
J� Functional Programming � ���� ������ January ���	 c� ���	 Cambridge University Press �

A Debugger for Standard ML �

ANDREW TOLMACH

Dept� of Computer Science� Portland State University

P�O� Box ���� Portland� OR� USA ���	�
	���

email� apt�cs�pdx�edu

ANDREW W� APPEL

Dept� of Computer Science� Princeton University�

�� Olden Street� Princeton� NJ USA 	���
�	�

email� appel�cs�princeton�edu

Abstract

We have built a portable� instrumentation�based� replay debugger for the Standard ML of
New Jersey compiler� Traditional �source�level� debuggers for compiled languages actually
operate at machine level� which makes them complex� di�cult to port� and intolerant of
compiler optimization� For secure languages like ML� however� debugging support can
be provided without reference to the underlying machine� by adding instrumentation to
program source code before compilation� Because instrumented code is �almost	 ordinary
source� it can be processed by the ordinary compiler� Our debugger is thus independent
from the underlying hardware and runtime system� and from the optimization strategies
used by the compiler� The debugger also provides reverse execution� both as a user feature
and an internal mechanism� Reverse execution is implemented using a checkpoint and
replay system
 checkpoints are represented primarily by �rst�class continuations�

� Introduction

Most �source�level� debuggers for compiled languages actually operate at machine

level� They rely on detailed knowledge of object�code formats� runtime layout� and

hardware properties of the target machine� They also require accurate mappings

between source and object code� These factors make machine�based debuggers com�

plex� dependent on their compilers� runtime systems� and target machines� and

intolerant of compiler optimizations that distort the source�to�object mapping�

We have built a debugger that uses a di�erent approach� based on automated

source�code instrumentation� This approach works by preprocessing source code to

insert debugging statements at all potentially interesting points in the program�

Because the instrumented code is �almost	 ordinary source� it can be processed

� This work was completed while the �rst author was at Princeton University� A pre�
liminary version of this paper appeared in Procedings of the ���� ACM Conference on
Lisp and Functional Programming� Nice France� June ��� The work was supported�
in part� by the National Science Foundation under grants CCR��������� CCR��������
and CCR��������

 A� Tolmach and A� W� Appel

by the ordinary compiler� The debugger is thus independent from the underlying

hardware and runtime system and from the optimization strategies used by the

compiler�

Debugger features that might appear hopelessly ine�cient in the machine�based

model are more plausible when instrumentation is used� One such feature is reverse

execution�the ability to reset the program to an earlier state in its execution

history� Reverse execution can also be used in the debugger implementation to

decrease the overhead of more conventional debugging commands� We implement

reverse execution using a checkpoint and replay system�

Our work is based on the Standard ML language �Milner et al�� ��	� and the

Standard ML of New Jersey �SML�NJ	 compiler �Appel� �
� Appel and Mac�

Queen� ��	�� Although our instrumentation and time�travel methods are applica�

ble to many systems� SML�NJ has a distinctive combination of characteristics that

make it a particularly good target� First� ML is a secure language �Hoare� ��	�

programs cannot �dump core� due to runtime typing or bounds errors� Security

means that the behavior of all ML programs�even buggy ones�can be under�

stood fully without reference to the underlying compiler implementation� runtime

system� or machine� Second� the SML�NJ compiler performs extensive optimiza�

tions� which makes a traditional debugger implementation very di�cult� SML�NJ

uses continuation�passing style �CPS	� which eliminates storage for dead variables�

it performs tail�recursion elimination� which destroys information about the call

chain� and it does not use a runtime stack� Third� SML�NJ supports e�cient �rst�

class continuations� which provide a cheap and elegant mechanism for checkpointing

immutable variables and control state� Since most ML programs have few side�

e�ects� and mutable variables are distinguished statically� a checkpoint in a typical

computation can be described by a continuation plus a small amount of additional

information describing the values of mutable variables� We assume basic familiarity

with Standard ML in the remainder of this paper�

Our source�level debugger is mostly conventional� it includes support for break�

points� value display� and call traceback� To implement these features� the debugger

inserts instrumentation code at each interesting event site� e�g�� just before function

calls� just after function entries� and when local variables are bound� The instru�

mentation code is inserted by modifying the abstract syntax tree that the compiler

produces from the user�s source text� At each event� the instrumentation code can

build an event record describing the event and preserving the values of any variables

bound there� Static and dynamic links between event records enable the variable

environment and the call chain to be reconstructed at runtime by simple debugger

algorithms� The instrumentation code also checks whether a breakpoint has been

set at the event� and if so� transfers control to an interactive debug monitor� This

monitor is a special version of ML�s top�level read�eval�print loop� modi�ed so that

� Standard ML of New Jersey is being developed jointly at Princeton University and
AT�T Bell Laboratories� Source code for the the compiler and debugger and bi�
naries for several processors are available via anonymous FTP from princeton�edu
�������������	� directory pub�ml� or from research�att�com ������������	� directory
dist�ml�

A Debugger for Standard ML �

expressions are evaluated in the binding environment corresponding to the current

event�

The debugger also supports an unconventional feature� reverse execution� This

feature enables users to investigate the origins of an error without having to re�

execute their programs from the beginning� Execution events are given sequential

time values� and users can set breakpoints at particular times in the future or the

past� Time travel is also used by the debugger itself to implement conventional

features� For example� times are used as indirect pointers to event records� the

records themselves can be generated on demand by jumping back to the time of the

event� Ordinary location breakpoints and �skipping� �single�stepping over� rather

than into� function calls	 can be simulated using time travel to perform a binary

search over execution history� avoiding expensive per�event checks during forward

execution� Internally� the debugger implements all program control mechanisms in

terms of time travel�

Reverse execution is itself implemented by taking periodic checkpoints of program

state and re�executing as necessary� The control state and the values of immutable

identi�ers are captured using �rst�class continuations� Mutable store information

is captured separately by instrumenting store update operations to maintain a

history log� log entries use special �weak� pointers so that objects referenced only

by the log can be reclaimed� Stream input operations are also logged so that they

can be repeated on re�execution� Since memory is �nite� not all checkpoints taken

can be saved� the debugger implements a checkpoint cache managed using simple

heuristics�

The debugger is portable and independent of the underlying ML implementation

and executes almost entirely within the source�language model� The only exception

is a carefully controlled violation of the type system needed to pass runtime values

to the debug monitor� Time travel relies on certain SML�NJ language features not

found in o�cial Standard ML �e�g�� �rst�class continuations and weak pointers	 but

not on the details of their implementation� The debugger runs on all of SML�NJ�s

current hardware platforms� including the MIPS� SPARC� Intel ���� IBM RS�����

and MC���
��

Instrumentation makes code run about three times slower than normal and causes

code size �and thus compile time	 to increase by about �ve times� Programs be�

ing debugged require three to eight times more memory than normal programs�

Although these are large resource demands� we estimate that the alternatives for

debugging are also expensive� Any hypothetical machine�based debugger would have

to switch o� many of SML�NJ�s optimizations� We estimate that the resulting code

would run close to three times slower than normally�compiled code� and might re�

quire much more memory� Another possible approach to debugging is to use an

interpreter� SML�NJ�s runs �� to ��� times slower than compiled code� Thus� the

performance of our debugging approach appears competitive with the alternatives�

This paper describes the design� implementation� and performance of the instru�

mentation and replay mechanisms� Additional details may be found in Tolmach�s

Ph�D� thesis ��
	� We have also used our instrumentation and replay approach

� A� Tolmach and A� W� Appel

to build a debugger for an extended version of ML that supports shared�memory

concurrent programming �Tolmach� �
� Tolmach and Appel� ��	�

� Debugging ML

ML programmers can make good use of a conventional debugger� because the

source�level model suitable for understanding the execution of an ML program

is fairly conventional� In particular� although ML is often used in a mainly applica�

tive style� users must be aware of evaluation order in any program that updates

the mutable store� performs I�O� or uses exceptions� The possibility of side�e�ects

also makes it natural to think of function application as a procedure call rather

than as a ��calculus ��substitution� Thus� for debugging purposes� ML is closer

in character to C or PASCAL than it is to pure lazy functional languages such

as Miranda �Turner� ���	 or Haskell �Hudak and Wadler� ��	� in which precise

information about evaluation order is more likely to be a hindrance than a help�

��� Debugging Model

Our model for executing ML programs under debugger control is based on the

notion of events� i�e�� interesting junctures in program execution� Events occur at

moments in execution where the user might wish to stop the program and examine

its current state� or context� A context includes a source code site� an environment�

mapping identi�ers in scope at the source site to typed values� and a call chain� a list

of contexts representing the �stack� of suspended function applications�� The user

sees program execution under debugger control as a sequence of atomic events�

the internal behavior of the program between events is invisible� Asynchronous

phenomena that occur between two events� such as keyboard interrupts or uncaught

arithmetic exceptions� are mapped to a neighboring event�

Every interesting change in context� e�g�� the addition of a new variable into the

environment or the entry of a new function onto the call chain� requires an event�

Thus� events occur immediately before each function application� at the beginning of

each function rule body� and immediately after each declaration has been evaluated�

Since all branching in ML� conditional or otherwise� is expressed in terms of rule

pattern matching� placing an event at the top of each rule body guarantees that

there is an event after each branch and hence within each loop� There are no events

prior to the application of constructors or to the formation of closures because these

operations do not a�ect the context in an interesting way� There are also no events

at function returns� some debuggers report the values returned by functions� but

ours does not��

Program events can be identi�ed by logical time values� integers assigned consec�

utively to events as they occur during forward execution� Forward execution can

be visualized as progress rightward along a time line marked o� at each event �see

� Exception handling contexts also appear in the call chain�
� This restriction preserves tail�recursion in our instrumented code
 see Section ����

A Debugger for Standard ML �

r
�

r
�

r
�

r
�

r
�

r
�

r
�

r
�

r
�

�

Initial
Time

�

Current
Time

�

Maximum
Known
Time

�

Final
Time

Fig� �� A sample time line� The program has been executed as far as time �� but the
current time is presently reset to time �� perhaps after having been reset to other values
in the interim� Execution will terminate at time �� either by reaching the end of program
or by raising an uncaught exception� but this fact is not yet known to the debugger or�

perhaps� the user�

Figure �	� Whenever the program is halted at an event� there is a well�de�ned cur�

rent time� i�e�� the time label assigned to the event when it was originally executed�

To �execute in reverse� means to reestablish the context associated with an event

that occurred at an earlier time� In this sense� directing execution to a speci�c state

in the past or future of the computation is time travel�

��� Debugger Features

There is a small set of fundamental debugger control and query functions�

� Set a location breakpoint at a speci�ed site in the source text� When the

program reaches any event corresponding to that site� while executing in

either direction� control passes to the debugger� with the current context set

to the context for that event�

� Advance or reset to a speci�ed time� starting from the current time� subject

to currently set breakpoints� The time line expands to the right whenever

the user advances the program to a target time that lies beyond the previous

maximum known time� If the end of the program is reached or an uncaught

exception occurs� the right endpoint of the time line is �xed at the �nal time�

it is impossible to advance past this time� but resetting to a known time is

always possible�

� Halt execution when a keyboard interrupt or uncaught exception is raised�

setting the current context to the event where the interruption occurred�

� Obtain the values and types of identi�ers in scope at the current context�

� Alter the current values of mutable variables in scope at the current context�

The time line is truncated to the right of the current time� to avoid possible

temporal paradoxes�

� Obtain the times and corresponding context information for all events on the

call chain� allowing display of a call trace�

� Adjust the current context by moving up �or down	 the call chain�

� A� Tolmach and A� W� Appel

�� Some built�in functions on events ��

type time � int

val currentTime	 unit �
 time

�� Returns the current time� ��

val caller 	 time �
 time

�� Given an event time within some function� returns time of the

application event that invoked function� ��

val advanceTo	 time �
 unit

�� Executes forward to the specified time� ��

�� Synthesized functions ��

fun singleStep �� 	 unit � advanceTo�currentTime�� � �

�� ��Skip�� over a call�

If executed at an application event� continues single�stepping until

that application event is no longer on the call chain�

If executed at any other event� just single�steps� ��

fun skip �� 	 unit �

let val startTime � currentTime��

fun startOnChain t �

if t � startTime then

true

else if t � startTime then �� use time ordering � ��

false

else startOnChain�caller t�

in singleStep���

while startOnChain�currentTime��� do

singleStep��

end

Fig� �� Synthesizing singleStep and skip from primitive functions�

Users interact with the debugger via an interactive debug monitor� which is a re�

cursively invoked� specialized variant of the compiler�s standard top�level loop� The

monitor�s top�level environment emulates the dynamic environment for the current

user�program context� which allows the standard expression evaluator to be used

to display� deconstruct� and operate on values in the current debugging context�

Other debugging primitives� such as displaying the call history� controlling break�

points� and restarting execution� are implemented as functions built into a pervasive

debugging support environment and executed for side�e�ect� Like other ML func�

tions� they can be embedded in more complicated user�de�ned functions� invoked

from external �les� assigned to new names or abbreviations� etc� As an example�

Figure
 shows how a single step function and a naive �skipping� function can be

synthesized from built�in primitives that perform time travel and call�chain lookup�

A Debugger for Standard ML �

let val pair � fn x �
 fn y �
 �x�y�

val pair � pair

val pairt � pair true

val f � fn �h		t� �
 pairt h

in f ������

end

Fig� �� Example of dynamic types�

��� Values and Types

Displaying values in a manner appropriate to their type is non�trivial for a language

that includes user�de�ned data types� �rst�class functions� functors� and polymor�

phic identi�ers� There are obvious limits to the abilities of any general�purpose

pretty printer to deal with user�de�ned types or with large aggregate data struc�

tures� Our approach is to let the user display values via the standard top�level ex�

pression evaluator� modi�ed so that identi�ers are looked up in the environment of

the current context� This approach allows the user to deconstruct complex values by

evaluating arbitrary ML expressions� The current context�s environment is accessed

using a special set of emulation functions� These functions translate an identi�er

lookup� which the ordinary top�level environment would handle by consulting a

hash table� into a call to the debugger�s lookup routine� implicitly parameterized

by the current context� To the top�level loop and parser� this �synthetic� debugger

environment looks just like a �real� symbol table�

Variables bound to functions have no directly printable �value�� The expression

evaluator can be used to examine a function�s behavior by applying it to sample

arguments� The debugger can also report the binding context� including source�code

site� for an identi�er� this feature� used recursively as necessary� enables the user to

�nd and inspect the ��expression that de�nes the code bound to a function�valued

variable�

Displaying values of variables with polymorphic types is a major debugging chal�

lenge� Consider the program in Figure �� Here pair has the polymorphic type

scheme ��� ��� � � � �� � �	� and is applied �rst to an integer� later to a

boolean� If the user stops at a breakpoint just inside an invocation of pair� after

x has been bound to the actual argument� how is the debugger to determine the

dynamic type of x� when the compiled code for pair is deliberately oblivious to its

argument�s type� and runtime values themselves do not carry precise type tags�

To solve this problem� the debugger relies on the fact that the dynamic type of

a value doesn�t change when it is passed to a function� i�e�� the dynamic type of

the formal parameter must match that of the actual argument �Appel� ��a	� To

�nd the actual argument�s type� the debugger looks up the call chain to �nd the

event where the function was called and consults the corresponding code site� In

this example� both applications of pair take as argument a constant of manifest

type� so the dynamic type of x is immediately deducible� In general� more work

may be required� Consider what happens if the user breaks execution just after

� A� Tolmach and A� W� Appel

pairt has been applied and y has been bound� and asks for y�s type� As before�

the debugger looks up the call chain� and determines that the dynamic type of y is

the same as that of h� But h�s dynamic type is not immediately obvious� it must be

computed by a recursive application of the same procedure� By following another

link in the call chain� the debugger can determine that since the argument to f has

static �and dynamic	 type int list� h must have dynamic type int� In general�

the debugger may need to traverse an arbitrary number of links in the call chain��

Moreover� it is not always su�cient to consult the current call chain �Goldberg

and Gloger� �
	� Suppose that the user� still halted at the same event after the

binding of y� asks for the type of x� At this point� the application of pair to true is

no longer on the current call chain� the debugger must retrieve the call chain that

was current when x was bound before beginning the reconstruction process� Thus�

the type reconstruction algorithm requires a mechanism to access the binding�time

call chain of every variable in scope� An e�cient mechanism for this purpose is

described in Section ���� We believe that this procedure always terminates with a

secure dynamic type� although we have not proved this fact formally�

Most source�level debuggers allow the user to alter the course of execution� usu�

ally by changing the values of variables� In ML� this feature makes good sense

only for mutable ref and array variables� It is provided by permitting the user

to evaluate assignments for their side�e�ects� Allowing other identi�er values to

be changed amounts to changing the program�s source code� and would typically

require dynamic recompilation�

A debugging session has exactly one history time line representing one consistent

execution history� However� the debugger permits the user to reset to a time t before

the maximum known time and then change the values of mutable variables� Since

these changes might alter the course of execution� the debugger automatically resets

the maximum known time to t� truncating the time line in order to avoid possible

temporal paradoxes� Other user actions that might change execution history� such

as altering an input stream during re�execution� are prohibited� To avoid compli�

cating the user interface� we deliberately do not support an �undo�redo� system

for speculative computing or �parallel worlds� of execution�

��� Debugger Interface

The debugger uses a screen� keyboard� and mouse�driven interface� implemented

as an extension to the GNU Emacs editor� roughly in the style of gdb �Stallman

and Pesch� ��	� It is independent of the debugger implementation and� to a large

degree� of the speci�c functionality the debugger provides� Whenever execution

halts under debugger control at a particular event� the corresponding source code

is displayed with a pointer to the current site� the user can select other sites in the

� In principle� the debugger could avoid traversing recursive applications� since these can
add no useful type reconstruction information� If we implemented this optimization�
the complexity of the reconstruction process would be limited by the depth of static
nesting rather than by the dynamic call depth�

A Debugger for Standard ML

source by scrolling and pointing at the text� Debugger commands can be issued

using single keystrokes which are translated into the equivalent typed commands

and passed to the debug monitor�

� Debugging SML�NJ

The SML�NJ system poses many problems for conventional machine�based or in�

terpretive debuggers� This section describes the compiler and runtime system and

the di�culties they provoke�

��� Compiler and Runtime System

SML�NJ implements the full Standard ML language with a few trivial omissions

and variants� It makes extensive internal use of continuations� and also exports them

as �rst�class user objects� similar to those in Scheme �Clinger and Rees� ��	� but

typed �Duba et al�� ��	� Continuations are captured with the callcc primitive

and invoked using the throw primitive�

SML�NJ compiles a program by performing a complex sequence of rewritings

from one intermediate representation to another� Source programs are parsed into

conventional abstract syntax trees� which are then elaborated and type�checked�

Elaborated abstract syntax is translated into ��language� an intermediate represen�

tation resembling an applied call�by�value ��calculus� Various simpli�cations are

made at this stage� notably the compilation of pattern matches into explicit test

and branch code� The SML�NJ system includes a simple interpreter that operates

directly on ��language�

Next� ��language is converted into the continuation�passing style �CPS	 language�

This is another ��calculus�like language� but with all control �ow made explicit� All

function operands must be atomic� i�e�� they must already have been explicitly

evaluated and bound to a variable� Also� functions never return� they terminate

by calling a continuation function representing �the rest of the program�� Most

of SML�NJ�s optimizing is done on the CPS representation �Appel� �
	� CPS

optimizations include in�line expansion� ��reduction and splitting� �attening of tuple

arguments and uncurrying� and code hoisting�

After optimization� the CPS is further rewritten to convert references to free vari�

ables into explicit code to create and access heap�allocated closure records� Then�

the CPS is translated to code for an abstract machine� a further optimization that

chooses function argument registers is performed as part of this translation� Finally�

the abstract machine code is translated to binary code for a speci�c target� Only

this last phase is machine dependent� On RISC machines� target code generation

includes instruction scheduling to �ll branch and load�store delay slots�

In addition to these explicit optimizations� the SML�NJ compiler implicitly per�

forms certain operations that other compilers might treat as elective optimizations�

Live variable analysis is performed implicitly as part of CPS conversion� only �live�

variables appear free in continuation functions� so �dead� variables never occupy

space in continuation closures� Whereas a conventional compiler may view regis�

�� A� Tolmach and A� W� Appel

ter assignment of local data as an optimization on the �standard� placement in

activation records� SML�NJ looks at things the other way around� it assumes all

data reside in registers unless explicitly needed in a closure record or spilled� These

optimizations cannot be disabled� they are intrinsic to SML�NJ�s compilation ap�

proach�

The SML�NJ system also contains a runtime component� implemented in C�

that provides access to operating�system facilities� including I�O and signals� and

a garbage collector for the heap� SML�NJ uses a two�generation copying collec�

tor �Appel� ��b	� frequent minor collections scavenge the younger generation�

and occasional major collections scavenge the entire heap� The heap is very heavily

used� because SML�NJ has no runtime stack of activation records� Its role is played

by heap�allocated closures for continuation functions� which hold on to the values

needed for continuing the computation of suspended functions higher up the call

chain� Furthermore� closures are not stored into after their creation and initializa�

tion� This scheme makes execution of callcc almost free� the current continuation

can be saved simply by taking a new pointer to a linked set of heap�allocated

records� and there is no stack to copy� Of course� there are allocation and garbage

collection costs associated with using a heap representation� although these costs

might not be higher than those of stack management �Appel� ���	�

��� Problems with Machine�Based Debugging

The number and complexity of SML�NJ�s optimizations and the nature of its run�

time system make the prospect of writing a conventional machine�based debugger

quite daunting� To provide a source�level interface� a machine�level debugger must

have access to a bidirectional map between source program locations and object

code addresses� and a map from source code variables to machine data locations

�addresses and�or registers	� In addition� the debugger must understand the run�

time format of each data type it must print �e�g�� strings� arrays� and user�de�ned

types	� Finally� it must be able to determine the current call chain �typically by

knowing the runtime stack format	 and represent it in terms of the source code

using the maps described above� All of these tasks are di�cult in SML�NJ�

Optimization greatly increases the complexity of the debugger�s maps� A typical

ML source function is split into a set of CPS functions� an elaborate mapping scheme

would be needed to translate correctly between source�code and object�code loca�

tions� To avoid reporting incorrect data values� a similarly elaborate scheme would

be needed to map source identi�ers to values as they move in and out of regis�

ters and closures� In�line expansion� ��splitting� argument �attening� uncurrying�

etc� all cause the source�to�object code mapping to become one�to�many� and the

inverse object�to�source map to become many�to�one� Keeping track of these map�

ping changes would be fundamentally straightforward and should not carry any

runtime cost� but it would be a substantial bookkeeping task even if we demanded

merely truthful behavior from the debugger �Coutant et al�� ���	� More seriously�

previous research on debugging optimized code �Hennessy� ��
� Zellweger� ���	

suggests that it is impossible to provide cost�free expected debugger behavior in the

A Debugger for Standard ML ��

presence of ��reductions� since they remove the reduced functions from the object

code� either ��reduction must be prevented or an additional parameter to indicate

which original function was applied must be passed at runtime� which might be

expensive� And visible but �dead� variables must somehow be preserved despite

CPS conversion�

Polymorphic functions prevent any simple static correlation between variable

names and types� and runtime values are essentially untagged �although a very

weak form of tagging is used to support garbage collection	� Finally� there is no

conventional stack� and it is not obvious how to extract call chain information from

continuation function closures�

��� Interpreters

Interpretive environments o�er a number of advantages for debugging� Since the

interval between making a source edit and running the resulting program is typ�

ically shorter than in compiled systems� at least for small programs� interpreters

encourage debugging by source�code modi�cation and experimentation� Moreover�

the interpreter�s evaluator can be modi�ed to support internal debugging features�

such as tracing function calls� arguments� and return values� at relatively small cost

in added execution time� Many Lisp systems have powerful and elaborate debug�

ging environments based on interpretation �e�g�� Interlisp �Teitelman� ���		� and

this approach has also been used for C �e�g�� Saber�C �Kaufer et al�� ���		� Since

interpreters are typically fairly machine�independent� debugging systems based on

them are also portable�

Unfortunately� interpretation is usually one to two orders of magnitude slower

than compiled code execution� To make interpretation a feasible basis for debugging�

it must be possible to intermix interpreted and compiled procedures at link time�

and preferably at runtime �without halting the program	 �Goldberg and Robson�

���	� SML�NJ would require signi�cant changes to support dynamic recompila�

tion�

� Source�code Instrumentation

Our ML debugger avoids the problems of conventional implementations by using an

unconventional approach� it automatically instruments programs at compile time

so that they can be interactively debugged at runtime� This approach derives from

one of the oldest manual debugging techniques� inserting explicit code into the

source program to print values at points of interest� In the absence of a source�level

debugger� this �insert a PRINT statement� method may be the only one available�

Instrumenting by hand can be crudely e�ective� but it has serious drawbacks� par�

ticularly when the location and nature of a bug are unknown� It is hard to predict

at compile time what information will be of interest at runtime� indeed� the focus

of interest often changes in the course of a debugging session� It is then necessary

to add or alter the instrumentation� re�translate� and re�run the program� If the

compilation cycle is slow� the method becomes tedious�

�
 A� Tolmach and A� W� Appel

Moreover� although the source language is a �exible medium in which to describe

what information to display� it is not always a convenient one� For example� few

languages provide any direct method for inspecting the call chain� ML doesn�t even

provide a built�in mechanism for printing variables� because the necessary runtime

type information is not normally available� Finally� to instrument a program by

hand the user must alter the source text� which can be time�consuming and error�

prone� Unless instrumentation is carefully planned as a part of the program from

the beginning� adding it �and later removing it	 can easily make the source code

less readable and maintainable� and can itself introduce bugs�

If the program is large� and instrumentation is planned from the beginning� it

may be reasonable to include support for more complex operations than simply

printing the values of variables� a trace history� breakpoints and watch points� and

even an interactive interface for controlling these features might be added� In fairly

short order� the user will have built most of a debugger�

A better idea is to generate the debugging code automatically� Our debugger

inserts simple and uniform instrumentation code that supports breakpointing� vari�

able lookup� and control��ow tracing at arbitrary event sites� This instrumentation

is itself written in �almost	 Standard ML� Instrumentation can be performed as a

source�to�source transformation prior to compiling� the resulting instrumented code

is legal compiler input� and the instrumented program works as expected in spite

of any compiler optimizations and with any back�end� Only one caveat is required�

the added code is not quite valid ML because it violates the type system in order

to pass the recorded state to the debugger� Runtime values do not carry type infor�

mation� so they must be treated as having generic type object�� Fortunately� this

violation does not weaken the overall security of the system signi�cantly� because

user programs with type errors are still prevented from executing� and other kinds

of user�program errors cannot disrupt the instrumentation code or the debugger�

In short� we have a simple� reliable� platform�independent debugging strategy�

This approach to debugging may seem awkward or inelegant� In fact� source

modi�cation is a natural way to cope with an aggressive optimizer� Optimizing

compilers may make any changes to a program so long as the observable behavior

of the program remains the same� Unfortunately� debuggers must expose the inter�

nal behavior of the original program� which may be altered by optimization� The

instrumentation�based debugger solves this problem by transforming the original

source into a new program in which the internal state of the original is made poten�

tially observable at frequent intervals� This transformation constrains the compiler

to maintain the original form of the computation�

The remainder of this section describes the instrumentation process in more

detail� For simplicity� the discussion is given in terms of the core language subset

shown in Figure ��

� The compiler already has to bypass ML�s type system in order to manipulate code
objects and values of uncertain type in the top�level loop� These type violations mean
that the compiler itself does not have the security property of well�typed ML programs�
but the violations are few and isolated�

A Debugger for Standard ML ��

exp ��� nconst �nullary constructors� i�e�� constants	
uconst �unary constructors	
var �variables	
op �primitive operators	

expopr
y exparg �function applications	

let dec in exp end �local declarations	
fn rule� j � � � j rulen �functions	
�exp��exp��� � ��expn� �tuples	
�exp��exp��� � ��expn� �sequences	

nconst ��� ������ � � �integer constants	
nil �empty list constructor	

uconst ��� 		 �list cons constructor	
ref �reference constructor	

op ��� ������� �integer operators	
��	� �reference operators	
array�update�sub �array operators	

rule ��� pattern �
 y exp

pattern ��� �wildcard� i�e�� match anything	
var �variable	
nconst �constant	
�uconst pattern� �constructions	
�pattern��pattern��� � � �patternn� �tuples	

dec ��� val y pattern� � exp� and � � � and patternn � expn �ordinary declarations	

val rec y var� � exp� and � � � and varn � expn �recursive declarations	
dec��� � � �decn �sequences	

Fig� �� A subset of Core Standard ML� Primitive operators and constructors whose
arguments are pairs can be written in in�x� e�g�� a�b for ��a�b�� and
�exp��exp��� � ��expn� is syntactic sugar for the pattern or expression

exp�		�exp�		�� � �		�expn		nil���� Superscript daggers �y	 indicate the positions of
the source�code sites described in the text� Semicolons separating members of a sequence

of declarations may be omitted�

��� Sites

Instrumentation code is placed at each event site� the event �happens� at runtime

when the instrumentation code is executed� Each site has an associated site type�

For the subset language� the debugger de�nes FN sites� located at the top of each

function rule body� APP sites� located just prior to each function application� and VAL

and VALREC sites� located just after each val or val rec declaration� To debug the

full language� a somewhat larger set of site types is de�ned� There is a well�de�ned

mapping from sites to source�code locations� illustrated in Figure � for the subset

language� There is also an inverse mapping from each source�code location to the

nearest neighboring sites� FN� VAL� and VAL REC sites are called binding sites� since

�� A� Tolmach and A� W� Appel

let val� cons � fn �x�y� �
� x 		 y

val� rev �

fn list �
�

let val rec� r �

fn �h		t�a� �
�

r��t� cons��h�a��

� �nil�a� �
	 a

in r�
�list�nil�

end

in rev�� ������

end

Fig� �� The rev function�

s��NULL

s��VAL�cons�
�
���

s��FN�x�y�
�
��I

s��VAL�rev�
�
���

s��FN�listQ
Q
Q
Q

QQk

s���APP

�

s��VALREC�r

�

s ��FN�h�t�a��
��
��
���

s�FN�a

�

s���APPQ
Q

Q
Q
QQk

s��APP�
�
���

s��APP�
�

��I

Fig� �� Event sites for rev� Each binding site is annotated with site number�site
type�bound variables� Arrows connect each site to the site corresponding to its

immediately enclosing binding under ML�s standard static scoping rules�

identi�ers may be bound there� the names of these identi�ers can be determined by

examining the source code at the site� In our implementation� a site actually points

to a node in the program�s abstract syntax tree� and its associated bound variables

can be extracted from the node� Each site in a program is given a unique identifying

site number� which can be used to index tables or lists of site information�

Figure � shows a fragment of code that reverses a short list� this fragment serves

as a running example in the remainder of this section� The program is fairly realistic

except for the rede�nition of the built�in cons operator ���	 as the cons function�

which has been introduced for illustrative purposes only� The superscripts are site

numbers� the corresponding sites are described in Figure �� organized into a tree

showing how sites are related under static scoping� Each branch in the de�nition

of val rec r has a separate FN site� these sites would be present even for branches

A Debugger for Standard ML ��

�� Basic types ��

type siteNumber � int

type time � int

type value � object

�� Event records ��

datatype eventRecord �

EVENT of �time	 time�

siteNumber	 siteNumber�

binding	 eventRecord�

caller	 eventRecord option�

boundValues	 value list�

� NULLEVENT �� corresponds to siteNumber � ��

Fig� �� A naive eventRecord data type�

that failed to bind any variables� Constructors such as �� are not instrumented�

because they operate atomically� cons� on the other hand� is instrumented�

��� Event Code

The code at each site must determine whether the user has requested a halt at

the current event� if so� it stops the user program and passes context information

about the event to the debugger� In a conventional debugger� it is usual to specify

where to halt by giving a source code site� we call this a �location breakpoint�� In

a time�travel debugger� however� it is also very useful to be able to specify halts at

a particular time �before or after the current time	� Deciding whether to break at

an event is thus expressed as a test of the current time against a particular target

time together with a check of whether a location breakpoint is set for this site�

The context information that must be retrievable at an event includes the event

site� the current call chain� i�e�� the identity of each pending APP event� the current

values and types of all identi�ers in scope at this site� or at any site on the call chain�

and the call chain that was current when each of these identi�ers was bound� The

context at any given event is only incrementally di�erent from that at a previous

event� e�g�� a variable is added to the environment or a call is added to the call

chain� Thus� the context can be succinctly described by a pointer to a previous

context plus the incremental changes�

A naive approach to obtaining context information would be for instrumentation

code to build an event record at each event� whether or not a breakpoint occurs�

the contents of this record are shown in Figure �� The boundValues list contains an

entry for each identi�er bound at the event� if any� The caller �eld is present only

for FN �top�of�function	 events� it points to the record for the APP event that caused

the function to be entered� The binding �eld points to the record that describes

the most recent lexically�enclosing binding event� it is the dynamic analogue of the

static scope nesting relation shown in Figure ��

From a given event record� the debugger can determine the source location of the

�� A� Tolmach and A� W� Appel

corresponding site �using a table built during instrumentation� see Section ���	 and

the values of the identi�ers bound there� By traversing the binding chain de�ned

by the binding pointers� it can �nd the value of any identi�er in scope at the

initially given event� As a byproduct of this search� the debugger also determines

the event at which the identi�er was bound� This information is useful for identi�ers

representing functions� whose values cannot be printed� It also gives access to the

call chain that was current when the value was bound� as required for dynamic type

reconstruction �see Section
��	� Finding an identi�er value traverses O�d	 binding

pointers� where d is the static nesting depth of the initial event site� which is at

worst proportional to the size of the source text�

Identi�er lookup can start from any event record� so if the debugger can obtain

the event record for an event on the call chain� it can display the value of any

variable in scope at that event� To �nd these call chain event records� the debugger

relies on the following properties of the instrumentation�

� Each function rule body has exactly one FN site� located at the beginning of

the body�

� Each FN event is treated as a binding event �even if the rule binds no identi�

�ers	 and appears on the binding chain for every event in the function body�

Thus� given an event record� the debugger can �nd the record of the caller�s appli�

cation event by following the chain of binding pointers until a FN event is reached

and then following the caller pointer� Iterating this process produces the event

record of the caller�s caller� and so forth�

The caller and binding �elds are similar to the control �or dynamic	 and access

�or static	 links� respectively� used to link activation records in languages with

nested procedures� such as Pascal �Aho et al�� ���� Chapter �	� A Pascal compiler

typically generates code to maintain static links and relies on the hardware stack to

maintain dynamic links� SML�NJ generates code to maintain similar information

in the form of closure and continuation pointers� We� however� must invent source�

language instrumentation to do both jobs�

This naive approach incurs an expensive space penalty� especially in the case of

tail�recursive functions� These functions remain tail�recursive� thanks to our pol�

icy of not placing events after applications� so the compiler can continue to avoid

building a continuation closure for the recursive call� But the values that would have

been referenced from this closure� which would ordinarily become garbage� are now

stored explicitly into event records� The resulting space penalty is proportional to

the depth of dynamic function call nesting �before tail�recursion elimination	 and

can be substantial for deeply recursive programs with large data structures� More�

over� we also pay this penalty for each in�scope binding� Measurements of the space

overhead incurred by this naive approach are given in Section ����

��� Lazy Event Record Construction

The fundamental drawback of the naive approach is that it builds a complete record

of the values bound at each event even though most of these values are never needed

A Debugger for Standard ML ��

�� Lazily�generated event records ��

datatype eventRecord �

EVENT of �siteNumber	 siteNumber�

binding	 time�

boundValues	 value list�

val currentTime 	 time ref

val targetTime 	 time ref

val breakWanted 	 bool array

fun event�siteNumber�binding�boundValues� 	 time �

let val newTime � �currentTime �

in currentTime 	� newTime�

if �newTime � �targetTime� orelse

�breakWanted sub siteNumber� then

break �EVENT�siteNumber�siteNumber�

binding�binding�

boundValues�boundValues��

else ���

newTime

end

Fig� �� Lazy eventRecord data structure and event instrumentation code� Other types
are as in Figure �� The break function is described in Figure ���

by the debugger� A more elegant solution is to use time travel internally to recreate

values lazily� upon demand� During forward execution� debugger instrumentation

generates an event record only if a break is taken at the event� otherwise� the time

of the event is preserved but no values are recorded� If more detailed information

proves to be needed� the debugger can jump back to the event in question and

collect it� This approach makes controlled execution� i�e�� execution under debugger

control but with no debugging queries� cheaper in time and space at the possible

expense of longer times for query operations�

The event record has a revised form �see Figure �	� The explicit binding pointer

is replaced by the time of the relevant binding event� To obtain a record on the

binding chain� the debugger internally jumps back to the recorded time� generating

a full event record� and jumps forward again to the original time� The caller

pointer is unnecessary because times provide a sequential ordering for events� Since

each FN event is immediately preceded by its corresponding APP event in the calling

function� the record for that APP event can be obtained simply by internally jumping

back one time unit�

The process of obtaining an event record by jumping back in time is encapsulated

into an internal function

eventRecordAt� time �� eventRecord

Time travel performed during execution of this function is invisible to the user�

except perhaps for a delay in evaluating queries�

�� A� Tolmach and A� W� Appel

Figure � shows the lazy instrumentation code inserted at each site in the form

of an event function� which is ordinarily expanded in line to improve execution

speed� Location breakpoints are established by setting the appropriate entry in

breakWanted� an array of booleans indexed by site number� Note that current and

target times are simply ML integer refs� Over�ow of time values is a potential

problem� SML�NJ integers occupy only �� bits� which allows for
��� ��� events

in a single debugged execution� Using pessimistic assumptions� this number should

allow debugging a program that takes up to about �� minutes of CPU time �not

including garbage�collection time	 on a typical workstation� Unfortunately� any form

of multiple�precision counter appears to be much more expensive� we eagerly await

���bit machine architectures�

��� Instrumentation Algorithm

Figure describes the instrumentation process for the subset language of Figure �

as a set of mutually recursive instrumenting functions that transform the concrete

syntax of expressions� rules� and declarations� Function E takes a pair of arguments�

a source�code expression to be instrumented and an auxiliary source�code expres�

sion lbexp that evaluates �at runtime	 to the binding pointer� it returns the instru�

mented version of the �rst source�code expression� FunctionR is similar except that

its �rst argument is a source�code rule� Function D takes a source�code declaration

and lbexp expression as arguments and returns a pair� the instrumented declaration

and a new value for lbexp to be used within the scope of the declaration� A top�level

declaration dec is instrumented by calling D�dec � �	� The auxiliary metafunction S

takes a site type and source�code position �represented by y	 as arguments� creates

a new site with that type and position� and returns the new site�s number� A table

of all sites so created is produced as a by�product of the instrumentation process�

Most of the transformations are straightforward� Application expressions are

complicated slightly because the instrumented code must evaluate both the op�

erator and argument subexpressions before executing the application event� The

most complicated case is for val rec declarations� the name of a recursive function

is visible inside the function�s own body� but the function�s value is not available

until after the val rec binding has been executed� so execution of the binding

event needs to be deferred until then� Fortunately� the time of this event can be

calculated in advance� since the body of a val rec is always a non�executable fn

expression��

Figure �� shows the instrumented version of the rev program of Figure �� exactly

as it would be produced by the execution of the algorithm in Figure � Site numbers

are as in Figures � and �� The algorithmmay produce unnecessary temporaries �e�g��

many of the instances of opr and arg	 and other bindings �e�g�� event �	� but these

are removed by the optimizer� event is expanded in line� so the code expands by

an even larger factor than shown here� Also� Figure �� is not strictly legal Standard

� In practice� this technique is unnecessary because VALREC events are coalesced into
neighboring APP events �see Section ���	�

A Debugger for Standard ML �

E�nconst� lbexp	 � nconst

E�uconst� lbexp	 � uconst

E�var� lbexp	 � var

E�op� lbexp	 � op

E�expopr
y exparg � lbexp	 � let val opr � E�expopr � lbexp	

and arg � E�exparg � lbexp	

in event�S�APP� y	�lbexp�nil��
opr arg

end

E�let dec in exp end� lbexp	 � let dec� in E�exp� lbexp�	 end

where �dec�� lbexp�	 � D�dec� lbexp	
E�fn rule� j � � � j rulen � lbexp	 � fn R�rule�� lbexp	 j � � � j R�rulen� lbexp	
E��exp��exp��� � � �expn�� lbexp	 � �E�exp�� lbexp	�E�exp�� lbexp	�� � ��

E�expn� lbexp	�
E��exp��exp��� � � �expn�� lbexp	 � �E�exp�� lbexp	�E�exp�� lbexp	�� � ��

E�expn� lbexp	�

R�pattern �
yexp� lbexp	 �
pattern �

let val event n � event�n�lbexp�vars�

in E�exp�event n	
end

where n � S�FN� y	 and vars � list of variables bound in pattern

D�valypattern� � exp� and � � � and patternm � expm� lbexp	 �
�val pattern� � E�exp� � lbexp	 and � � � and patternm � E�expm� lbexp	�

val event n � event�n�lbexp�vars��

event n	
where n � S�VAL� y	
and vars � list of variables bound in pattern��� � � �patternm

D�val recyvar� � exp� and � � � and varm � expm� lbexp	 �
�val event n time � �currentTime � �

val rec var� � E�exp� �event n time	
and � � �

and varm � E�expm �event n time	�
val event n � event�n�lbexp��var��� � � �varm���

event n	
where n � S�VALREC� y	

D�dec�
dec�
� � �
decn� lbexp	 � �dec��
dec
�

�
 � � �
dec
�

n� lbexp
�

n	
where �dec��� lbexp��	 � D�dec�� lbexp	
and �dec��� lbexp

�

�	 � D�dec�� lbexp
�

�	
and � � �

and �dec�n� lbexp�n	 � D�decn� lbexp�n��	

Fig� � Instrumenting functions E�R� and D� Fragments of concrete syntax are shown in
typewriter font and metavariables representing source text are shown in slanted font�

� A� Tolmach and A� W� Appel

ML code� because the lists of values passed to event contain entries having multiple

types� In practice� these are cast to a generic object type and are treated as vectors

�immutable arrays	 rather than lists�

The debugger instruments code by transforming the compiler�s elaborated ab�

stract syntax representation� after parsing and type checking� but before transla�

tion into ��language� A more direct method might be to pre�process the source

code before feeding it to the compiler� but our approach avoids parsing the source

twice� ML is a complicated language to parse� neither the e�ort required to rewrite

or extract the parser nor the ine�ciency implied by parsing twice was attractive�

The only serious disadvantage of our approach is that derived forms� such as fun�

have already been expanded into core forms before instrumentation is performed�

making it di�cult to assign source�code locations to event sites accurately�

��� Performance E�ects

How much will lazy instrumentation slow down code� in the overwhelmingly com�

mon case when a break does not occur� The direct costs are clear� currentTime

must be incremented and compared against targetTime� and the breakWanted ar�

ray must be checked� The indirect costs of executing this code are more subtle� Each

event n binding time variable must be kept live as long as the associated binding

is live� which increases demand for registers and the size of closures� Fortunately�

the total number of such variables live at any one time is limited by the depth of

static nesting in the program� which is typically small� In addition� the addresses

of currentTime� targetTime� breakWanted� and the break routine must be kept

live throughout the code� which puts further pressure on registers and closures�

If break is called� the compiler must build a continuation closure to pass to it�

which can be costly if there are many live variables�� It is desirable to avoid building

this closure if the break test fails� unfortunately� the optimizer occasionally hoists

the closure creation above the break test�

Another subtle e�ect is that every named identi�er must now remain live from

its binding point until the last event that may put its value on a boundValues

list� Again� more registers or closure space may be needed� although most of these

values may be live anyway� since the distance from binding to reporting event is

usually short� More interestingly� the liveness requirement also applies to identi�ers

that the optimizer would ordinarily eliminate by constant folding or ��reduction�

In such cases� the original optimization may still take place� with the resuscitated

variables used only to �ll in event records�

Function in�lining and its special case� loop unrolling� are still possible� but are

less likely to be invoked by the optimizer�s heuristic because of the growth in func�

tion size caused by the insertion of instrumentation� When in�lining does occur�

� This continuation is constructed and passed in the CPS version of the program generated
internally by the compiler� Essentially the same continuation is subsequently �rei�ed�
into a user�level continuation by a callcc within the body of break
 see Section ��

A Debugger for Standard ML
�

let
val cons =

fn (x,y) =>
let val event_2 = event(2,0,[x,y])
in x::y
end

val event_1 = event(1,0,[cons])
val rev =

fn list =>
let val event_4 = event(4,event_1,[list])
in let

val event_5_time = !currentTime + 1
val rec r =

fn (h::t,a) =>
let val event_6 =

event(6,event_5_time,[h,t,a])
in let val opr = r

and arg = (t, let val opr = cons
and arg = (h,a)
in event(7,event_6,nil);

opr arg
end)

in event(8,event_6,nil);
opr arg

end
end
| (nil,a) =>
let val event_9 =

event(9,event_5_time,[a])
in a
end

val event_5 = event(5,event_4,[r])
in let val opr = r and arg = (list,nil)

in event(10,event_5,nil);
opr arg

end
end

end
val event_3 = event(3,event_1,[rev])

in let val opr = rev and arg = [1,2,3]
in event(11,event_3,nil);

opr arg
end

end

Fig� ��� Instrumented version of rev� Original program code is shown in bold
typewriter font and instrumentation code is shown in light typewriter font�

Event types are shown in Figure ��

 A� Tolmach and A� W� Appel

the instrumentation is copied along with the original code� so the pattern of event

records is una�ected�

It is instructive to examine the instrumented code generated for rev� The original

program is optimized away to almost nothing by a combination of loop unrolling

and constant propagation� all that remains to do at runtime is to cons together

the result list ��	�	
��The instrumented version� on the other hand� executes the

full computation in its original form plus all the debugging support code� No in�

line expansion is performed� the compiler doesn�t even ��reduce the function cons�

although it is ��split� so that the call from inside r can be optimized to avoid

packing its arguments into a pair�

��	 Improvements and Extensions

In practice� the debugger instruments signi�cantly fewer sites than shown here�

Adjacent sites in the binding tree are coalesced with neighboring sites whenever

they lie in the same basic block� In particular� VAL and VALREC events are always

coalesced with neighboring APP and FN events� The resulting �augmented� sites

are instrumented to build event records containing values for the identi�ers bound

at all the constituent original sites� Coalescing improves runtime performance by

reducing the number of calls to event and the number of event records built�

To handle the full ML language� the debugger uses a number of other site types�

Events at type and in�x declarations� and at module declarations and functor ap�

plications� permit the debugger to emulate environments correctly� events at raise

and handle expressions support exception tracing� and so forth� Most of these

events are coalesced with others� so they cost little at runtime� In some cases� fea�

tures in the full language merit new site types even if they could be handled with the

core set of types� For example� case expressions could be treated as function appli�

cations� but doing so would require two event executions per case execution� Since

the �function� body is only called from one site� there is no need for a separate APP

event at runtime� removing it halves the execution overhead of instrumenting� Since

if�then�else expressions are simply derived forms of case expressions� they ben�

e�t from this optimization as well� In addition� APP events for arithmetic primitives

can be omitted to improve e�ciency� although this technique reduces the accuracy

of the call chain information provided if an uncaught arithmetic exception occurs�

� Speculative Computation and Time�Line Search

Time travel can be used for speculative as well as retrospective computation� If the

user wishes to halt in a particular state� there is no need to make sure that the halt

occurs during forward execution� If the target state is overshot� the user can back

up to it� indeed� it is often easier to identify the target after the fact�

For example� suppose the program has a loop� with a ref cell c used as the loop

counter� and the user wants to halt the program when c has just been incremented

to a particular value v� Assuming that the counter is never decremented� the user

can perform a two�step procedure to direct the program to this time� First� the user

A Debugger for Standard ML
�

val timeDelta � ���

fun advanceToRealizationTime �realizedAt	unit �
 time� �

let fun narrow�falseTime�trueTime� �

if falseTime� � trueTime then

let val targetTime � �falseTime � trueTime� div �

in resetTo�targetTime��

let val trueTime� � realizedAt��

in if trueTime� � infinity then

narrow�falseTime� trueTime��

else narrow�targetTime�trueTime�

else resetTo�trueTime�

fun expand�� �

let val startTime � currentTime��

in advanceTo�startTime � timeDelta��

let val trueTime � realizedAt��

in if trueTime � infinity then �� predicate now true ��

narrow�startTime�trueTime�

else if currentTime�� � �finalTime then

expand�� �� predicate not yet true ��

else �� �� predicate never true ��

end

end

in expand��

end

Fig� ��� Finding realization time for monotonic predicate by binary search�

repeatedly executes forward at full speed� stopping periodically to check the value

of c� until �c � v� At this point� the target time lies between the current time�

tlate� and the time of the last unsuccessful check� tearly � The user then performs

binary search on the temporal interval �tearly �tlate� to pinpoint the earliest time at

which �c v� This procedure is likely to be faster than checking the value of c at

every time step during forward execution� even if there is built�in support for doing

the check e�ciently�

Call t the realization time for a predicate P if P �rst becomes true at t� The

binary�search technique can be automated to �nd the realization time for any

monotone predicate on execution states� i�e�� any predicate that stays true once

it becomes true� Moreover� the algorithm that directs the search can be abstracted

into a user�level function� advanceToRealizationTime� that takes P as an argu�

ment� A simpli�ed version of the code for this function is shown in Figure ��� The

realizedAt function consults the current state to determine if the predicate de�n�

ing the desired target state is true� If so� it returns the earliest time for which it

knows the predicate to be true� this might be simply the current time� but some

predicates can return better bounds� If not� it returns infinity�

The debugger uses this function internally to implement certain targeted exe�

cution commands as binary searches over the execution time line� One important

� A� Tolmach and A� W� Appel

example is the implementation of location breakpoints� Suppose we modify the code

for event to maintain an auxiliary array lastTimes� indexed by site� and holding

the time of the last event executed at each site� Forward execution from an initial

time t� to a location breakpoint at site s can now be implemented by invoking

advanceToRealizationTime with the function�

fn �� �

let val last lastTimes sub s

in if last � t� then last else infinity

end

Now the debugger can stop checking the breakWanted array at each event �see

Figure �	� so that the test for whether to break is just a comparison of the current

and target times� Of course� the debugger must also now update lastTimes at each

event� so this technique may not save much time during controlled execution� How�

ever� lastTimes can also be used to support location�based breakpointing during

reverse execution� since invoking

resetTo�lastTimes sub s�

resets the current time directly to the desired breakpoint�

A more sophisticated application is to a �skipping� function� The naive imple�

mentation of this function by single stepping� shown in Figure
� can be very slow� a

skip may involve an arbitrary number of steps� and the overhead of single�stepping

and checking the call chain must be paid for each of them� To implement skip

via speculative execution� we note that the startOnChain function is actually a

monotone predicate on the contents of the call chain� so binary search can be used

in place of sequential search�	 The revised skip function is shown in Figure �
�

Interestingly� time�travel primitives will be invoked recursively to determine the

contents of the call chain when evaluating the skip predicate�

In principle� users can apply binary search to predicates of their own design� At

present� however� we do not provide a way to test the values of local program vari�

ables within predicates� Some support for dynamic scoping and typing of variable

names is required� such support does not �t easily into ML� but could be provided

via special debugger functions that explicitly query� extract� and type�test values

from the current environment�

User�supplied predicates can be arbitrarily complicated� and arbitrarily expensive

to compute� The advantages of the binary search approach increase with the cost

of predicate evaluation� On the other hand� the user will also typically pay a price

in �extra� speculative execution beyond the actual realization time� though this

execution will not be wasted if the user later decides to proceed forward from the

breakpoint� The amount of �extra� computation is bounded by the timeDelta

parameter in Figure ���

� This method doesn�t work if the user program contains callccs� since these can be used
to switch call chains �e�g�� to implement coroutines	� which destroys the monotonicity
of the predicate�

A Debugger for Standard ML
�

fun skip �� �

let val startTime � currentTime��

fun pred �� �

let fun startOnChain �t�bound� �

if t � startTime then

infinity

else if t � startTime then

bound

else startOnChain�caller t�t�

val ct � currentTime��

in startOnChain�ct�ct�

end

in singleStep���

advanceToRealizationTime�pred�

end

Fig� ��� Implementing skip using speculative execution�

	 Controlling Program Execution

When the user program is halted� the debug monitor�s code is active� and vice�versa�

transitions between debug monitor and program control are essentially coroutine

hand�o�s� implemented with callcc in a well�known fashion �Wand� ���	� Simpli�

�ed code for the basic control functions is shown in Figure ��� setCompilationUnit

sets the debugger ready to execute a user program� Control passes to that program

via recordTo or replayTo when the user issues a forward execution command

and back to the monitor when the instrumented code calls break� The distinction

between recording and replaying governs whether logs describing changes to the

mutable store or external inputs are written or read� see Section ��

During recording� it is possible that the user program will be interrupted before

reaching the targetTime because the end of the program is reached� an uncaught

exception is raised� the program is signaled� or CTRL�C is typed� In these cases� con�

trol is still passed to the debug monitor via break with a suitable event record� For

end of program� this record contains a special END event� For uncaught exceptions�

it contains a �pseudo�event� UNCAUGHT lacking a code location� the debugger must

jump back one time unit to �nd the last real event and pinpoint the source of the

exception�

The debugger handles CTRL�C from the keyboard via a special ML signal

handler�� Interrupts are asynchronous with respect to events in our debugging

model� so the handler must delay the e�ect of the interrupt until the next event� It

does so by setting a �ag indicating that an interrupt has occurred and resetting

targetTime � ��currentTime �
�

When the program breaks at the next event� the debugger notices the interrupt

	 SML�NJ extends the Standard ML de�nition with a continuation�based signal handling
mechanism �Reppy� ��	�

� A� Tolmach and A� W� Appel

local

val debuggerCont	 unit cont ref

val userCont	 unit cont ref

type mode � RECORD � REPLAY

val userMode	 mode ref

val currentEvent	 eventRecord ref

fun execTo �time	time� 	 unit �

�targetTime 	� time�

callcc �fn c �
 �debuggerCont 	� c�

throw ��userCont� �����

in

fun setCompilationUnit �f	unit �
 �a� 	 unit �

callcc �fn c �
 �callcc �fn c �
 �userCont 	� c�

throw c �����

f ���

����

fun recordTo �time	time� 	 unit � �userMode 	� RECORD� execTo time�

fun replayTo �time	time� 	 unit � �userMode 	� REPLAY� execTo time�

fun break�eventRecord	eventRecord� 	 unit �

�currentEvent 	� eventRecord�

callcc �fn c �
 �userCont 	� c�

throw ��debuggerCont� �����

end

Fig� ��� Implementation of basic control functions�

�ag and interprets it as a request to �halt execution�� The interpretation of this

request depends on context� If the debugger was performing explicit� user�initiated�

forward time travel� travel is halted at the current time� which allows the user

to halt a lengthy or in�nite computation in the natural way� If the debugger was

resetting to an earlier time� or performing implicit time travel in support of a query

command� the debugging operation is aborted and the program is reset to the state

it was in before the operation began�

 Implementing Time Travel

The debugger supports reverse execution by taking periodic checkpoints of program

state during initial execution� To reset to a particular target time� the debugger �rst

restores the nearest previous saved checkpoint and then re�executes to the target�

We divide the state of an SML�NJ program at a particular execution event into

three parts�

� The functional state consists of the current program counter� the contents of

the call chain� and the values of all identi�ers live at any point on the call

chain� i�e�� the program continuation at this event�

A Debugger for Standard ML
�

� The store state describes the contents of the mutable store �ref and array

variables	 when the event is executed�

� The external state describes the stream of external information �input via the

I�O library� signals received� etc�	 that will be seen by the program from this

event until the maximum known time�

In a �typical� ML program� the size of the functional state dominates the overall

size of a checkpoint� because most heap cells are immutable� For example� more

than � of the objects created when SML�NJ compiles itself are immutable� Of

course� it is easy to write an ML program that generates a large store or I�O state�

but most ML programs are mostly functional�

Saving and restoring �rst�class continuations is fast� Moreover� these continu�

ations are inherently incremental� if the debugger saves a sequence of continua�

tions� the total space required is proportional to the total number of di�erent heap

cells referenced� rather than to the sum of the sizes of each continuation� Finally�

SML�NJ �rst�class continuations are type�safe objects that can be manipulated

inside the language model� in particular� they are garbage collected just like other

objects without requiring any special back�end features�

Unfortunately� SML�NJ has no such convenient built�in mechanism for saving the

state of the mutable store� so the debugger synthesizes its own store checkpoints�

It uses an approach that preserves the existing representation of the store� store

operations are instrumented to build lists of changed objects and so form incre�

mental checkpoints� This approach can be implemented entirely within the source

language� but to implement it e�ciently requires unsafe type coercions and some

support from the garbage collector�

To ensure correct re�execution� the debugger must log all external in�uences on

the initial execution� These include the contents of input streams read by the pro�

gram using the standard I�O interface and explicit debugging interpolations made

by the user� normally to change the value of a mutable variable� The logging process

is straightforward and is implemented by instrumenting the relevant input opera�

tions and handlers or providing special versions of standard library routines� The

instantaneous state is represented as a set of pointers into these logs� There are

other ways in which the external environment can a�ect SML�NJ programs� e�g��

through signals or via system calls that return the time of day or read �les directly�

The debugger does not support reverse execution for such programs� although ex�

tending logging methods to them would not be di�cult in principle�

�� Checkpoints

A checkpoint is a compact characterization of a state suitable for storage and re�

trieval� Primitive

getState� unit��checkpoint

produces a checkpoint from the current state� and

resetState� checkpoint��unit

� A� Tolmach and A� W� Appel

resets the current state from a checkpoint� Once taken� a checkpoint remains valid

until it is discarded� however many times it is used and regardless of other execution

and checkpointing activity� A checkpoint may be discarded to conserve memory �see

Section ���	 or when the maximum known time is reset to a time before that of the

checkpoint �see Section
��	�

We brie�y sketch the implementation of getState and resetState� Capturing

the functional part of the current state �the current continuation	 is trivial� it is

already stored in userCont during the control transfer from the user program to the

debug monitor� To reset this part of the state� the debugger just changes userCont�

The bulk of the state�related code in the debugger deals with mutable program

state� which requires special treatment both during execution and when saving or

restoring checkpoints� This code is organized into subsystems� each devoted to a

separate piece of mutable state� Subsystems include the mutable store� the stream

I�O library� and the lastTimes array� Each subsystem maintains signi�cant internal

state� such as a log �lled under record mode and used to control replay� Each

subsystem implements a function

remember�unit �� memory

that� when invoked� encapsulates that subsystem�s part of the current state into a

memory object that can be stored as part of a checkpoint� A memory consists of two

reset functions� undo and redo� To reset the subsystem to the state it had when

the memory was created� the debugger invokes the appropriate reset function�

Each subsystem communicates with the executing user code by means of instru�

mentation code or via special versions of runtime libraries� Typically� interaction

with the running program involves executing some �xed piece of code each time

a particular user event occurs� e�g�� logging each mutable cell creation� Code exe�

cuted in this context has access to useful debugger globals� such as currentTime�

targetTime� userMode� etc�

�� Time�travel Primitives

Figure �� gives code for advanceTo and resetTo in terms of getState and setState�

replayTo and recordTo� and the cache functions described in Section ���� The code

is quite imperative in style� It would be possible to present the basic time�travel

functions as side�e�ect�free transformations from states to states� giving them some�

thing of the �avor of �engines� �Haynes and Friedman� ���	� However� since parts

of the state�especially the mutable store�are expensive to save and restore� we

make the notion of a �current� state explicit and discourage excessive saves and

restores�

In practice� the time�travel primitives are complicated somewhat by the need to

handle multiple compilation units� Each compilation unit initiated from the top�

level loop is considered to extend the existing time line� on re�execution� special

steps are taken to pass control from one unit to its successor without re�entering

the top�level loop� Moreover� at any breakpoint the user may enter a command

�itself a compilation unit	 that alters the mutable state� the debugger must arrange

A Debugger for Standard ML

local

fun restoreBestPrev �target	time� �

let val �bestTime� bestCheckpoint� �

findPrevCheckpointInCache target

in if �target
 �currentTime andalso bestTime
 �currentTime�

orelse �target � �currentTime� then

�currentTime 	� bestTime�

resetState bestCheckpoint�

else ��

end

fun saveCurrentState �� �

let val checkpoint � getState��

in putInCache ��currentTime�checkpoint�

end

val maxKnownTime 	 time ref � ref �

in

fun resetTo �target	time� �

if target �
 �currentTime then

�restoreBestPrev target�

if �currentTime � target then

�replayTo target�

saveCurrentState ���

else ���

else ��

fun advanceTo �target	time� �

if target �
 �currentTime then

�restoreBestPrev target�

if �currentTime � target andalso

�currentTime � �maxKnownTime then

replayTo�min��maxKnownTime�target��

else ���

if �currentTime � target then

�recordTo target�

maxKnownTime 	� �currentTime�

else���

saveCurrentState ���

else ��

end

Fig� ��� Time�travel functions� Functions getState and setState are described in
Section ���
 recordTo and replayTo are de�ned in Figure ��
 and the cache access

functions are described in Section ����

�� A� Tolmach and A� W� Appel

to re�execute this interpolated unit at the same program time whenever the program

is replayed�

When the debugger recreates an old state by re�executing� the resulting state

is not identical to the one produced during the original execution� because values

allocated during re�execution will occupy di�erent memory locations� ML has no

notion of �pointer equality� for ordinary immutable values� i�e�� such values cannot

be distinguished by memory location� Thus� the fact that the original and re�created

states may point to di�erent copies of a value poses no semantic problems� in fact�

the debugger can�t tell the copies apart anyway��
A ref variable�s �value�� however�

is actually a pointer to a memory cell� and re�executing a ref creation would create

a new cell� This cell would not have been a�ected by any of the updates that were

made to the original cell� so looking up the ref variable would return a pointer to

a valid cell having the correct type� but typically containing the wrong value� To

avoid this problem� the debugger instruments ref creations so that actual creation

occurs only on initial execution� while on replay the original cell is reused�

�� Checkpointing the Mutable Store

The debugger uses an incremental delta list technique to checkpoint the mutable

store� Each creation and update of a ref cell is instrumented to add a pointer to the

cell to a global list� Arrays are handled similarly on an element�by�element basis� the

list entry for an array element consists of a pointer to the whole array plus an o�set�

When a memory is needed� the mutable store subsystem retrieves the global list�

removes duplicate cell pointers �which are typically numerous	� fetches a copy of the

current contents of each remaining cell� and produces a set of �pointer�value	 pairs�

the global list is then cleared� The resulting set of �pointer�value	 pairs describes

the incremental change �or delta	 in the store since the previous memory was taken�

The new memory consists of this delta plus a pointer to the previous delta�

By the time a memory is requested� the global list may contain many mutable cells

that are no longer reachable from the current continuation and whose values are

therefore not worth saving� Normally� these cells would have become garbage� but if

the global list holds pointers to them� the garbage collector must consider them live�

Our solution is to use weak pointers� i�e�� pointers that the garbage collector ignores

when tracing live data and are invalidated when the object pointed to is collected�

The global lists consist of such weak pointers� invalidated pointers are omitted from

the delta list� Once stored in a checkpoint� the pointers become ordinary and the

cells to which they point can never be collected so long as the checkpoint exists�

As program execution progresses� a series of incremental store deltas is generated�

each tagged with the checkpoint�s time� To reset the store forward to a given time t

from an earlier time t
� the system must consult� in order� the contents of all delta

lists with tags between t
 and t and reset the values of each cell in each list� To

�
 There is� however� a problem with space e�ciency� in SML�NJ the two copies of the
value will always occupy separate locations� though a cleverer runtime system might
merge them�

A Debugger for Standard ML ��

reset backward to time t from a later time� all delta lists with tags between � and

t must be consulted� If the same objects are updated repeatedly by the program�

they tend to appear on many delta lists� and so will be reset repeatedly� To improve

the e�ciency of the reset operation� the system merges adjacent deltas tagged t��t�
into a single delta t�

�
whenever the delta at t� is no longer referenced directly from

a checkpoint� To determine when a delta is no longer needed� the system keeps a

weak pointer to it and waits for that pointer to be invalidated�

As explained in Section ��
� actual ref and array creations occur only during

recording� on replay� the object created originally is reused� To arrange this reuse�

the debugger records a special log of mutable object creations and uses it to guide

replay� a pointer into this log is part of a mutable store memory object� Reuse is

necessary only if the original object is still referenced from some continuation� i�e��

still live independently of its appearance in the log� Therefore� log entries use weak

pointers and a new object is created on replay if the corresponding entry pointer

has been invalidated�

The instrumentation of creations and updates described above is either inserted

in line �for ref creation and assignment	 or placed in special versions of library

routines �for the array operations	� This instrumentation violates ML�s typing

rules� The global list itself contains pointers to cells of di�erent types� Moreover�

to remove duplicate update entries the debugger uses a type�unsafe algorithm that

involves marking ref cells� The algorithm operates in linear time and requires no

extra space �Tolmach� �
	� There are type�safe algorithms that take linear time

and linear extra space� or take quadratic time�

The SML�NJ garbage collector maintains a �store list� that tracks stores of young

generation pointers into old generations� With minor modi�cations� this list could

be used as the debugger�s global update list� An earlier version of our debugger

did so� we switched to an instrumentation approach to decrease the debugger�s

dependence on the collector�s implementation�

�� Stream I�O

Debugger support for repeatable stream I�O is in a special version of the I�O

library� Stream input performed via this library is logged during recording phase�

on replay� input is taken from the log� At present� the log is kept in main memory�

it could be kept on disk instead� The state of an input stream� as recorded in a

memory� is a pointer into the log� In principle� logging of input from �les that do

not change during execution could be avoided� a pointer into the �le itself could be

used to represent the stream�s state� We have not implemented this optimization�

Programs that interact with their environment by performing I�O or receiving

signals a�ect that environment during time travel� Advances beyond the maximum

previously known time generally act like normal execution� input is requested� sig�

nals are accepted� and output to all devices is displayed or written in the usual

way�

Speculative computation� e�g�� for location breakpointing� introduces a di�culty�

if the user has asked to break at a particular location� the debugger must not show

�
 A� Tolmach and A� W� Appel

output �or� worse yet� ask for input	 that actually occurs after the breakpoint has

been reached and passed over� A simple solution� at the cost of increased overhead

for I�O events when executing speculatively� is to test the predicate before each

potentially visible I�O and terminate forward execution if the predicate is true�

When resetting to a known time� the debugger does not reverse side�e�ects on the

�le system or other parts of the environment that hold state� it leaves the outside

world una�ected� The user terminal� however� is treated as a stateless device� the

debugger supports two terminal I�O modes when resetting forward to a known

time� In noisy mode� the user sees the same terminal I�O as occurred during initial

execution� the same output is displayed� and input from the terminal is simulated by

the debugger and echoed so that input and output are correctly interleaved� In quiet

mode� intended for implicit time�travel operations used internally by debugger� no

I�O is visible�

�� Checkpoint Caching

Average re�execution time� and hence average total reverse execution time� can be

minimized by keeping as many checkpoints as possible� But the debugger holds all

checkpoint data in the heap� under the current SML�NJ garbage collector� this ap�

proach e�ectively constrains checkpoint storage to �t in main memory� which limits

the number of checkpoints that can be kept� Therefore� the debugger maintains a

cache containing checkpoints that are expected to be useful�

The cache is simply a set of checkpoints� ordered by time� It is accessed by two

routines�

findPrevCheckpointInCache�time���time � checkpoint�

returns the cache entry at or most nearly preceding its argument�

putInCache��time � checkpoint���unit

inserts its argument into the cache if there is room�

The targets of explicit user jumps are usually clustered in short intervals of

the execution time line� typically tens to thousands of events long� separated by

wide gaps that are never visited� The targets of implicit jumps made in support

of eventRecordAt are to events on the static or dynamic chain� These time�travel

patterns suggest that the cache should include entries spaced evenly throughout

execution history� with additional entries near recent time�travel targets�

Checkpoints are generated at the end of every advanceTo or resetTo� i�e�� at

the target times of explicit and implicit jumps and also at periodic intervals during

untargeted execution� as governed by the timeDelta parameter �see Figure ��	� The

value of timeDelta therefore has a major in�uence on the number of checkpoints

generated during execution� Obviously� most of these checkpoints are not useful� so

our cache replacement policy must be able to weed them out easily� Evidently� the

policy should contain an LRU component� since we expect recently visited targets to

be revisited� However� a pure LRU policy allows arbitrarily large gaps to appear in

the cache set� so we have developed an alternative heuristic that favors retention of

A Debugger for Standard ML ��

checkpoints that would be most expensive to recompute� Experiments show little

di�erence between these heuristics� probably because cache replacement is fairly

rare�

The debugger controls cache size on the basis of memory availability rather than

by maintaining a �xed number of entries� Memory availability is measured as the

ratio r between physical memory size and live�data size� The higher the ratio� the

less frequently garbage collections will be needed� and the better overall system

performance we can expect� Normally� live�data size is a �xed characteristic of the

user program� so SML�NJ simply lets r grow as large as the available physical

memory size allows�

However� the debugger can control the amount of live data it requires by varying

the size of the checkpoint cache� so we mustmake some a priori choice of good target

ratio r
� Appel�s experiments ��
� page ��	 suggest using a value between � and

�� we somewhat arbitrarily take r
 � �� The debugger�s cache sizing policy allows

insertions if r � r
� if r � r
� the debugger attempts to delete enough entries to

bring r back to r
 and retries the insertion� This simple feedback mechanism keeps

r near r
� but is rather expensive� because accurately calculating r requires a major

garbage collection�

Since eventRecordAt is typically called repeatedly with the same set of time

arguments �e�g�� the binding times for global variables	� it makes better sense to

memoize the function independently from the checkpoint cache� so that a given

event record need be reconstructed at most once� Memoization of siteNumber and

binding �elds can be enabled separately from memoization of boundValue �elds�

since the former are accessed more frequently and take only a small �xed amount

of space per event� whereas the latter can be inde�nitely large� Memoization for

eventRecordAt is implemented using a separate hash table� which is also updated

by putInCache�

� Performance

To assess the debugger�s practicality� we measured its performance on real programs�

The benchmark suite consisted of a program implementing the game of Life �Reade�

��	� running �� generations of a glider gun� Simple� a spherical �uid�dynamics

program originally developed as a FORTRAN benchmark �Crowley et al�� ���	�

the Knuth�Bendix completion algorithm processing some axioms of geometry� a

program to build a dictionary using RedBlack trees from an input of ������� in�

tegers� a machine�generated Lexer for ML that counts tokens� run on a �����line

input �le� UnionFind� a program that performs ����� union and �nd operations

with path compression on a database of strings� and a TermRewriter originally

written in Scheme �Kamin� ��	� performing symbolic di�erentiation on polyno�

mials� The benchmarks ranged in size from �� to ��� lines of ML� Compile times for

the uninstrumented� optimized programs ranged from ��� to ���� seconds and code

size ranged from � to � KB� Live data size ranged from � to �
�� KB and total

execution time ranged from ��� to ���� seconds� Some additional characteristics of

the benchmark suite are shown in Table ��

�� A� Tolmach and A� W� Appel

Table �� Benchmark event characteristics�

Millions of � �
Sites� Events Events� Store I�O

Key Name Linea Executedb Instructionc Eventsd Eventse

l Life ��� ���� ���� � � ����
s Simple ��� ���� ���� ���� � ����
k Knuth�Bendix ��� ��� ���� � ����
r RedBlack �� ���� ���� ��� �
x Lexer ��� ��� ��� ���� � ����
u UnionFind ��� ��� ���� ��� ����
t TermRewriter ��� ��� ���� � �

a Average number of instrumentation sites per source line �after coalescing	�
b Total for a simple execution of the program�
c Average number of events executed for each machine instruction executed by the unin�
strumented program� a measure of dynamic event density�

d Dynamic percentage of executed events that alter the mutable store�
e Dynamic percentage of executed events that perform stream I�O�

Benchmarks were run on a MIPS Magnum ���� workstation with �
� MB of

memory� �
KB direct�mapped instruction cache� and �
KB direct�mapped write�

through data cache� under the RiscOs ���� operating system� Benchmarks used a

variant of SML�NJ version ���� The benchmarked version of the debugger built

event records lazily� coalescing events where possible� and used speculative compu�

tation to support location breakpoints�

��� Measuring Instrumentation Overhead

We consider �rst the time and space overheads introduced by instrumentation�

by measuring execution under debugger control without taking checkpoints� We

execute each benchmark from beginning to end� without performing any debugging

operations� Figure �� shows how the execution times of each benchmark compare

under the di�erent compilation disciplines�

On average� instrumentation slows program execution by a bit less than � times

�again� in the absence of checkpointing	� though individual benchmarks have widely

varying behavior� UnionFind runs particularly slowly under under the debugger�

this anomaly disappears if the overhead of logging updates and I�O is excluded

�debugger nolog	� which is not surprising since UnionFind has the highest frequen�

cies of store update and I�O events among the benchmarks�

We have no machine�based debugger for ML for comparison� but we can make a

rough estimate of how such a debugger would perform� It would su�er no slow down

from instrumentation� but it would need to inhibit some optimizations to support

expected behavior� Many debuggers turn o� optimization altogether� wholly unop�

timized SML�NJ code runs about � times slower than normal code� hence about

A Debugger for Standard ML ��

���

���

���

���

���

����

����

����

����

�����

���

normal

���

debugger

t

u

x

l

r

k

s ���

unoptimized

t

u
xl

r

k
s

����

interpreted

t

u

x

l

k

���

debugger
nolog

t

u

x

l
r

k

s

Relative
Execution
Times

Fig� ��� Relative controlled execution costs �measured as the sum of user� garbage
collection� and system times	 under various compilation disciplines described in the text�
The vertical scale is logarithmic
 the labels indicate the ratio of execution time for each
discipline to that of the normal discipline� The thick bar is the geometric mean of the
benchmark time ratios� The thin bars marked with letters indicate the time ratios for
the individual benchmarks
 see Table � for the key� Two of the interpreted benchmarks
were aborted when they didn�t complete within one hour� so the geometric mean time

ratio shown for the interpreted discipline is arti�cially low�

�� A� Tolmach and A� W� Appel

comparably with our debugger��� We could expect a well�engineered machine�based

debugger to do somewhat better than this� since not all optimizations are fatal to

debugging� but not as well as unoptimized code� Another approach to debugging

is to use an interpreter� but interpreted code runs one to two orders of magnitude

slower than any of the compiled approaches�

Code generated under the debugger is� on average� �ve times larger than normal

code� There is relatively little variation in code size expansion from one benchmark

to another� By comparison� the unoptimized discipline causes code size to increase

by an average factor of three� Increased code size is not in itself a signi�cant problem�

but compile time also increases with code size at a somewhat superlinear rate�

For Simple� the largest benchmark� a normal compile time of about one minute

corresponds to a debugger compile time of more than �ve minutes� which is too

long for use in edit�compile�test cycles�

One way to reduce code size and compilation time at the expense of execution

time is to implement the event instrumentation code as a true function instead

of in�lining it� Experiments on earlier versions of the debugger suggest that this

technique could cut compilation time by ������ and increase execution time by

������ For large programs with short execution times� another option is to inter�

pret the instrumented code� Since instrumentation is performed before translating

abstract syntax to ��language� the debugger can operate in interpretive mode with�

out modi�cation� Execution will be slow� but the time from edit to completed test

might be reduced� Compiling the instrumented code with some optimizations dis�

abled is another option�

To see how much live data the instrumented program generates compared to

normal execution� we compare live�data pro�les measured over the course of the

execution� omitting checkpoint storage� Each pro�le is constructed by measuring

the amount of live data at a selection of frequently executed sites� The benchmarks

can be divided into two distinct classes based on their normal execution pro�les�

RedBlack� Knuth�Bendix� and UnionFind build internal data structures that grow

steadily �typically linearly	 during execution� Life� Lexer� TermRewriter� and Simple

use an essentially �xed amount of live data �although the content of the data may

be changing	�

Figure �� shows pro�les for a characteristic member of each class� For the �rst

class of benchmarks� the debugger discipline generates a constant factor more live

data than normal� Comparison with the debugger nolog pro�le shows that log space

often accounts for much of this increase� this fact holds even for RedBlack� for which

less than �� of events are store updates� and is much more marked for UnionFind�

with �� store update events� The unoptimized discipline also generates a constant

factor more live data� though the factor is smaller� The second class of benchmarks

shows more varied behavior� While the benchmark shown� Life� generates only a

constant amount of additional data under the debugger� other benchmarks that

have substantial numbers of store events� such as Lex� generate a linearly increasing

�� In fact� the �unoptimized� discipline still performs certain optimizations� such as those
associated with CPS conversion� that cannot be turned o� in SML�NJ�

A Debugger for Standard ML ��

RedBlack

Program Execution Time

�

����

�����

�����

�����

�����

�������
���
���
���
���
���
���
������
���
����
���
����
���
���
����
������
����
���
����
����
���
����
���
�������
���
����
����
����
���
����
�������
���
����
����
����
����
���
����
�������
����
����
���
����
����
����
�������
���
����
����
����
����
����
���
�������
����
����
����
����
����
����
����
�������
����
����
����
���
����
����
��������
�
��
��
��
�
��
��
�
��
��
��
�
��
��
��
�
��
��
��
�
��
��
�
��
��
��
�
��
��
��
�
��
��
��
�
��
��
��
�
��
��
�
��
��
��
�
��
��
�
����� �� �� �� �� �� �� �� �� ��

�������
��
�
��
��
�
��
��
��
�
��
��
��
��
��
��
����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
�����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�����
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
�����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�����
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
�����
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
����
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
�����

��
��
��

��
��

��
��

��
��

�������
��
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
�����
��
�
��
��
��
�
��
��
�
��
��
��
�
��
��
��
�
��
��
�
��
��
��
�
��
�����
��
�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
�����
��
�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
�����
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
�����
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
�����
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
�����
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
�����
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
�������
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
�

���

��

��

��

��

��

��

��

��

��

�

������
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
�����
��
�
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
����
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
�����
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
�����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�����
�
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
�����
��
��
�
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
����
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
�
��
��
��
�����
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
������
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
�
�

���
��
��
��

��
��

��
��

��
��

�

������
��
��
���
��
��
��
��
��
��
��
��
������
��
��
���
��
��
��
���
��
��
���
��
�����
���
��
���
��
���
��
���
��
��
���
��
������
��
���
��
���
��
���
��
���
��
��
���
��
������
��
���
��
���
���
��
���
��
���
��
���
�����
���
��
���
���
��
���
��
���
��
���
��
������
��
���
���
��
���
��
���
��
���
��
���
�����
���
���
��
���
���
��
���
��
���
���
��
������
���
��
���
��
���
���
��
���
���
��
���
����
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
����

��
��
��

��
��

��
��

��
��

�

Life

Program Execution Time

�

��

��

��

��

��

Live
Data
�KB	

�������
���
����
���
���
���
�������������������������

�
��
��
��
�
����������������������������������

��
��
��
�
��
���������������������������

����
�����
����
����
����
�������������������������������������

��
���
���
���
���
���

��� � �� �� � �� � �� �� � ����
�
��
�
�
�
����
���
����
���
���
���
��

��
��
�
��
�
��
��
�
��
�
��
��
�
��
������������
�����������������

���
��
���
��
��
���
��
��
���
��
���
��
��
��
�
��
��
�
��
�
��
��
����������������������������

��
���
���
���
���
������
��
��
������
����
�����
����
�����
����
��

�������������������
�����������

���
��� �

�
�

�
���� ���

�

���
��
�
�
��
�
�
��
�
��
�
���
��
��
��
��
��
��
�
��
��
��
��
��
���
�
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
���
��
��
����
��
�
��
�
��
�
��
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
���
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
���
���
����
���
���
����
���
���
����
���
��
��
��
�
��
��
�
��
��
��
�
��
��
�
��
��
��
�
��
��
�
��
��
�
��
��
��
�
��
��
�
��
��
��
�
��
��
�
��
��
��
�
��
��
�
��
��
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
���
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
���
��
��
��
�
��
��
�
��
��
�
��
��
�
��
��
��
�
��
��
�
��
��
�
��
��
�
��
��
��
���
��
��
����
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
���
��
��
��
�
��
��
��
�
��
��
��
�
��
��
��
�
��
��
����
���
���
���
���
���
������
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�

��
�
�

��

�

�
�

�

�

�

��

�

� �

����
�
��
�
�
�
������������������������

����
���
���
����
���
�������
��
��
����������������������������������

�
��
��
��
��
��
��
��
���������������������������

����
�����
����
����
����
��������
��
��
�����������������������������

��
���
���
���
���
������
��
��
���������������������������������

���
��
��
���
��
���

��� � �� �
� � �� � �� �� � �

�
�
�
��
�
�
������
���
����
���
���
���
��

�
�
��
��
��
��
��
��
��
������������
�����������������

���
��
���
��
��
���
��
��
���
��
���
��
��
��
�
��
��
�
��
�
��
��
����������������������������

��
���
���
���
���
�������������������������������������

��
���
��
��
���
��
��

���
� �� �

�
�

�
� � �� �� �

�

Fig� ��� Live data measured for RedBlack and Life� without checkpointing� Execution
disciplines� normal ��	� unoptimized ��	� debugger ��	� debugger nolog ��	� naive ��	�

The points of each pro�le are connected for graphical clarity
 the connecting lines should
not be used for interpolation�

amount of extra data� primarily due to logs� The same behavior occurs with the

unoptimized discipline� probably because of the loss of tail�recursion elimination�

We also show how much live data is generated by an implementation of the naive

event record creation scheme described in Section ��
�generally much more than

by our lazy event record scheme� Of course� checkpoints are needed to make the

lazy scheme reasonably e�cient� so we can�t claim an overall space savings�

��� Time vs� Space

The debugger�s time and space use cannot be measured independently� On the

one hand� like any garbage�collected system� SML�NJ will run faster given more

memory� On the other hand� the debugger takes advantage of increased memory

to enlarge its checkpoint cache� which should make reverse execution faster but

will slow garbage collection� To compare performance under di�erent disciplines�

we measure execution time over a range of memory sizes for each discipline� and

compare overall time vs� space curves� Figure �� shows two characteristic sets of

curves� Each point on the curve shows the total elapsed time for a single simulated

debugging session with total system memory held constant� Each debugging session

is driven by a synthetic command script designed to represent typical but simpli�ed

patterns of user behavior� including some explicit reverse execution� For the normal

and unoptimized disciplines� which don�t implement reverse execution� we estimate

the execution time by charging the cost of re�executing from the beginning of the

program each time the script performs a reverse motion� This estimate is unfair�

since a user without a reverse�execution debugger would probably avoid such re�

executions� but it provides a rough basis for comparison�

To compare the debugger�s performance with other systems� we construct curves

�� A� Tolmach and A� W� Appel

TermRewriter

��� ��� ��� ��� ���� ����

Memory Limit �MB	

�

� � � � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

����������
������������

������������
�������������������������

�������������������������
���������������������

���������������������������
���������������������������������

������������������������������������
�������������������������������

������������������������
������������������������

��������������

�

� � � � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���
���

��
��

�

� �

� � � �

�

�

�

�

�

�

�

�

�

�

�

�

���������������������������������������
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
���

��

�

� �

� � � �

�

�

�

�

�

�

�

�

�

�

�

��������������������������������������
�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
��
�
���

���

Knuth�Bendix

��� ��� ���� ���� ��� ���� ���� ����

Memory Limit �MB	

secs
�

�

��

��

���

���

���

����

����
�

� � � � � � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��������������
�������������������

�����������������������
���������������

���
��

�

� � � � � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��
��

�

� � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

� � � �

��
���
���
���
���
���
���
���
���
���
���
���
��
���
���
����
��
��
��
���
��
��
��
���
��
��
��
���
��
��
��
���
��
��
���
��
��
��
�������
�����
������
������
������
�����
������
������
�����
������
������
������
���

Fig� ��� Time vs� Space for TermRewriter and Knuth�Bendix� with checkpointing�
Execution disciplines� normal ��	� unoptimized code ��	� debugger ��	� debugger without

memoization ��	� The checkpointing interval for the debugger disciplines was ������
events for TermRewriter and ������� events for Knuth�Bendix� Each plotted point

represents a single execution of a particular debugging command script with memory
held �xed� Elapsed times �user�gc�system time	 are shown on a logarithmic scale� The
points for each discipline are connected for graphical clarity
 the connecting lines should
not be used for interpolation� Runs that exceeded the available memory aborted
 their
symbols are shown above the graph at the appropriate memory coordinate� and they are

connected to the curve with a dotted line�

for fully optimized normal execution and unoptimized execution� We also show the

e�ects of disabling memoization� Each curve typically shows a clear �knee� at a

particular memory size� at smaller memory sizes� execution time increases sharply

or the system halts due to lack of memory� The memory size at the knee is a

�natural�minimumfor �comfortable� execution� although in many cases the system

can execute with less memory at a slower speed� Increasing memory above the knee

produces little bene�t under any of the measured disciplines� We can compare knees

to estimate the �extra� memory needed for the debugging disciplines�

By examining many such sets of curves� we can draw some basic conclusions

about performance� The checkpointing interval has a signi�cant e�ect on script

execution time� The best checkpointing interval for each benchmark was chosen by

running the benchmark repeatedly under each script with an interval of ������ ������

�������� � � � ���������� events� The best interval varies with program and script� but

consistently lies in the range ����� to
������ events� roughly ������ msec of user

program CPU time on our hardware� within this range� most of the benchmarks are

fairly insensitive to the exact value chosen� Thus� while being able to change the

checkpointing interval may be useful� a default value seems satisfactory for most

programs�

The debugger uses much more memory than normal execution� How much more

varies widely among the benchmarks� for example� debugging Lexer requires about

A Debugger for Standard ML �

three times as much memory as running it normally� while debugging Simple seems

to require about �ve times as much� The ratio is also sensitive to the debugging

script used� for Life� it varied from four to eight� If the memory to run the debug�

ger comfortably is available� its speed is competitive with the hypothetical debug�

ging approaches for most benchmarks� We estimate that a machine�based debugger

should give performance somewhere in the band between the normal and unop�

timized curves� For scripts involving reverse execution� the debugger�s execution

time lies in or below the machine�based band for all benchmarks except UnionFind

and Life �under one script	� UnionFind is substantially slowed by its need to log

mutable memory updates� For scripts not involving reverse execution� a machine�

based debugger will generally do better than ours and a debugger based on the

naive record event approach �which doesn�t require time travel	 usually does about

as well� these facts suggest that time travel is not worth implementing solely for

internal use by other parts of the debugger�

One way to save space at the expense of more time is to disable memoization�

The curves shown for this discipline in Figure �� are typical� there is a large increase

in execution time� but the debugger can continue executing with less memory� A

milder version of the same e�ect can be seen by disabling only memoization of

bound values in event records�

��� Query Times

Since the debugger is an interactive tool� it must service requests promptly� A rea�

sonable� though arbitrary� standard is that most commands should require less than

� second of elapsed time� Commands in this class include variable lookup� chang�

ing scope along the call stack� showing a call frame� and single�stepping forward

or backward� Commands that require an arbitrary amount of execution� such as

�proceed to next breakpoint�� are excluded from this standard�

We measured elapsed time for the above commands for each benchmark under

each of our simulation scripts� using the lowest memory size �comfortable� for all

scripts� Nearly all the tested commands executed in less than � second� many ran

an order of magnitude faster� Execution time exceeded
 seconds only for showing a

frame under Life and Knuth�Bendix ���� of calls required as much as �� seconds	

and for most commands under Simple �about ��� of commands to change scope�

show a frame� and single�step backward required up to �� seconds	� The �show

frame� problem may re�ect the high cost of dynamic type reconstruction� which

invokes an expensive uni�cation algorithm and has not been optimized� The results

for Life probably include a run in which a major garbage collection occurred during

the execution of a �show frame�� The poor times under Simple� our largest bench�

mark� may be due to the cost of saving and restoring the program�s large mutable

state when time�traveling�

�� A� Tolmach and A� W� Appel

� Discussion and Related Work

We have used source�code instrumentation to build a simple� portable debugger

for a complex language with an optimizing compiler� Our debugger supports time

travel� which� in addition to being a valuable user�level feature� is used to implement

conventional debugger features elegantly and e�ciently�

Despite the existence of several working compilers for Standard ML� and a sub�

stantial body of users� there are no other full�featured source�level debuggers for

the language� This situation may be due in part to lack of demand� there is con�

siderable anecdotal evidence that compile�time type checking leads to relatively

fewer runtime bugs than in conventional languages �Cardelli� ���	� and a debug�

ger is therefore less important� Limited debugging support� in the form of tracing�

has been developed for two non�standard ML implementations� ANU ML �Ophel�

��	 and CAML �Projet Formel� INRIA�ENS� ��	� Both these systems support

tracing by patching the internal representation of functions� Neither prints poly�

morphic variable values correctly�

Our debugger is independent of the rewriting� optimization� and code�generation

phases of the SML�NJ compiler� During the course of this research� these phases

have been modi�ed several times� without requiring any changes to the debugger�

The debugger has also become available on several new target architectures as a

result of back�end ports� without any changes to the debugger�s code� Currently�

the debugger does rely on the compiler�s front end for parsing and type informa�

tion� these dependencies could be reduced if the compiler exported the ability to

manipulate abstract syntax directly� and� in principle� they could be avoided by

preprocessing the source�

The debugger is simple� It is implemented in about ���� lines of ML� versus

about ������ for the compiler as a whole��� Supporting debugging is much simpler

than compiling because the debugger is back�end independent� Most machine�based

debuggers supporting multiple architectures are larger relative to their compilers�

for example� gdb is roughly the same size as gcc �about ������� lines of C	� Most

of the complexity in our debugger stems from the complexity of ML itself� rather

than from elaborate debugger algorithms�

�� Instrumentation

Automated instrumentation of source code is not a new idea� BUGTRAN �Ferguson

and Berner� ���	� one of the �rst source�level debuggers� transformed FORTRAN

source programs to support batch debugging� Balzer�s Extendable Debugging and

Monitoring System �EXDAMS	 ���	 instrumented FORTRAN source�code to

generate a �history tape� containing all conceivably interesting information about

the course of execution� Later� this tape could be replayed� forward or backward� to

study the program�s behavior� Our approach is very similar� although we support

�� This �gure for the compiler includes the code generator for just one target architecture�
The code generators for additional architectures average about ���� lines each�

A Debugger for Standard ML ��

interactive rather than batch�based debugging� LISP systems have long used macro

packages �e�g���Dybvig et al�� ���		 and dynamic scope to implement debuggers

by automatically replacing user�de�ned functions with instrumented variants that

perform tracing� breakpointing� etc�

Debugging instrumentation may also be inserted at lower levels� Re�ective sys�

tems �Friedman and Wand� ���� Maes� ���� Smith� ��
	 give the ability to

examine and alter the internal state of a language interpreter from within the

source language being interpreted� Re�ective mechanisms can be used to modify

the normal operation of the interpreter to support debugging features such as single�

stepping and tracing� Hanson ����	 describes a symbolic debugger for SNOBOL�

programs built using event associations� a mechanism for automatically invoking a

source�language function each time an event of interest occurs during program exe�

cution� Hanson�s approach has much in common with ours� whereas he implements

the association mechanism inside the runtime system� we make associations explicit

in the modi�ed source code� and rely on general�purpose optimization techniques

to render the resulting code e�cient�

Kishon� Hudak� and Consel ���	 describe how a standard continuation seman�

tics for a language such as Haskell may be systematically transformed into a non�

standardmonitoring semantics in which the domain of programmeanings �answers	

is enhanced to include monitoring results as well as the original answer� A monitor

is implemented using two levels of partial evaluation� First� a standard interpreter

is specialized with respect to a monitoring speci�cation to yield a monitoring in�

terpreter� Then� this interpreter is specialized with respect to a user program to

yield an instrumented version of the program� which� like our instrumented code�

is fed to an ordinary compiler� By comparison� our hand�crafted instrumentation

process appears quite ad�hoc� but it is orders of magnitude faster than the partial

evaluation approach� and produces more e�cient� direct�style instrumented code�

�� Time Travel

Our debugger�s user features� which include value querying� breakpointing� and

single�stepping� are fairly ordinary �Beander� ���� Linton� ��� Stallman and

Pesch� ��	� our system is unusual because it integrates these features with a �ex�

ible time�travel mechanism� Although reverse execution is not provided by many

commercial debuggers� it has a long research and prototyping history� Most pre�

vious systems have implemented reverse execution by building a log of execution

steps or memory updates �Balzer� ��� Grishman� ���� Teitelbaum and Reps�

���� Teitelman� ���� Zelkowitz� ���	� such systems typically limit the size of

the log� and hence the number of reverse execution steps permitted� Some recent

systems �Agrawal et al�� ��� Choi et al�� ��	 maintain information about the

entire execution history by taking what amount to incremental checkpoints at se�

lected program points� in principle� these systems could support reverse execution

to arbitrary points� as we do� by restoring a suitable checkpoint and re�executing

as necessary�

Reverse execution is usually supported as a meta�level facility external to the

�
 A� Tolmach and A� W� Appel

standard semantics of the language being debugged� However� many of the seman�

tic and implementation issues uncovered in generalizing and automating explicit

�undo� facilities for programming languages �Archer et al�� ���� Leeman� ����

Teitelman� ���� Vitter� ���	 are also relevant to replay debugging� Some Prolog

debuggers use the language�s built�in backtracking model to support limited reverse

execution �Bowen et al�� ���� Byrd� ���	�

Ordinary debuggers typically con�ate the notion of an event site with that of an

event execution� sometimes relying on a repetition count to indicate which execution

is wanted �e�g�� �stop on the �fth repetition of the call at line ���	� Identifying

events via simple integer �time� values has many advantages for both the user and

the debugger�s internal bookkeeping needs� We use a machine�independent software

clock� but there are other ways to provide the essential features of a clock� namely

predictability� monotonicity� and an �alarm� feature� One alternative approach is

to count machine instructions� either in hardware �Cargill and Locanthi� ���	

or software �Mellor�Crummey and LeBlanc� ��	� and cause an interrupt after a

certain number of instructions have been executed� Another� suitable for heap�based

languages like SML�NJ� is to use the allocation pointer as a sort of clock whose

alarm is set by altering the heap limit �Wilson and Moher� ��	�

Unfortunately� times have little intrinsic meaning for the user� A debugger should

also be able to locate events speci�ed by other predicates� involving site� vari�

able values� and meta�information such as the length of the call chain� Debuggers

supporting arbitrarily complicated predicates have mostly used single�stepping to

locate matching events �Feldman and Brown� ���� Grishman� ���	� which is pro�

hibitively slow��� Our implementation of speculative computation shows that� for

monotone predicates� a binary search based on time travel can be much more e��

cient� Our approach was inspired by Cargill and Locanthi ����	� a similar idea was

used in more limited fashion in IGOR �Feldman and Brown� ���	� Several exist�

ing systems use reverse execution primarily as a foundation for more sophisticated

debugging aids� These include visualization �Teitelbaum and Reps� ���	� ��ow�

back analysis�� the automated display of the assignments that have led a variable

to have a particular value �Balzer� ��� Choi et al�� ��	� and dynamic program

slicing �Agrawal et al�� ��	� We could build similar tools on top of our time�travel

primitives�

�� Checkpointing

One important source of simplicity in the debugger is the use of callcc to capture

most of the program�s state at a checkpoint� Interestingly� we rely heavily on the

ability to throw to a continuation more than once� most other applications� such

as exceptions and coroutines� seem to need only one�shot continuations� callcc is

e�cient in SML�NJ� but even if it were slower� it would remain an elegant way to

�� This characterization ignores the possibility of hardware support mechanisms such as
memory protection traps� which can sometimes be used to speed up debugger execution
substantially�

A Debugger for Standard ML ��

gather checkpoint information without requiring the debugger to understand the

compiler�s back end�

The debugger could be implemented more elegantly and portably if SML�NJ

supported �rst�class stores as well as �rst�class continuations� First�class stores

might be implemented using delta lists �Morrisett� ��	� persistent trees �Johnson

and Duggan� ���	� or page�level checkpointing mechanisms �Archer et al�� ����

Feldman and Brown� ����Wilson and Moher� ��	� These schemes rely on support

from the underlying runtime system� especially the garbage collector�

A more sophisticated� multi�generational garbage collector would also allow the

debugger to maintain a larger checkpoint cache� under such a collector� checkpoints

should automatically migrate to older generations and eventually to backing store�

It would also be possible for the debugger to place some checkpoint data onto

backing store explicitly� this would be easy for external input logs� whose contents

are already formatted for I�O� but much harder for continuations or store update

lists� which contain pointers that need to be forwarded during garbage collections�

�� Performance

Debugger performance is adequate for small programs� Execution speed under de�

bugger control is typically about three times slower than normal execution� this

makes the debugger performance competitive with our estimates for hypotheti�

cal machine�based debuggers and much better than for interpretation� Debugger�

controlled execution generates more live data than normal execution� although the

worst e�ects of a naive approach are avoided by generating event records lazily�

Still� the debugger requires large amounts of space for logs and checkpoints in or�

der to run �comfortably�� although it can continue to operate at slower speed even

when few checkpoints are cached�

For large programs� these performance overheads limit the debugger�s practical�

ity� A further serious drawback to using the debugger for large programs is that

the increase in source�code size caused by instrumentation increases compilation

times by roughly a factor of �ve� and the SML�NJ compiler is already slow� It is

possible to trade smaller code size for increased execution time by not in�lining the

instrumentation code at events� A better long�term solution would be to speed up

the compiler enough so that it compiles even large instrumented programs quickly�

�� Modularity

A related problem is that the debugger does not handle modular programs well� At

present� all parts of the user program that perform side�e�ects or manipulate higher�

order functions must be instrumented in order for the debugger to function correctly

and securely� To simplify debugging a large system� users typically assume that some

�trusted� portions of the system� e�g�� library routines� are correct� They do not

wish to see the internal details of trusted functions or associated data structures�

The debugger itself should take advantage of trusted functions by instrumenting

�� A� Tolmach and A� W� Appel

them minimally� and� in the case of an imperative function� by logging only the net

side�e�ects of the function rather than its internal� individual side�e�ects�

It would be straightforward to introduce a user mechanism for declaring speci�ed

abstract units such as abstypes or structures� or perhaps entire source �les� to be

trusted� It should be possible to change these declarations at runtime� which would

require support for dynamic recompilation of selected units� Such a scheme would

resemble dynamic deoptimization �H olzle et al�� �
� Zurawski and Johnson� ��	�

Higher�order functions introduce another complication� a trusted library routine�

such as map� may invoke a non�trustworthy user function that requires debugging

support� and it is not clear how much contextual information from the invoking

library routine may be needed to understand the user function�s behavior�

Developing a mechanism for users to specify the net side�e�ects of trustworthy

units is a harder problem� but it represents the key to making the debugger gen�

uinely extensible� Our application of the debugger technology to ML Threads �Tol�

mach� �
	 o�ers several examples�

� Acknowledgements

David Tarditi designed and implemented the original version of the dynamic type

reconstruction algorithm� Adam Dingle designed and implemented the debugger�s

original emacs user interface�

References

Agrawal� H�� DeMillo� R� A�� and Spa�ord� E� H� ���	� An execution�backtracking
approach to debugging� IEEE Software� ���	�������

Aho� A� V�� Sethi� R�� and Ullman� J� D� ����	� Compilers� Principles� Techniques� and
Tools� Addison�Wesley� Reading� MA�

Appel� A� W� ����	� Garbage collection can be faster than stack allocation� Information
Processing Letters� ����	��������

Appel� A� W� ���a	� Runtime tags aren�t necessary� Lisp and Symbolic Computation�
���	���������

Appel� A� W� ���b	� Simple generational garbage collection and fast allocation�
Software	Practice and Experience� ���	���������

Appel� A� W� ���	� Compiling with Continuations� Cambridge University Press�

Appel� A� W� and MacQueen� D� B� ���	� Standard ML of New Jersey� In Wirsing�
M�� editor� Third Int
l Symp� on Prog� Lang� Implementation and Logic Programming�
volume ��� of Lecture Notes in Computer Science� pages ����� New York� Springer�
Verlag�

Archer� Jr�� J� E�� Conway� R�� and Schneider� F� B� ����	� User recovery and reversal
in interactive systems� ACM Transactions on Programming Languages and Systems�
���	�����

Balzer� R� M� ���	� EXDAMS�EXtendable Debugging and Monitoring System� In
Proceedings AFIPS ���� Spring Joint Computer Conference� volume ��� pages ����
���� Montvale� NJ� AFIPS Press�

Beander� B� ����	� VAX DEBUG� An interactive� symbolic� multilingual debugger� In
Proc� ACM SIGSOFTSIGPLAN Software Engineering Symposium on High Level De�
bugging� pages ������� Published as SIGPLAN Notices� ����	� Aug� ����

A Debugger for Standard ML ��

Bowen� D�� Byrd� L�� Pereira� F�� Pereira� L�� and Warren� D� ����	� Prolog��� User
s
Manual�

Byrd� L� ����	� Understanding the control �ow of prolog programs� In Proc� Logic
Programming Workshop� Debrecen� Hungary� pages �������� Also Univ� of Edinburgh
Dept� of Arti�cial Intelligence Research Paper ����

Cardelli� L� ����	� Compiling a functional language� In Proc� ���� ACM Conference on
Lisp and Functional Programming� pages ��������

Cargill� T� A� and Locanthi� B� N� ����	� Cheap hardware support for software debugging
and pro�ling� In Proc� Second International Conference on Architectural Support for
Programming Languages and Operating Systems� pages ������

Choi� J��D�� Miller� B� P�� and Netzer� R� H� B� ���	� Techniques for debugging parallel
programs with �owback analysis� ACM Transactions on Programming Languages and
Systems� ����	��������

Clinger� W� and Rees� J� ���	� Revised� report on the algorithmic language Scheme�
LISP Pointers� IV��	������

Coutant� D� S�� Meloy� S�� and Ruscetta� M� ����	� DOC� A practical approach to source�
level debugging of globally optimized code� In Proc� SIGPLAN
�� Conference on
Programming Language Design and Implementation� pages �������� Published as SIG�
PLAN Notices� ����	� July ����

Crowley� W� P�� Hendrickson� C� P�� and Rudy� T� E� ����	� The SIMPLE code� Technical
Report UCID ������ Lawrence Livermore Laboratory� Livermore� CA�

Duba� B�� Harper� R�� and MacQueen� D� ���	� Typing �rst�class continuations in ML�
In Eighteenth Annual ACM Symp� on Principles of Programming Languages� pages
��������

Dybvig� R� K�� Friedman� D� P�� and Haynes� C� T� ����	� Expansion�passing style� A
general macro mechanism� Lisp and Symbolic Computation� ���	�������

Feldman� S� I� and Brown� C� B� ����	� IGOR� A system for program debugging via
reversible execution� In Proc� ACM SIGPLANSIGOPS Workshop on Parallel and
Distributed Debugging� pages �������� Published as SIGPLAN Notices� ����	� Jan�
���

Ferguson� H� E� and Berner� E� ����	� Debugging systems at the source language level�
Communications of the ACM� ���	���������

Friedman� D� P� and Wand� M� ����	� Rei�cation� Re�ection without metaphysics� In
Proc� ���� ACM Conference on Lisp and Functional Programming� pages ��������

Goldberg� A� and Robson� D� ����	� Smalltalk���� The Language and Its Implementation�
Addison�Wesley� Reading� MA�

Goldberg� B� and Gloger� M� ���	� Polymorphic type reconstruction for garbage collec�
tion without tags� In Proc� ���� ACM Conference on Lisp and Functional Programming�
pages ������ Published as LISP Pointers V��	� Jan��Mar� ���

Grishman� R� ����	� The debugging system AIDS� In Proc� AFIPS ���� Spring Joint
Computer Conference� volume ��� pages ����� Montvale� NJ� AFIPS Press�

Hanson� D� R� ����	� Event associations in SNOBOL� for program debugging� Software	
Practice and Experience� ���	��������

Haynes� C� T� and Friedman� D� P� ����	� Engines build process abstractions� In Proc�
���� ACM Conference on Lisp and Functional Programming� pages ������

Hennessy� J� L� ����	� Symbolic debugging of optimized code� ACM Transactions on
Programming Languages and Systems� ���	���������

Hoare� C� A� R� ���	� Hints on programming�language design� In Essays in Comput�
ing Science� pages ������� Prentice Hall� Keynote address to the ACM SIGPLAN
conference� Oct� ����

H olzle� U�� Chambers� C�� and Ungar� D� ���	� Debugging optimized code with dynamic
deoptimization� In Proc� SIGPLAN
�� Conference on Programming Language Design
and Implementation� pages ������ Published as SIGPLAN Notices� ����	� July ���

�� A� Tolmach and A� W� Appel

Hudak� P� and Wadler� P� ���	� Report on the programming language Haskell� A non�
strict� purely functional language� Version ���� Technical Report YALEU�DCS�RR�����
Yale University� Dept� of Computer Science�

Johnson� G� F� and Duggan� D� ����	� Stores and partial continuations as �rst�class
objects in a language and environment� In Proc� ��th ACM SIGACT�SIGPLAN Sym�
posium on Principles of Programming Languages� pages ��������

Kamin� S� N� ���	� Programming Languages� An Interpreter�Based Approach� Addison�
Wesley� Reading� MA�

Kaufer� S�� Lopez� R�� and Pratap� S� ����	� Saber�C� An interpreter�based programming
environment for the C language� In Proc� Summer
�� USENIX Conference� pages
��������

Kishon� A�� Hudak� P�� and Consel� C� ���	� Monitoring semantics� A formal framework
for specifying� implementing� and reasoning about execution monitors� In Proc� SIG�
PLAN
�� Conference on Programming Language Design and Implementation� pages
�������� Published as SIGPLAN Notices� ����	� June ���

Leeman� Jr�� G� B� ����	� A formal approach to undo operations in programming lan�
guages� ACM Transactions on Programming Languages and Systems� ���	�������

Linton� M� A� ���	� The evolution of dbx� In Proc� Summer USENIX Conference� pages
��������

Maes� P� ����	� Concepts and experiments in computational re�ection� In Proc� ����
Conf� on Object�Oriented Programming Systems� Languages� and Applications� pages
��������

Mellor�Crummey� J� and LeBlanc� T� ���	� A software instruction counter� In Proc�
Third International Conference on Architectural Support for Programming Languages
and Operating Systems� pages ������ Published as Computer Architecture News ����	�
Apr� ���

Milner� R�� Tofte� M�� and Harper� R� ���	� The De�nition of Standard ML� MIT Press�
Cambridge� MA�

Morrisett� J� G� ���	� Generalizing �rst�class stores� In Proc� ACM SIGPLANWorkshop
on State in Programming Langauges �SIPL
���� Copenhagen� Denmark� pages ������
Published as Yale University Dept� of Computer Science Tech� Rep� YALEU�DCS�RR�
���

Ophel� J� L� ���	� AIMLESS� A Programming Environment for ML� PhD thesis� The
Australian National University�

Projet Formel� INRIA�ENS ���	� Caml reference manual �version �����	� Technical
Report ���� INRIA�

Reade� C� ���	� Elements of Functional Programming� Addison�Wesley� Reading� MA�

Reppy� J� H� ���	� Asynchronous signals in Standard ML� Technical Report TR �������
Cornell University� Dept� of Computer Science�

Smith� B� ����	� Re�ection and semantics in a procedural language� Technical Report
MIT�LCS�TR����� Massachusetts Institute of Technology� Cambridge� MA�

Stallman� R� M� and Pesch� R� H� ���	� Using GDB� A Guide to the GNU Source�Level
Debugger �GDB version ����� Free Software Foundation� Inc�

Teitelbaum� T� and Reps� T� ����	� The Cornell Program Synthesizer� A syntax�directed
programming environment� Communications of the ACM� ���	���������

Teitelman� W� ����	� Interlisp Reference Manual� Xerox Palo Alto Research Center�

Tolmach� A� P� ���	� Debugging Standard ML� PhD thesis� Princeton University� Also
Princeton Univ� Dept� of Computer Science Tech� Rep� CS�TR�������

Tolmach� A� P� and Appel� A� W� ���	� Debuggable concurrency extensions for Standard
ML� In Proc� ACMONR Workshop on Parallel and Distributed Debugging� pages ����
���� Published as SIGPLAN Notices �����	� Dec� ��� Also Princeton Univ� Dept� of
Computer Science Tech� Rep� CS�TR�������

A Debugger for Standard ML ��

Turner� D� A� ����	� Miranda� A non�strict functional language with polymorphic types�
In Functional Programming Languages and Computer Architecture� volume ��� of Lec�
ture Notes in Computer Science� pages ����� Springer�Verlag�

Vitter� J� S� ����	� US�R� A new framework for redoing� In Proc� ACM SIG�
SOFTSIGPLAN Software Engineering Symposium on Practical Software Development
Environments� pages �������� Published as SIGPLAN Notices� ���	� May ����

Wand� M� ����	� Continuation�based multiprocessing� In Proc� ���� LISP Conference�
pages �����

Wilson� P� R� and Moher� T� G� ���	� Demonic memory for process histories� In
Proc� SIGPLAN
�� Conference on Programming Language Design and Implementation�
pages �������� Published as SIGPLAN Notices� ����	� July ���

Zelkowitz� M� ����	� Reversible Execution as a Diagnostic Tool� PhD thesis� Cornell
University�

Zellweger� P� T� ����	� Interactive Source�level Debugging of Optimized Programs� PhD
thesis� University of California� Berkeley� Also Xerox Corporation Palo Alto Research
Center Tech� Report CSL������

Zurawski� L� W� and Johnson� R� E� ���	� Debugging optimized code with expected
behavior� Unpublished manuscript�

