT 1s a pointer to the next free location of the reserve
space. MAX is the highest address in the reserve space. length(R) returns the
length of the record pointed to by R.



done « false
while not done do
done « true
for each ref-cell in the ref-list do
if cell has been moved to to-space then
for all pointers p in the cell do
forward(p)
endfor
remove the ref-cell from the list
done « false
endif
endfor
endwhile

Figure 4: Forwarding ref-cells.

been forwarded; thus we were able to look up the (already forwarded and hashed)
contents of R to determine if a copying was even necessary. Clearly, we cannot
use such a simple scheme when R is its own descendant.

Every cycle, however, must contain at least one updateable record (“ref
cell”). The ref cells should not be hash-consed anyway. Our solution to the
cycle problem takes advantage of this. The idea is to stop the search on records
that have been updated and use these records later as roots for the forwarding
algorithm. When copying ref-cell R, its children will not necessarily have been
forwarded; but we don’t need to look up the forwarded contents of R prior to
copying, since we don’t hash-cons ref cells.

The only problem now is how to find these updated ref-cells, but it turns out
that the compiler already keeps a list of these cells (which it needs to handle
updates to old objects in a generational garbage collector[1]) so this problem is
very neatly solved.

The method works as follows. First we scan the ref list, marking all the
updated ref-cells. Then we proceed with the usual forwarding of all the roots.
Whenever a marked record is reached during the depth-first search, the record
is copied to to-space. The pointers in that record are not forwarded, however.
Later, after all roots have been forwarded, we scan the ref list again and forward
the pointers of all records in the list that have been copied to to-space. Since
new ref-cells may be copied in this step, several passes over the ref-list may be
required, until no new ref-cell is copied. Figure 4 describes the last step of the
algorithm.

The major drawback of this method is that it can have complexity propor-
tional to the square of the number of distinct ref-cells in the list, in the worse



case. 1

An alternative approach is to copy all updated ref-cells to to-space in the
beginning of a garbage collection and then use these records as roots for the
depth-first collector. The problem with this approach is that not all updated ref-
cells are live, which may result in many non-live records being copied. Therefore
we have not pursued this alternative.

The list of updated cells is not available on major collections. But since we
do not have to “hash-cons” during major collections we can use another method
to handle the cycles problem on these collections. The idea is simply to copy
a record with the pointer to the old copy, and fix all the incorrect pointers
later in a second pass. These pointers are easy to identify after the collection 1s
completed since they are the only ones which point into from-space. Therefore,
when we are processing a record that contains a pointer to a marked record —
i.e., we close a cycle — we copy the record without forwarding the pointers to
marked records. The marked record is copied after it is popped from the stack.

To fix the incorrect pointers we can make a sequential pass over the to-space,
or we can keep a list of records that need to be fixed and fix all the records in
the list. Of course, the second approach is preferable since it is much faster.
But in this case there is a problem with the space for the list of records. If
there is not enough memory to keep this list, the only alternative is to make
the sequential pass. A combination of the two approaches is also possible. If
there is space to keep part of the list, we can fix the records in the list and
start scanning to-space sequentially from the address after the highest address
in the list. The only requirement 1s that records are added to the list in order of
increasing addresses, which is easy to do. We can achieve some speed-up in the
sequential pass if we mark the tag of the records that must be fixed. Then we
do not need to read all the words in to-space, but only the tags of the records.
In any case, this method can be potentially slow if the number of cycles is large
compared to the number of records in the heap.

The two methods that we have described above can be potentially slow in
some cases. However, for programs that are mostly functional, both methods
can be expected to be reasonably efficient, since we would not have neither a
large number of ref cells, nor a large number of cycles.

6 Hashing

Once we have the depth-first collector and the appropriate method to deal with
cycles, adding the hash-table lookup becomes very simple. We need only change

1The size of the ref-list is proportional to the number of updated operations and not to
the number of updated ref-cells. That is, a ref-cell may appear several times in the list if it
is updated several times. This can make the size of the ref-list potentially large, even if the
number of distinct ref-cells in the list is actually small. However, it is easy to remove the
duplicate entries from the list when we make the first pass marking the ref-cells, so that its
size is reduced to be proportional to the number of updated ref-cells.



the part of the algorithm that copies a record. Before copying a non-updatable
record we do a lookup on the value of that record. If an already collected record
with the same value is found, then we store the address of the already collected
record in the first word of the record that is being collected and proceed without
copying the record. If the lookup is unsuccessful, the record is entered into the
hash table and copied. Updatable records are simply copied, without neither a
table lookup nor entry into the table.

The implementation requires a modification of the following three lines of
the Depth-first collector algorithm presented in Figure 3:

copy record pointed to by R to location NEXT
R[1] — NEXT
NEXT — NEXT + length(R)

these lines are replaced by:

X +— lookup(R)

if X is not null then
R[1] — X

else
copy record pointed to by R to location NEXT
R[1] — NEXT
enter record pointed to by NEXT in the hash table
NEXT — NEXT + length(R)

endif

We have used an open hashing scheme [15] to implement the hash table.
A second hash function is used to handle collisions. The two hash values are
computed as a function of the first few words of a record. Each table entry
is either empty or contains a pointer to a record on the heap. During minor
collections, there is no need to delete nor to change the value of a table entry, but
only to insert new values. On major collections, however, because we garbage
collect the older generation, we would have to update the hash table, since
records may have their address changed or they may simply not survive the
garbage collection. We have chosen to simply discard the old hash table and
rehash everything. This also makes 1t possible to change the size of the hash
table to adapt to changes in the live-data size of the program. After the major
collection is completed, we compute a new size for the hash table and scan the
older generation sequentially hashing all non-updatable records.

The implementation of the modified garbage collector takes about 930 lines
of C code, compared to about 530 lines of the standard garbage collector.
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7 Performance Evaluation

In order to evaluate the performance of our hash-consing scheme, we have mea-
sured the running time of some sample programs, and compared it to the running
time of the same programs when compiled with the SML/NJ compiler without
using hash-consing. The experiments were made on a DECstation 5000/240,
with 64Mbytes of main memory, using version 0.75 of the SML/NJ compiler. A
brief description of the benchmark programs is given next.

Boyer The Boyer theorem-proving benchmark [12] translated into SML by Kai
L1 and Andrew Appel.

Knuth-Bendix An implementation by Gerard Huet of the Knuth-Bendix com-
pletion algorithm, translated into SML by Xavier Leroy.

Lex A lexical-analyzer generator written by James S. Mattson and David R.
Tarditi[4].

Life Reade’s implementation of the game of Life [16].
Mandelbrot A program to generate Mandelbrot sets.

Simple A spherical fluid-dynamics program [9, 10], translated into SML by Lal
George.

VLIW A VLIW scheduler written by John Danskin.

Yace A LALR(1) parser generator, written by David Tarditi [17] processing
the grammar of Standard ML.

Figure 5 gives the running time for each program, both with and without
the use of hash-consing. Times are normalized to the execution time without
hash-consing. The total running time is divided into garbage-collection time
(ge-time) and non-garbage-collection time (non-ge-time). The results show that
the hash-consing scheme slows down garbage collection by a factor of up to
four times in the worst case, but for most programs the figure is of about two
times or less. In many cases there is a small improvement in non-gc-time but,
with the exception of Boyer and Knuth-Bendix, the gains are insufficient to
compensate the overhead of garbage collection. Yacc has the worst performance,
being 22 percent slower. The Boyer benchmark showed the highest increase
in performance, almost 10 percent. This agrees with experiments made by
Baker [5], who shows that function memoization and hash-consing can greatly
improve the performance of the Boyer program (memoization seems to be more
important than hash-consing).

The SML/NJ compiler uses a parameter—the heap ratio—that controls the
ratio of total heap memory to live data size. This parameter is used to adjust
the size of the heap after a major garbage collection. The heap ratio determines

11



Boyer
Yacc
VLIW
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Mandel
Simple
Knuth-B
Life

O Total time
m GCtime

O Tota time with Hash-consing
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Figure 5: Running time for the programs in the benchmark with and without the
use of hash-consing. For each program, times are normalized to the execution

time without hash-consing.
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Figure 6: Effect of different heap ratios on the running time of Lex.

the frequency of collections and, thus, may have a great impact in the running
time of a program. The default value of five was used in the measurements of
Figure 5.

Figure 6 shows the impact of different values for the heap ratio on the running
time of Lex. Since larger ratios lead to smaller collection time, a system whose
collector is slowed by hash-consing may have better overall performance with a
larger heap ratio.

Figure 7 shows the impact of hash-consing on heap usage by the programs
in the benchmark. The first column gives the total amount of data copied into
the older generation without hash-consing. The second column gives the same
measurement with the use of hash-consing. The numbers in the third column
give the amount of duplicate data found by the hash-consing collector. All
numbers are in megabytes. All programs, with the exception on Lex, have a
small reduction on their data size. In most cases, however, this reduction is
quite small, less than one percent.

The next measurements show the impact of different hash table sizes on the
total running time of the programs. The size of the hash table as a function
of the heap size is a parameter that can be adjusted by the programmer in the
same way as the heap ratio. The results, presented in Figure 8, show that the
size of the hash table does not have a great impact in the performance of the
programs in the benchmark.
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Without With
hash-consing hash-consing

Program Data Data  Duplicates

size(Mb) | size(Mb) (Mb)
Boyer 153.0 130.2 3.340
Life 172.1 171.8 0.066
Knuth-B 181.6 178.5 0.354
Simple 406.3 404.1 0.452
Mandel 1482.8 1482.7 0.000
Lex 112.4 112.9 0.007
VLIW 235.2 234.9 0.008
Yacc 52.1 51.0 0.256

Figure 7: Heap Allocation and Duplicate Data
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Figure 8: Effect of varying the hash table size on the running time of Lex.
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Figure 9: Performance comparison between the breadth-first and depth-first
search garbage collectors. For each program, times are normalized to the exe-
cution time for the breadth-first collector.
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Finally, Figure 9 compares the performance of the breadth-first collector
and the depth-first collector, without hash-consing. The traversal algorithm
may have an 1impact on the locality of references of the collected data and thus
affect the performance of programs [19]. Our measurements do not show any
significant differences. Perhaps this is because the DECstation’s four-word cache
blocks are too small to hold much more than one object each (and our programs
exhibit minimal virtual-memory paging).

8 Future Work

Perhaps the real promise of hash-consing is that it can make function memoiza-
tion [8] possible. If a pure (side-effect free) function f is applied to an argument
z yielding a result y, then the next time f(z) is evaluated the same result will
obtain. (By side-effect free, we mean that reference cells are neither read nor
written.)

If the mapping (f, ) — y is entered into a table, then the next time the
same function is applied to the same argument, the value y can be returned
without evaluating f. This is the essence of function memoization.

Without a hashing scheme, searching for (f,#) in the table is nontrivial,
especially if = is a deeply structured value. With a hash-consing scheme, in
which the values f,z already have been hashed to unique addresses, it should
be possible to do function memoization with very little overhead beyond what
is reported in this paper. To avoid hashing on all function calls ever performed,
the programmer should probably specify which functions are to be memoized.

Standard ML does have side effects, however, and these might cause the
memoizer to give semantically incorrect results. We propose a scheme to solve
that problem. A global counter S will be incremented on every read or write side
effect. When f(#) is first invoked, the tuple (f, z,S) will be recorded. When f
returns the result y, the current value of .S will be compared with the original
value. If they are the same, then f(z) had no read or write side effects, and
f is guaranteed (at least on input z) to be a pure function. Thus, (f,z) — y
can be entered in the memo table. No guarantee 1s implied that f is pure when
applied to other arguments, but none is needed.

Baker[5, 6, 7] has shown that memoization (in combination with hash-
consing) is extremely powerful in improving the performance of programs such
as the Boyer benchmark, which proves theorems by backtracking search.

9 Conclusion
A hash-consing garbage collector is about a factor of two or three slower than

an ordinary collector; but garbage collection takes only about 5% of execution
time in a typical modern system, so the overall overhead of hash-consing may

16



be affordable for many applications.

The hash-consing collector was not difficult to implement, and did not im-

pinge on any part of the compiler outside the runtime system.

The space savings in most of the benchmarks we measured was not very

impressive. The real utility of hash-consing may involve memoization, or other

ways to let programmers make use of the ability to hash structures to integers

efficiently and in a general way.
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