
A Fresh Look at
Separation Algebras and Share Accounting?

Robert Dockins1, Aquinas Hobor2, and Andrew W. Appel1

1 Princeton University
2 National University of Singapore

Abstract. Separation Algebras serve as models of Separation Logics;
Share Accounting allows reasoning about concurrent-read/exclusive-write
resources in Separation Logic. In designing a Concurrent Separation
Logic and in mechanizing proofs of its soundness, we found previous
axiomatizations of separation algebras and previous systems of share ac-
counting to be useful but flawed. We adjust the axioms of separation
algebras; we demonstrate an operator calculus for constructing new sep-
aration algebras; we present a more powerful system of share accounting
with a new, simple model; and we provide a reusable Coq development.

1 Introduction

Separation logic is an elegant solution to the pointer aliasing problem of Hoare
logic. We have been using separation logic to examine the metatheory of C minor
enhanced with primitives for shared-memory concurrency [5, 4]. Along the way,
we developed a generic library of constructions and proof techniques for separa-
tion logic. Here we explain two related parts of our toolkit: separation algebras
and share models. Contribution 0: Our proofs are machine checked in Coq.3

Calcagno, O’Hearn and Yang [3] present a semantics of separation logic based
on structures they call “separation algebras.” But Calcagno’s definition is flawed:
it is too limiting in some ways and too permissive in others. Contribution 1:
We make several alterations to the definition of separation algebras to produce
a class of objects that have more pleasing mathematical properties and that are
better suited to the task of generating useful separation logics.

Different separation logics often require different separation algebra models,
but verifying that a complex object is a separation algebra can be both tedious
and surprisingly difficult. Contribution 2: We demonstrate an operator calcu-
lus for rapidly constructing a wide variety of new separation algebras.

We also revisit share accounting, which is used to reason about read-sharing
concurrent protocols. Share accounting allows a process to “own” some share of
a memory location: the full share gives read/write/deallocate permissions, while
a partial share gives only the read permission. Contribution 3: We present a
new share model that is superior to those by Bornat et al. [1] and Parkinson [7].
? Supported in part by National Science Foundation grant CNS-0627650.
3 Reviewers may find the Coq development corresponding to this paper at
http://www.cs.princeton.edu/~appel/sa-accounting/proofs.tar.gz

appel
Text Box
June 2009

2 Separation Algebras

Calcagno, O’Hearn, and Yang [3] introduced the notion of a separation algebra,
which they defined as “a cancellative, partial commutive monoid.” That is, a
separation algebra (SA) is a tuple 〈A,⊕, u〉 where A is a set, ⊕ is a partial
binary operation on A and u is an element of A satisfying the following axioms:

x⊕ y = y ⊕ x (1)
x⊕ (y ⊕ z) = (x⊕ y)⊕ z (2)
u⊕ x = x (3)
x1 ⊕ y = x2 ⊕ y → x1 = x2 (4)

The primary interest of a separation algebra is that it can be used to build a
separation logic [10]. However, for most of this paper, we are going to consider
separation algebras as first-class objects and investigate their properties.

We wish to construct our models in Coq. Dealing with partial functions in
Coq can be tricky, since the function space of Coq’s metatheory contains only
computable total functions4. We would like to be able to construct models whose
combining operation is not computable. Therefore, we adopt a convention from
philosophical logic, where it is common to give the semantics of substructural
connectives in terms of 3-place relations rather than binary functions [9].

We recast the separation algebra ideas of Calcagno et al. in this relational
setting by considering the join relation J(x, y, z), usually written suggestively
as x⊕ y = z. The partiality of the ⊕ operation follows from the fact that for a
given x and y we are not guaranteed that there is some z such that x ⊕ y = z.
Reinterpreted in this setting, we say that 〈A, J〉, (where A is a carrier set and
J is a three-place relation on A) is a separation algebra provided that:5

x⊕ y = z1 → x⊕ y = z2 → z1 = z2 (5)
x1 ⊕ y = z → x2 ⊕ y = z → x1 = x2 (6)
x⊕ y = z → y ⊕ x = z (7)
x⊕ y = a → a⊕ z = b → ∃c. y ⊕ z = c ∧ x⊕ c = b (8)
∃u. ∀x. u⊕ x = x (9)

That is, ⊕ is a functional relation (5), it is cancellative (6), commutative (7),
associative (8), and has a unit u (9).

We are justified in calling this object “the” unit because the cancellation
axiom guarantees that it must be unique. In addition, the unit is exactly the
unique element u satisfying u⊕ u = u, again by the cancellative axiom.

4 Uncomputable functions can be built if one assumes the axiom of description.
5 We can define a category of SAs: Let 〈A, JA〉 and 〈B, JB〉 be SAs; f : A → B

is a SA homomorpohism from A to B iff for all x, y, z ∈ A, JA(x, y, z) implies
JB(f(x), f(y), f(z)). Let SA be a category with SAs as objects and SA homomor-
phisms as arrows. Identity arrows and composition are defined in the obvious ways.

2

3 The algebra of separation algebras

A new separation algebra can be built by applying operators to preexisting SAs.

Definition 1 (SA product operator). Let 〈A, JA〉 and 〈B, JB〉 be SAs. Then
the product SA is 〈A×B, J〉, where J is defined componentwise:

J((xa, xb), (ya, yb), (za, zb)) ≡ JA(xa, ya, za) ∧ JB(xb, yb, zb) (10)

Definition 2 (SA function operator). Let A be a set and let 〈B, JB〉 be a
SA. Then the function SA is 〈A → B, J〉, where J is defined pointwise:

J(f, g, h) ≡ ∀a ∈ A. JB(f(a), g(a), h(a)) (11)

The SA product and the SA function operators are isomorphic to special
cases of the general indexed product (i.e., dependent function space) operator.

Definition 3 (SA indexed product operator). Let I be a set, called the
index set, and let P be a mapping from I to separation algebras. Then the indexed
product SA is 〈Πx : I. P (x), J〉 where J is defined pointwise:

J(f, g, h) ≡ ∀i ∈ I. JP (i)(f(i), g(i), h(i)) (12)

What about the disjoint union (coproduct) operator? Can it be constructed?
Unfortunately, it cannot. Suppose we have two SAs 〈A, JA〉, 〈B, JB〉. We would
like to define 〈A + B, J〉 such that J is the smallest relation satisfying:

JA(x, y, z) → J(inl x, inl y, inl z) for all x, y, z ∈ A (13)
JB(x, y, z) → J(inr x, inr y, inr z) for all x, y, z ∈ B (14)

Here A + B is the disjoint union of A and B with inl and inr as the left and
right injections. This structure cannot be a separation algebra under the original
axioms: if uA and uB are the units of A and B, then both inl uA and inr uB

satisfy u⊕ u = u. We noted above that the cancellation axiom implies that the
unit u is the unique element satisfying this equation, so inl uA = u = inr uB .
However, this is a contradiction as inl and inr always produce unequal elements.
The generalization of disjoint union to the indexed sum fails for the same reason.

This is an unpleasant asymmetry: we can construct the product operator but
not the coproduct. Moreover, it has practical consequences: often we wish to use
separation logic to reason about different kinds of resources (e.g., ordinary data,
locks, and code pointers), and the natural model in such cases is a disjoint sum.

There is good news, however: we can slightly relax the SA axioms to enable
these constructions. Recall the SA axiom for the existance of a unit:

∃u. ∀x. u⊕ x = x (9)

If we simply swap the order of the quantifiers in this axiom, we get a weaker
statement which says that every element of the SA has an associated unit:

∀x. ∃ux. ux ⊕ x = x (15)

3

To distinguish these species of separation algebras, we call SAs defined by axioms
5, 6, 7, 8, and 9 Single-unit Separation Algebras (SSA), we call SAs defined by
axioms 5, 6, 7, 8, and 15 Multi-unit Separation Algebras (MSA). Note that axiom
9 implies axiom 15, and thus the SSAs are a strict subset of the MSAs.

The structure of an MSA may not be obvious. The key observation is that
the unit ua for an element a is also a unit for every element that joins with ua:

∀a, ua, b, c. ua ⊕ a = a ∧ ua ⊕ b = c → b = c (16)

By cancellation, ua is the unit of b; by associativity, ua is the unit for itself
(ua ⊕ ua = ua). An MSA is thus a set of equivalance classes of SSAs, each class
distinguished by a unique unit. Elements from different classes never join.

Although the relaxation to multiple units is common in the tradition of rel-
evant logic [9], it is significant here because it enables a number of additional
operators, including indexed sums and the discrete separation algebra.

Definition 4 (MSA indexed sum operator). Let I be a set, called the index
set. Let S be a mapping from I to separation algebras. Then the indexed sum
MSA is 〈Σi : I. S(i), J〉 such that J is the least relation satisfying:

JS(i)(x, y, z) → J(inj i(x), inj i(y), inj i(z)) for all i ∈ I;x, y, z ∈ S(i) (17)

Here inj i is the injection function associated with i. As with products, if
|I| = 2, the indexed sum is isomorphic to the disjoint union operator.

Definition 5 (discrete MSA). Let A be a set. Then the discrete MSA is 〈A, J〉
where J is defined as the smallest relation satisfying:

J(x, x, x) for all x ∈ A (18)

The discrete MSA has a join relation that holds only when all three arguments
are equal: every element of the discrete MSA is a unit. The discrete MSA is
useful for constructing MSAs over tuples where only some of the components
have interesting joins; the other components can be turned into discrete MSAs.

Sometimes we wish to coerce an MSA into an SSA; the lifting operator re-
moves all the units from an MSA and replaces them with a new unique unit6.

Definition 6 (MSA lifting operator). Let 〈A, JA〉 be a multi-unit separation
algebra. Define A+ to be the subset of A containing all the nonunit elements,
A+ = {x ∈ A|¬(x⊕ x = x)}. Let ⊥ be a distinguished element such that ⊥ /∈ A.
Then the lifting SA is 〈A+ ∪ {⊥}, J〉 where J is the least relation satisfying:

J(⊥, x, x) for all x ∈ A+ ∪ {⊥} (19)
J(x,⊥, x) for all x ∈ A+ ∪ {⊥} (20)

JA(x, y, z) → J(x, y, z) for all x, y, z ∈ A+ (21)

The above operators can construct many kinds of separation algebras. The
associated Coq development includes a number of additional operators (e.g.,
lists, disjoint sums, subsets, bijections, etc.) that we have also found useful.
6 Considered as a functor from MSA to SSA, the lifting operator is left adjoint to

the inclusion functor from SSA to MSA.

4

Assume we have a MSA 〈A, J〉. The following is a model of
HBI (a Hilbert-style axiomatization of the logic of bunched
implications). Prop is the type of Coq propositions, and the
right-hand sides are stated in Coq’s metalogic.

formula ≡ A → Prop

a |= p ≡ p(a)
p ` q ≡ ∀a. a |= p → a |= q

> ≡ λa. True
⊥ ≡ λa. False
p ∧ q ≡ λa. a |= p ∧ a |= q
p ∨ q ≡ λa. a |= p ∨ a |= q
p → q ≡ λa. a |= p → a |= q
emp ≡ λa. a⊕ a = a
p ∗ q ≡ λa. ∃a1.∃a2. a1 ⊕ a2 = a ∧ a1 |= p ∧ a2 |= q
p −−∗ q ≡ λa. ∀a1.∀a′. a1 ⊕ a = a′ → a1 |= p → a′ |= q

Table 1. A model of HBI given a SA

4 Inducing a separation logic

The purpose of a separation algebra is to generate a separation logic, that is, a
Hoare-style program logic where the assertion language is the logic of bunched
implications (BI). Calcagno et al. demonstrated that their interpretation leads
to a Boolean BI algebra, a model of BI. Here we demonstrate that we are still
generating models for the desired class of logics despite relaxing the unit axiom.

We too will interpret formulae of separation logic as predicates on the ele-
ments of a separation algebra (equivalently, members of the powerset). In Coq
we simply define the formulae as A -> Prop, where A is the type of elements in
the SA, and Prop is the type of propositions in Coq’s metatheory.

We have chosen to directly link our models to the proof theory of BI by
showing7 a soundness proof with respect to the system HBI, a Hilbert-style ax-
iomatic system for the (propositional) logic of bunched implications [8, Table 2].
The definitions which give rise to HBI are summarized in table 1; they are quite
standard, except for the definition of the empty proposition emp.

Ordinarily, one defines emp as the predicate which accepts only the unit of
the SSA. However, by relaxing the unit axiom we allow multiple units, each of
which must be characterized. Recall that an MSA is a set of equivalence classes
distinguised by unique units, each of which satisfies the equation u⊕ u = u. In
fact, only only units satisfy that equation, so we define emp as the predicate
that accepts any element x provided that x⊕x = x. This subsumes the ordinary
definition in the event that the unit is unique. More importantly, however, from
this definition we can prove that emp is the unit for separating conjunction.

Thus we see that relaxing the unit axiom does not take us outside the class
of models of the logic of bunched implications.

7 The accompanying Coq development contains the full set of definitions and proofs.

5

5 Useful restrictions of SAs

Positivity. Calcagno et al.’s definition of separation algebras [3] permits very
strange logics that do not correspond well to the common view that the formulae
in separation logic describe resources.

Consider the structure 〈{0, 1, 2},+3〉, of the integers with addition modulo
3. This structure satisfies the separation algebra axioms given in the previous
section and the integer 0 is the unique unit. The problem is that the following
holds: 1+3 2 = 0. The resource denoted by 1 combines with the resource denoted
by 2 to give the empty resource 0. Stated another way, we can split the empty
resource 0 to get two nonempty resources 1 and 2. By analogy to physics, 1 and
2 act as a resource/antiresource pair that annihilate each other when combined.

This is not at all how one expects resources to behave. If one has, for example,
an empty pile of bricks and splits it into two piles, one expects to have two empty
piles. One does not expect to get one pile of bricks and another pile of antibricks.

The existence of antiresources is particularly troublesome because it interacts
badly with the frame rule, a ubiquitous feature of separation logic. A program
with no resources can write to memory! Proof: it splits the empty permission,
obtaining a write and an anti-write permission. Using the frame rule, it “frames
out” the antipermission, giving it the permission to perform a write. The ability
to do this defeats the entire purpose of Separation Logic.

Calcagno et al. resolve this problem by requiring that all actions be “local.”
The locality condition captures the requirement that actions must be compatible
with the frame rule, and thus indirectly restricts the allowable SAs for a given
set of actions. We prefer to directly rule out this troublesome class of separation
algebras by disallowing negative resources. We require that SAs be positive by
adding the following positivity axiom:

a⊕ b = c → c⊕ c = c → a⊕ a = a (22)

This axiom is equivalant to the following, which may be clearer.

a⊕ b = c → c⊕ c = c → a = b = c (23)

That is, whenever two elements join to create a unit element, these joined ele-
ments must themselves be units (and hence the same element). This axiom rules
out separation algebras such as the addition-modulo-3 example above. Further-
more, this axiom is preserved by the all the SA operators we examined above,
which means we have not lost the ground we gained by relaxing the unit axiom.

One of most compelling reasons for including (21) in the axiom base is that
all the nontoy SAs known to the authors (that is, those which can be used to
reason about some computational system), including all five examples listed by
Calcagno et al. [3], satisfy this axiom.

The positivity axiom also allows us to make a connection to order theory.
We define an ordering relation on the elements of a separation algebra:

a � b ≡ ∃x. a⊕ x = b (24)

6

This relation is reflexive and transitive, which means that it is a preorder. It
turns out that � is antisymmetric, and thus a partial order, if and only if axiom
21 holds. This allows us to apply insights from order theory in our proofs.

Disjointness. The disjointness property is that no nonempty share joins with
itself. If a separation logic over program heaps lacks disjointness then unusual
things can happen when defining predicates about inductive data in a program
heap. For example, without disjointness, the “obvious” definition of a formula
to describe binary trees in fact describes directed acyclic graphs [1].

Disjointness is easy to axiomatize:

a⊕ a = b → a = b (25)

The disjointness axiom requires that any SA element that joins with itself be a
unit. Equivalently, it says that any nonunit element cannot join with itself (is
disjoint). This axiom captures the same idea as Parkinson’s “disjoint” axiom [7]:

` 7→s v ∗ ` 7→s v ↔ false (26)

The primary difference is that our axiom is on separation algebras, whereas
Parkinson’s axiom is on separation logic.

As with the positivity axiom, the disjointness axiom is preserved by the
SA operators presented in the previous section. It also implies positivity. The
converse does not hold: disjointness is strictly stronger than positivity.

To see why disjointness (24) implies positivity (21), consider the following
proof sketch. Assume a ⊕ b = c and c ⊕ c = c for some a, b, and c; we wish to
show a⊕ a = a. Then the following hold (modulo some abuse of notation):

c⊕ c = c assumed
(a⊕ b)⊕ (a⊕ b) = a⊕ b subst. a⊕ b = c
(a⊕ a)⊕ (b⊕ b) = a⊕ b comm. and assoc.
(a⊕ a)⊕ b = a⊕ b disjointness
a⊕ a = a cancellation

The converse fails: consider the structure 〈N,+〉 of natural numbers with ad-
dition. This fulfills the SA axioms, including positivity. However, every natural
number i > 0 falsifies the disjointness axiom.

Two alternative ways of formulating the disjointness property are inspired
by order theory and provide additional insight. First, if a⊕b = c, then any lower
bound of a and b is a unit:

a⊕ b = c → d � a → d � b → d⊕ d = d (27)

Second, a⊕ b is minimal in the following sense:

a⊕ b = c → a � d → b � d → d � c → c = d (28)

This implies that if a and b join and have a least upper bound, then it is a⊕ b.

7

Cross-split. The alternative formulations of disjointness bring up an interesting
point about separation algebras: even for two elements in the same equivalence
class, there is no guarantee that either least upper bounds or greatest lower
bounds exist. The lack of greatest lower bounds (i.e., intersections), in particu-
lar, proved to be troublesome in Hobor et al.’s proof of soundness of a concurrent
separation logic for Concurrent C minor [5, 4], when they needed to track permis-
sions being transferred between threads. At the time they were using a modified
version of Parkinson’s share model (discussed below) in which intersections did
not always exist. This failure resulted in an unpleasant workaround and spurred
development of the alternate model discussed in section ??.

The particular property required was as follows: suppose a single resource
can be split in two different ways; then one should be able to divide the original
resource into four pieces that respect the original splittings.

a⊕ b = z ∧ c⊕ d = z →
∃ ac, ad, bc, bd.

a b ac
ad bd

bcc
dac⊕ ad = a ∧ bc⊕ bd = b ∧

ac⊕ bc = c ∧ ad⊕ bd = d

(29)

That is, if an element can be split in two different ways, then there should be four
subelements that partition the original element and respect the splittings. We
call this property the cross-split axiom and, as with positivity and disjointness,
this property is preserved by the sepration algebra operators8.

Splittability. Another frequently desirable property of SAs is infinite splittability,
which is a useful property for reasoning about the kinds of resource sharing that
occur in divide-and-conquer style computations. Splittability means that we can
take any element of the SA and split it into two pieces that recombine into the
original. To avoid degenerate splittings, both the split pieces must be nonempty
if the original was nonempty. Thus, a SA is infinitly splittable if there exists a
function split that calculates such a splitting.

split x = (x1, x2) → x1 ⊕ x2 = x (30)

split x = (x1, x2) → x1 ⊕ x1 = x1 → x⊕ x = x (31)

split x = (x1, x2) → x2 ⊕ x2 = x2 → x⊕ x = x (32)

Positively required. There are reasonable separation logics that have mod-
els where disjointness, cross-split, and/or infinite splitability are false. We pre-
sented them because we (and others such as Parkinson) found them useful in
separation logic proofs and metaproofs, and because any separation algebra built
with our operator calculus can inherit them for free if desired.

In contrast, any reasonable separation algebra should have the positivity
axiom: otherwise either the frame rule is unsound or one must put indirect
restrictions on the model anyway by locality restrictions or the like. Fortunately,
since every nontoy model known to the authors is positive, it is easy to satisfy.
8 To pull an intersection property through the lifting operator, one needs to only apply

lifts where there is a computable test for units, or use the axiom of description.

8

6 Shares

An important application of separation algebras is to model Hoare logics of pro-
gramming languages with mutable memory. We generate an appropriate separa-
tion logic by choosing the correct semantic model, that is, the correct separation
algebra. A natural choice is to simply take the program heaps as the elements
of the separation algebra together with some appropriate join relation.

In most of the early work in this direction, heaps were modeled as partial
functions from addresses to values. In those models, two heaps join iff their
domains are disjoint, the result being the union of the two heaps. However, this
simple model is too restrictive, especially when one considers concurrency. It
rules out useful and interesting protocols where two or more threads agree to
share read permission to an area of memory.

There are a number of different ways to do the necessary permission ac-
counting. Bornat et al. [1] present two different methods; one based on fractional
permissions, and another based on token counting. Parkinson, in chapter 5 of
his thesis [7], presents a more sophisticated system capable of handling both
methods. However, this model contains a flaw, which we shall address below.

Fractional permissions are used to handle the sorts of accounting situations
that arise from concurrent divide-and-conquer algorithms. In such algorithms, a
worker thread has read-only permission to the dataset and it needs to divide this
permission among various child threads. When a child thread finishes, it returns
its permission to its parent. Child threads, in turn, may need to split their
permissions among their own children and so on. In order to handle any possible
pattern of divide-and-conquer, splitting must be possible to an unbounded depth.

The token-counting method is intended to handle the accounting problem
that arises from reader-writer locks. When a reader acquires a lock, it receives
a “share token,” which it will later return when it unlocks. The lock tracks the
number of active readers with an integer counter that is incremented when a
reader locks and decremented when a reader unlocks. When the reader count
is positive there are outstanding read tokens; when it is zero there are no out-
standing readers and a writer may acquire the lock.

Here we will show how each of the above accounting systems arises from the
choice of a “share model,” and we present our own share model which can handle
both accounting methods and avoids a pitfall found in Parkinson’s model.

Suppose we have a separation algebra 〈S, JS〉 of shares. If L and V are sets
of addresses and values, respectively, we can define a SA over heaps as follows:

H ≡ L → (S × V=)⊥ (33)

This equation is quite concise, but it conceals some subtle points. First, the
operators in this equation are the operators on SAs defined in section 3. We let
V= be the “discrete” SA over values (i.e., values V with the trivial join relation).
Then S × V= is the SA over pairs of shares and values, where the join is defined
when the share components join and the value components are equal. Next we
construct the “lifted” SA (S × V=)⊥, which removes the unit values and adds a

9

new, distinguished unit ⊥. This has the effect of requiring values to be paired
only with nonempty shares. Finally, L → (S × V=)⊥ builds the function space
SA. Thus, heaps are partial functions from locations to pairs of nonunit shares
and values. The ability to create interesting, complex SAs by building them up
out of smaller ones is one of the main advantages of our approach.

Now we can define the points-to operator of separation logic as:

` 7→s v ≡ λh. h(`) = (s, v) ∧ (∀`′.` 6= `′ → h(`′) = ⊥) (34)

Here, ` ∈ L is an address, v ∈ V is a value, and s ∈ S+ is a nonunit share.
In English, ` 7→s v means “the memory location at address ` contains v, I have
share s at this location, and I have no permission at any other locations.” Now
the exact behavior of the points-to operator depends only on the share model S.

An important property of this definition is that the separation algebra on
shares lifts in a straightforward way through the separation logic:

s1 ⊕ s2 = s ↔ (` 7→s v ↔ ` 7→s1 v ∗ ` 7→s2 v) (35)

Thus we can use properties of our share model in the separation logic.
We can produce a separation logic very similar to the ones studied by Reynolds

[10] and by Ishtiaq and O’Hearn [6] by choosing S to be the SA over Booleans
with the smallest join relation such that “false” is the unique unit.
Definition 7 (Boolean shares). The Boolean share model is 〈{◦, •}, J〉 where
J is the least relation satisfying J(◦, x, x) and J(x, ◦, x) for all x ∈ {◦, •}.
Here ◦ and • stand for “false” and “true”, respectively. This share model is
unsophisticated: one either has unrestricted permission or no permission at all.
Note that the lifting operator removes ◦, leaving • as the only legal annotation.
This justifies omitting the annotation, resulting in the more familiar ` 7→ v.

Boyland proposed a model which takes shares as fractions in the interval
[0, 1] as shares [2]. Although Boyland works in the reals, the rationals suffice.
Definition 8 (Fractional shares). The fractional share model is 〈[0, 1]∩Q,+〉
where + is the restriction of addition to a partial operation on [0, 1].
The main advantage of the fractional share model is that it is infinitely splittable.
The splitting function is simple: to split a share s, let s1 = s2 = s/2. The
fractional share model satisfies the positivity axiom but not the disjointness
axiom, which leads to the problems noticed by Bornat et al. [1, §13.1].

Bornat et al. also examined the token factory model, where a central au-
thority starts with total ownership and then lends out permission tokens. The
authority counts the outstanding tokens; when the count is zero, all have re-
turned. A slight modification of Bornat’s construction yields a suitable model:
Definition 9 (Counting shares). The counting share model is 〈Z ∪ {⊥}, J〉
where J is defined as the least relation satisfying:

J(⊥, x, x) for all x ∈ Z ∪ {⊥} (36)
J(x,⊥, x) for all x ∈ Z ∪ {⊥} (37)
(x < 0 ∨ y < 0) ∧ ((x + y ≥ 0) ∨ (x < 0 ∧ y < 0)) → J(x, y, x + y)

for all x, y ∈ Z (38)

10

This definition sets up the nonnegative integers as token factories and negative
integers as tokens. To absorb a token back into a factory, the integers are simply
added. The token factory has collected all its tokens when its share is zero. Like
the fractional model, the counting model satisfies positivity but not disjointness.

This share model validates the following logical axioms:

` 7→n v ↔ (` 7→n+m v ∗ ` 7→−m v) for n ≥ 0 and m > 0 (39)
` 7→−(n+m) v ↔ (` 7→−n v ∗ ` 7→−m v) for n, m > 0 (40)
(` 7→0 v ∗ ` 7→n v) ↔ false (41)

Equation (36) says that a token factory with n tokens outstanding can be split
into a token (of size m) and a new factory, which has n+m tokens outstanding.
Furthermore the operation is reversable: a token and its factory can be recom-
bined to get a factory with fewer outstanding tokens. Equation (37) says that
the tokens themselves may be split and merged. Finally, equation (38) says that
it is impossible to have both a full token factory (with no outstanding tokens)
and any other share of the same location (whether a factory or a token).

If one only utilizes tokens of size one, then equations (36)–(38) describe the
sorts of share manipulations required for a standard reader-writer lock. Other
token sizes allow more subtle locking protocols where, for example, one thread
may acquire the read tokens of several others and release them all at once.

In his thesis, Parkinson defines a more sophisticated share model that can
support both the splitting and the token counting use cases.

Definition 10 (Parkinson’s named shares). Parkinson’s named share model
is given by 〈P(N),]〉, where P(N) is the set of subsets of the natural numbers
and] is disjoint union.9

This model satisfies the disjointness axiom, and thus positivity. It also satisfies
the cross-split axiom: the required subshares are calculated by set intersection.

In order to support the token-counting use case, Parkinson considers the
finite and cofinite subsets of N. These sets can be related to the counting model
given above by considering the cardinality of the set (or set complement, for
cofinite sets). We will see the details of this embedding later.

Unfortunately, this share model is not infinitely splittable, since there is no
way to split a singleton set into two nonempty subsets. Therefore we cannot
define a total function which calculates the splitting of a share in this model,
and this makes it difficult to support the parallel divide-and-conquer use case.

We can fix this problem by restricting the model to include only the infinite
subsets of N (and the empty set). We can split an infinite set s by enumerating
its elements and generating s1 from those in even positions and s2 from the those
in odd positions. Then s1 and s2 are infinite, disjoint, and partition s.

Unfortunately, restricting to infinite subsets means that we cannot use finite
and cofinite sets to model token counting. This problem can be solved, at the
cost of some complication, with an embedding into the infinite sets [7].

9 That is, the union of disjoint sets rather than discriminated union.

11

The problem with that solution is that the infinite subsets of N are also not
closed under set intersection, which means the share model no longer satisfies
the cross split axiom. To see why this axiom fails, consider splitting N into the
primes/nonprimes and the even/odd numbers. All four sets are infinite, but the
set {2} of even primes is finite and thus not in the share model.

Hobor suggested further restricting the model by reasoning about equivalence
classes of subsets of N, where two subsets are equivalent when their symmetric
difference is finite; but developing this model in Coq was difficult [4].

We will present a new model with all the right properties: disjointness axiom,
cross-split axiom, infinitely splittable, supports token counting, and is straight-
forward to represent in a theorem prover. As a bonus, we also achieve a decidable
test for share equality.

7 Binary tree share model

Before giving the explicit construction of our share model, we shall take a short
detour to show how we can induce a separation algebra from a lattice.

Definition 11 (Lattice SA). Let 〈A,v,u,t, 0, 1〉 be a bounded distributive
lattice. Then, 〈A, J〉 is a separation algebra where J is defined as:

J(x, y, z) ≡ x t y = z ∧ x u y = 0 (42)

Disjointness follows from the right conjunct of the join relation; cross split follows
from the existence of greatest lower bounds. It also has a unique unit, 0.

It is interesting to note that all of the share models we have examined thus
far that satisfy the disjointness axiom are instances of this general construc-
tion.10 The Boolean share model is just Boolean SA derived from the canoni-
cal 2-element Boolean algebra, and Parkinson’s model (without the restriction
to infinite subsets) is the separation algebra derived from the standard power-
set Boolean algebra. Restricting Parkinson’s model to infinite sets as described
above buys the ability to do infinite splitting at the price of destroying part of
the structure of the lattice. Below we show that paying this price is unnecessary.

If the structure is additionally a Boolean algebra, then we can make the
following pleasant connection:

x � y ↔ x v y (43)

That is, the lattice order coincides with the SA order. The forward direction
holds for any bounded distributive lattice. The backward direction relies on
the complement operator to construct the witness (¬x u y) for the existential
quantifier in the definition of �. Any bounded distributive lattice satisfying (40)
is a Boolean algebra; the witness of � gives the complement for x when y = 1.

10 This is not necessarily the case. There exist disjoint SAs which are not distributive
lattices.

12

Trees. Now we can restate our goal; we wish to construct a bounded distributive
lattice which supports splitting and token counting. This means we must support
a splitting function and we must be able to embed the finite and cofinite subsets
of the naturals. We can build a model of shares supporting all these operations by
starting with a very simple data structure: the humble binary tree. We consider
binary trees with Boolean-valued leaves and unlabeled internal nodes.

τ ::= ◦ | • | τ τ (44)

We use an empty circle ◦ to represent a “false” leaf and the filled circle • to
represent a “true” leaf. Thus • is a tree with a single leaf, ◦ • is a tree with with
one internal node and two leaves, etc.

We define the ordering on trees as the least relation v satisfying:

◦ v ◦ (45) ◦ v • (46) • v • (47)

◦ ∼= ◦ ◦ (48) • ∼= • • (49)

x1 v x2 → y1 v y2 → x1 y1 v x2 y2 (50)

x ∼= y is defined to mean x v y ∧ y v x. The intuitive meaning is that x v y
holds iff x has a ◦ in at least every position y does once we expand leaf nodes
using the congruence rules until the trees are the same shape. The congruence
rules allow us to “fold up” any subtree which has the same label on all its leaves.

This relation is reflexive and transitive; however it is not antisymmetric be-
cause of the structural congruence rules. We can get around this by working
only with the “canonical” trees. A tree is canonical if it is the tree with the
fewest nodes in the equivalence class generated by ∼=. Canonical trees always
exist and are unique, and the ordering relation is antisymmetric on the domain
of canonical trees. Therefore we can build a partial order using the canonical
Boolean-labeled binary trees with the above ordering relation.

The details of canonicalization are somewhat tedious, so in what follows we
will work informally up to congruence. In the formal Coq development, however,
we give a full account of canonicalization and show all the required properties.
The short story is that we normalize trees after every operation by finding and
reducing all the subtrees which can be reduced by one of the congruence rules.

Our next task is to implement the lattice operations. The trees ◦ and • are
the least and greatest element of the partial order, respectively. The least up-
per bound of two trees is calculated as the pointwise disjunction of Booleans
(expanding the trees as necessary to make them the same shape). For exam-
ple, • • ◦ t • ◦ ◦ ∼= • • • ◦ t • ◦ ◦ ◦

∼= • • • ◦
∼= • • ◦ . Likewise, the

greatest lower bound is found by pointwise conjunction, so that • • ◦ u • ◦ ◦
∼= • • • ◦ u • ◦ ◦ ◦

∼= • ◦ ◦ ◦
∼= • ◦ ◦ . Finally, this structure is a Boolean

algebra as well as a distributive lattice, and the complement operation is point-
wise Boolean complement: ¬ • • ◦

∼= ◦ ◦ • . The Boolean algebra axioms can be
verified by simple inductive arguments over the structure of the trees.

13

We can also define a decidable test for equality by simply checking structural
equality of trees. Trees form a lattice, and thus a decision procedure for equal-
ity also yields a test for the lattice order. In contrast, Parkinson’s model over
arbitrary subsets of N lacks both decidable equality and decidable ordering.

In addition to the lattice operations, we require an operation to split trees.
Given some tree s, we wish to find two trees s1 and s2 such that s1 t s2

∼= s and
s1us2

∼= ◦ and both s1 � ◦ and s2 � ◦ provided that s � ◦. We can calculate s1

and s2 by recursively replacing each • leaf in s with • ◦ and ◦ • respectively.
We can usefully generalize this procedure by defining the “relativization”

operator x on y, which replaces every • leaf in x with the tree y. This operator
is associative with identity •. It distributes over t and u on the left, and is
injective for non-◦ arguments.

x on • = x = • on x (51)
x on ◦ = ◦ = ◦ on x (52)
x on (y on z) = (x on y) on z (53)
x on (y t z) = (x on y) t (x on z) (54)
x on (y u z) = (x on y) u (x on z) (55)
x on y1 = x on y2 → x = ◦ ∨ y1 = y2 (56)
x1 on y = x2 on y → x1 = x2 ∨ y = ◦ (57)

Given this operator, we can more succinctly define the split of x as returning
the pair containing x on • ◦ and x on ◦ •. The required splitting properties follow
easily from this definition and the above properties of on.

If this were the only use of the relativization, however, it would hardly be
worthwhile to define it. Instead, the main purpose of this operator is to allow us
to glue together arbitrary methods for partitioning permissions. In particular, we
can split or perform token counting on any nonempty permission we obtain, no
matter how it was originally generated. In addition, we only have to concentrate
on how to perform accounting of the full permission • because we can let the on
operator handle relativizing to some other permission of interest.

Following Parkinson, we will consider finite and cofinite sets of the natural
numbers to support token counting. This structure has several nice properties.
First, it is closed under set intersection, set union and set complement and it
contains N and ∅; in other words, it forms a sub-Boolean algebra of the powerset
Boolean algebra over N. Furthermore the cardinality of these sets can be mapped
to the integers in following way:

[[p]]Z =
{
−|p| when p is finite and nonempty
|N\p| when p is cofinite (58)

The cardinalities of disjoint (co)finite sets combine in exactily the way defined
by the counting share model (equation 35).

We can embed the (co)finite subsets of N into our binary tree model by
encoding the sets as right-biased trees11 (trees where the left subtree of each
11 We could just as well have used left-biased trees.

14

internal node is always a leaf). Such trees form a list of Booleans together with
one extra Boolean, the rightmost leaf in the tree. Then the ith Boolean in the
list encodes whether the natural number i is in the set. The final terminating
Boolean stands for all the remaining naturals. If it is ◦, the set is finite and does
not contain the remaining naturals, and if it is • the set is infinite and contains
all the remaining naturals. This interpreation is consistent with the congruence
rules that allow you to unfold the rightmost termiating Boolean into a arbitrarily
long list of the same Boolean value.

For example, the finite set {0, 2} is encoded in tree form as • ◦ • ◦. The

coset N\{0, 2} is encoded as ◦ • ◦ •. And, of course, • ◦ • ◦ ⊕ ◦ • ◦ • = •.

This encoding is in fact a Boolean algebra homomorphism; GLBs, LUBs,
complements and the top and bottom elements are preserved. This homomor-
phism allows us to transport the token counting results on (co)finite sets to
binary trees. We write [[p]]τ = s when s is the tree encoding the (co)finite set p.

Now we can define a more sophisticated points-to operator which allows us
to incorporate token counting along with permission splitting.

` 7→s,n v ≡ λh. ∃p. h(`) = (s on [[p]]τ , v)∧ [[p]]Z = n∧∀`′.` 6= `′ → h(`′) = ⊥ (59)

Then ` 7→s,n v means that ` contains value v and we have a portion of the
permission s indexed by n. If n is zero, we have all of s. If n is positive, we have
a token factory over s with n tokens missing, and if n is negative, we have a
token of s (of size −n).

This points-to operator satisfies the following logical axioms:

(` 7→s,0 v ∗ ` 7→s,n v) ↔ false (60)
s1 ⊕ s2 = s → ((` 7→s1,0 v ∗ ` 7→s2,0) ↔ ` 7→s,0) (61)
n1 ⊕ n2 = n → ((` 7→s,n1 v ∗ ` 7→s,n2 v) ↔ ` 7→s,n v) (62)
` 7→s,n v → ∃!s′. ` 7→s,n v ↔ ` 7→s′,0 v (63)

Equation (57) generalizes both the disjointness axiom from Parkinson (25)
and the disjointness axiom for token factories (38). Likewise, equation (58) gen-
eralizes the share axiom (32). Essentially, if we fix n = 0 we get back the simpler
definition of the points-to operator from above as a special case. In equation
(59), n1 ⊕ n2 = n refers to the token counting join relation on integers defined
in equation 35, and this axiom generalizes the token factory axioms (36) and
(37). Both of those axioms follow as a special case when we fix s = >. Finally,
equation (60) allows one to project a tokenized share into a non-tokenized share
(one where n = 0). This might be useful if one needs to perform share splitting
on a share which was derived from a token factory, for example.

This collection of axioms allow fluid reasoning about both the token-counting
and splitting use cases, which enables a unified way to do flexible and precise
permission accounting.

15

8 Conclusion

We have presented a new formulation of multi-unit separation algebras which
overcomes some flaws in the original definition by Calcagno et al. [3]. The original
definition is both too restrictive (it rules out desirable constructions, including
coproducts) and too permissive (it allows badly-behaved “exotic” SAs).

We examined a variety of operators over separation algebras that allow us
to easily construct complicated separation algebras from simpler ones, and have
shown an example of their utility.

We have also constructed a new solution to the share accounting problem.
Our share model based on Boolean-labeled binary trees fully supports both the
splitting and token counting use cases for read sharing, and yet still validates the
cross split axiom; it also enjoys a decidable equality test. No previously published
system for share accounting has all these properties. Parkinson’s model [7] comes
closest, but suffers from the inability to find splittings for some shares and lacks
decidable equality.

We have implemented the constructions discussed in this paper and proved
their relevant properties using the proof assistant Coq. We will release the final
version of our proof development along with the conference version of this paper.3

References

1. R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission accounting in
separation logic. In POPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 259–270, New York,
NY, USA, 2005. ACM.

2. J. Boyland. Checking interference with fractional permissions. In R. Cousot, editor,
Static Analysis: 10th International Symposium, volume 2694 of Lecture Notes in
Computer Science, pages 55–72, Berlin, Heidelberg, New York, 2003. Springer.

3. C. Calcagno, P. W. O’Hearn, and H. Yang. Local action and abstract separation
logic. In LICS ’07: Proceedings of the 22nd Annual IEEE Symposium on Logic in
Computer Science, pages 366–378, Washington, DC, USA, 2007.

4. A. Hobor. Oracle Semantics. PhD thesis, Princeton University, 2008.
5. A. Hobor, A. W. Appel, and F. Zappa Nardelli. Oracle semantics for concurrent

separation logic. In Proc. European Symp. on Programming (ESOP 2008), volume
4960/2008, pages 353–367, 2008.

6. S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable data
structures. In POPL ’01: Proceedings of the 28th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages 14–26, New York, NY,
USA, 2001. ACM.

7. M. Parkinson. Local Reasoning for Java. PhD thesis, Univ. of Cambridge, 2005.
8. D. J. Pym, P. W. O’Hearn, and H. Yang. Possible worlds and resources: the

semantics of BI. Theor. Comput. Sci., 315(1):257–305, 2004.
9. G. Restall. An Introduction to Substructural Logics. Routledge, London, 2000.

10. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
LICS ’02: Proceedings of the 17th Annual IEEE Symposium on Logic in Computer
Science, pages 55–74, Washington, DC, USA, 2002.

16

