
A Critique of Standard ML

Andrew W. Appel�

Princeton University

revised version of CS-TR-364-92

November 12, 1992

Abstract

Standard ML is an excellent language for
many kinds of programming. It is safe, ef-
�cient, suitably abstract, and concise. There
are many aspects of the language that work
well.

However, nothing is perfect: Standard ML has
a few shortcomings. In some cases there are
obvious solutions, and in other cases further
research is required.

The Meta-Language of the Edinburgh LCF
theorem-proving system [12] evolved into a free-
standing programming environment [7] and then
into Standard ML [29, 26]. After further evolution
the language is fairly stable [31].

This is a critique of the language from two per-
spectives: the user's and the implementor's. The
�rst part of this paper describes why ML is a pleas-
ant language to use, and the second shows how some
of these language features are interesting to compile.
Then the third and fourth parts of the paper point
out some of the annoyances ML programmers and
implementors have to deal with.

�Supported in part by NSF grant CCR-9002786.

1 Why I like ML

In this section I list the reasons why I like pro-
gramming in ML, in decreasing order of importance.
Some features of the language for which ML is es-
pecially known fall surprisingly far down the list.

Safety

Certain programming errors cannot al-
ways be detected [by a compiler], and must
be cheaply detectable at run time; in no
case can they be allowed to give rise to
machine- or implementation-dependent ef-
fects, which are inexplicable in terms of
the language itself. This is a criterion to
which I give the name security.

C. A. R. Hoare, 1973. [13]

One of the most pleasant things about ML is that
it is safe: programs cannot corrupt the runtime sys-
tem so that further execution of the program is not
faithful to the language semantics.1 Nelson [32] di-
vides programming languages into three geneologi-
cal categories: The BCPL family, including C and
C++, which are not safe; the Algol family, includ-
ing Pascal and Ada, which are almost safe; and the

1Thanks to the Modula-3 manual [32] for this phrasing

1

\mathematically derived" family, including Lisp,
ML, Smalltalk, and CLU, which are safe|except
when Lisp programmers disable runtime type check-
ing because it's too expensive. (There are, of course,
languages such as FORTRAN and COBOL that do
not fall into these categories.)
In a safe language, all errors that could \de-

rail" the program (cause behavior not explainable
in terms of the source language) are detected either
at compile time or at run time. 2 This makes it
much easier to reason about program behavior: if
an expression uses the �rst element a of a list l, we
can be assured that l is really a list and not a mis-
understood integer. Furthermore, a large class of
storage-allocation mistakes common to unsafe lan-
guages are simply not possible in ML.
When fallible humans attempt to write large pro-

grams to do complicated things, safety is very im-
portant. Of course, safety is not the same thing
as freedom from bugs. But at least the bugs can
be understood in the framework of the language se-
mantics (formal or informal). There is no behavior
that cannot, in principle, be predicted from the pro-
gram text.
In an unsafe language, program bugs that corrupt

the runtime system are usually the most di�cult to
diagnose and have the most disastrous e�ects. But
in a safe language, even buggy programs stay within
the \semantic model" of the language, which makes
program development much easier.

Garbage collection

Garbage collection frees the programmer from cal-
culating the lifetime of every object in order to deal-
locate it. With automatic storage management it is
possible to write programs more concisely, elegantly,
and abstractly; one can manipulate values, instead
of objects whose addresses must be remembered so
they can be freed.
Even with a garbage collector, the programmer

should avoid keeping unnecessary pointers to useless
objects lest the program use too much space; occa-
sionally it may be necessary to analyze and rewrite
parts of the program to avoid keeping data struc-
tures live [37][4, chapter 12]. But this performance
tuning is preferable to the \correctness tuning" nec-
essary in a language with explicit dispose.
Without garbage collection, it is di�cult to make

a safe language that does interesting things. All

2In ML, anything detected at run time is considered to
be an \exception," not an \error;" exceptions include such
events as arithmetic overow, array-bounds errors, and tak-
ing the head of an empty list.

modern languages, from all three of the families
mentioned above, have dynamic storage allocation.
But, in general, only languages of the \mathemati-
cal" category have automatic garbage collection. In
the BCPL and Algol families, dynamic storage that
is no longer active must be explicitly freed by the
program if it is to be re-used. It is practically im-
possible (i.e., no one knows how) to make a safe
language with explicit storage deallocation. This
is the main (though not the only) reason that lan-
guages of the Algol family are not completely safe.
In some C or Pascal programs it is obvious

where to put the free or dispose statements. But
when data structures get just a bit more compli-
cated, it's harder to predict when to dispose of
things. Programmers often resort to explicit refer-
ence counts, or even to special-purpose mark-and-
sweep garbage collectors implemented anew for each
class of record.
The problem becomes worse across module

boundaries. If a \server" module implements an ab-
straction using dynamic storage, then the \client"
module won't know the format of the records to
dispose of them. But the server won't know when
the client is �nished with the abstract objects. A
typical solution is to add new operators to the ab-
stract interface for freeing of abstract objects. This
quickly becomes tedious.
Storage allocation bugs can corrupt the runtime

system, or go undetected until millions of pro-
gram statements have been executed after the er-
ror. Thus they are particularly nasty to diagnose.
Safe languages of the \mathematical" family, in-
cluding Standard ML, have automatic garbage col-
lection and avoid this kind of bug entirely.

Compile-time type checking

Programmers make mistakes. Even when they have
proved their algorithms correct in some formal or
informal sense, it's di�cult to avoid all errors when
translating into the concrete formal notation of a
programming language. Since I am particularly
slapdash in my programming, perhaps I make even
more mistakes than the average programmer.
So I must �nd my mistakes and �x them. Any

help that the programming environment can give
me in �nding mistakes is most welcome. As a prac-
tical matter, I have found that the vast majority of
my mistakes are found at compile-time by the ML
type checker. These mistakes are particularly easy
to �x, because:

� Compiling something takes less time than com-
piling and running it.

2

� One compilation can �nd many compile-time
errors; it's harder to �nd several bugs with one
run (or even one compile and several runs) of
a program.

� Compile-time errors are caught regardless of
the input data; run-time type errors may not be
caught until the program is exercised on many
inputs.

� Compile-time errors often come with helpful
explanations; run-time errors can be harder to
diagnose.

Finally, compile-type types (especially the ele-
gant type system of ML) help me to understand
my program in a consistent way, so that perhaps I
make fewer mistakes in the �rst place.
It is interesting to note that most languages of the

\mathematical" family have had run-time type sys-
tems (in Lisp, Scheme, Smalltalk, APL, etc.), while
the Algol-like languages have had compile-time type
checking. Perhaps this is because the \mathemati-
cal" languages have garbage collectors; garbage col-
lectors require some run-time type information to
trace reachable objects; as long as the type infor-
mation is in the run-time data there is a temptation
to use it; or perhaps no one knew how to do good
\mathematical" compile-time type-checking before
ML's type system [28] was invented. Of course, run-
time type checking can be slow; but the \mathemat-
ical" languages have not had raw speed as a primary
design concern. In ML, the absence of run-time
checking does make for more e�cient implementa-
tion; this will be discussed below.

The module system

ML has a module system supporting abstract data
types, hiding of representations, and type-checked
interfaces. Modules are very important in structur-
ing large software systems.
Much has been written about the advantages of

modules and abstract data types. The \classes" of
Object-Oriented programming are a kind of mod-
ule, and support abstraction nicely; as are the
\modules" of Modula and Ada. It is not contro-
versial to say that modules with enforced interfaces
and representation-hiding are an essential feature of
a modern programming language.
ML's module system is particularly nice, in that

it allows one module to be parameterized by the in-
terface of another. Ada[1] and Modula-3[32] also
support \generic" modules that are parameterized
in this way. However, ML is unusual in that its pa-
rameterized modules|functors|can be compiled

(with code generation) before any actual parame-
ter is presented. The same arguments in favor of
compile-time type checking also favor the checking
of functors when they are parsed, independently of
the arguments to which they might be applied.
In a language with parameterized modules and

abstract data types, it's necessary to check that a
given abstract type always refers to the same con-
crete representation|but at the same time, with-
out \giving away" the representation. In Ada and
Modula-3 such checking is possible because \com-
pilation" (and type checking) of the parameterized
module body is done for each application to actual
parameters. ML uses the sharing spec3 to require
that two functor parameters must use the same rep-
resentation for a shared abstract data type.
For example, suppose the signature (interface)

HASH speci�es a module to map strings to unique
tokens. There are certainly di�erent ways to imple-
ment this signature; and even the same implementa-
tion might exist in multiple instances, maintaining
di�erent hash tables. Now, if a parser module Parse
with signature PARSE produces parse trees contain-
ing tokens, and a type checking module Typecheck
(with signature TYPECHECK) also deals with tokens,
they can be combined using a paremeterized mod-
ule Compiler:

functor Compiler(structure P : PARSE

structure T : TYPECHECK

sharing P.Hash = T.Hash

) = . . .

The advantage of parameterizing Compile is that it
can be applied to di�erent parsers or di�erent type-
checking algorithms later on. But the program will
be meaningless unless the particular Parse mod-
ule we use relies on the same Hash table as the
Typecheck module does. And|even worse|if the
internal representation of the unique tokens is su�-
ciently di�erent, then the program is not even safe
from mistaking pointers from integers, etc. ML's
module system may be unique in safely combining
compiled parameterized modules with abstract data
types.

Immutable values

In a functional language one describes the relation-
ships between values, not objects. I will illustrate
with a silly example. Consider the statements (in
some programming language),

3Henceforth I will use spec to mean the syntactic con-
struct in ML signatures, and speci�cation in a more general,
informal sense.

3

x := 1+6

y := 2+5

Now, to reason about the relationship between x
and y, one might ask the following questions:

� Is x the same 7 as y?

� If we modify x, does y change?

� Need we make a copy of 7 to implement z:=x?

� When we're done with x how do we dispose of
the 7?

If these questions seem silly, consider the analogous
case for this program fragment:

x := cons(a,b)

y := cons(a,b)

Now, is x the same list cell as y? If we modify
car(x), does y change? When should we make a
copy of the cons cell? How do we dispose of it?
The disposal question is adequately handled in

languages with garbage collection, of course. But
the update and identity questions are not. It is
very distracting, when writing and understanding a
program, to worry about sharing of substructures,
side-e�ects, and aliasing. (An optimizing compiler
is distracted by these problems too!)
These questions are all silly for integers because

we treat integers as values, not objects. If we con-
sidered integers as objects, perhaps with a com-
mand to \update" some of the bits of an integer ob-
ject, then the complexities listed above would have
to be considered by anyone programming with in-
tegers.
Values have many advantages over objects. Shar-

ing of the substructures of values never leads to
problems if the substructures can't be modi�ed.
One doesn't need to reason about equal versus iden-
tical values|and to ensure that this is true, ML
does not permit testing address equality on im-
mutable types. One can perform induction over
structure to prove useful things about values; for
objects one has to do induction over their histories,
which complicates reasoning about them.

Mutable objects

Even though values have many nice properties, the
notion of mutable objects should not be discarded.
Only an extremist would say that updateable cells
are always too hard to use and understand. The
extremists might yet be proved right: it is certainly
true that any algorithm on objects can be simu-
lated on values, and recent work has made such
algorithms ever more readable and understandable

[43]. But there are millions of programmers who
have su�ciently comprehended the notion of assign-
ment and updateable data structures to write suc-
cessful programs. Of course, the same argument
could be made for bringing back the goto and
the 64-kilobyte address space. But it is true that
programming with updates is a proven technology,
and programming entirely without them is still \re-
search."

Now, other languages have combined a functional
style with the capability to do updates|Scheme,
for example. But the question is, how can these two
styles be combined without losing the bene�ts of the
immutable values? Once updates are permitted, the
\silly" questions posed in the previous section begin
to have complicated answers.

ML solves this problem by carefully segregating
the mutable and the immutable types. An integer
values has type int, and a mutable cell containing
an integer has type int ref; these types are not
the same. One can fetch the (immutable) value out
of an int ref and bind it to a variable of type int;
one can store a di�erent (immutable) value in the
int ref. Reference values are the only ones for
which questions of sharing and identity are impor-
tant.

Reference cells can be components of data struc-
tures. For example, tree shown below is the type
of immutable trees with integer leaves; elements of
tree1 are trees whose leaves may be modi�ed but
whose structure is immutable. On the contrary, the
leaves of tree2 are immutable but the structure can
be re-arranged (and entirely new leaves can be in-
serted):

datatype tree

= LEAF of int

| NODE of tree * tree

datatype tree1

= LEAF of int ref

| NODE of tree1 * tree1

datatype tree2

= LEAF of int

| NODE of tree2 ref * tree2 ref

Mutable reference cells, which are carefully iden-
ti�ed in advance to the compiler and the human
reader of the program, have turned out to be a very
good compromise. They allow value-based reason-
ing about non-references, and the use of updates
where necessary.

4

Polymorphic types

The implicit parametric polymorphism of ML is a
great convenience. In writing a C or Pascal program
that deals in linked lists of several di�erent types
of objects, for example, it is bothersome to have
to copy almost verbatim the de�nitions of func-
tions to create lists, map functions over lists, re-
verse lists, calculate lengths of lists, and so on. In
ML, as in Lisp, the same map function can oper-
ate on a list of anything, and similarly for length,
reverse, and cons. The length function is poly-
morphic: it has the type int list ! int and
the type string list ! int and many others be-
sides. In object-oriented languages with inheri-
tance, polymorphism can be achieved without much
di�culty (depending on the language). But in C,
polymorphism can be accomplished only by using
cast to avoid the type-checker, and in Pascal only
by clumsy use of variant records.

Type inference

In ML it is never4 necessary to declare types for
variables or for functions and their formal param-
eters. The compiler can infer types for these iden-
ti�ers, and it checks that the variables are used
consistently. Thus ML achieves the advantages of
compile-time type-checking with the conciseness of
undeclared types.
This is a convenience, but of course it doesn't

shorten programs by an enormous factor: in lan-
guages with explicitly declared types, the type dec-
larations don't overwhelm the program. A big ad-
vantage of type inference is that the compiler infers
the most general (polymorphic) type for each func-
tion. Then the programmer doesn't tend to prema-
turely over-specify the types of functions.
For example, consider writing a length function

to compute the number of integers in a list:5

fun length (head::rest) = 1 + length(rest)

| length (nil) = 0

Because the programmer needn't specify the type
of the list element head, there is no temptation to

4well, hardly ever; see the section on Overloading.
5A list in ML can be empty, or nil, or can be

\cons" cell containing a \head" (�rst element) and a
\tail" (the rest of the list). Thus, list is a dis-
joint union type, or datatype, of the following form:

datatype 'a list = nil | :: of 'a * 'a list

The constructors of this datatype are nil and :: (pro-
nounced \cons"). All the elements of a list must be of
the same type; if this type is, e.g., � then the list is called
an � list. Because keyboards don't have Greek letters, we
write � as 'a. It is convenient to make :: in�x and right-
associative by default, so that 1::2::3::nil is the list of the
�rst three positive integers.

overspecify it as int. So the length function, just
as written, has type � list ! int for any �, and
can be applied to lists of strings, lists of reals, lists
of lists, and so on.

Complete formal de�nition

The programming language Pascal was an advance
in language design, and became very popular, for
several reasons. It supported clean and useful
control structures and data structures. It is a
small enough language, and was speci�ed precisely
enough (in informal prose) [16] that people could
understand what Pascal programs should do.

But Pascal still has \ambiguities and insecurities"
[46]. That is, the language de�nition is ambiguous
about the meaning of certain constructs (and dif-
ferent compilers give di�erent results on the same
program); and the language is insecure: it is not
safe in the sense described by Hoare.

ML is not only secure, it is also unambiguously
de�ned. The De�nition of Standard ML [31] is a
complete operational semantics for the entire lan-
guage. One can use the De�nition to calculate ex-
actly which programs should be accepted by a com-
piler, and what their result will be.

Furthermore, the De�nition (with accompanying
commentary [30]) is readable|as formal semantic
de�nitions go. This does not mean that the de�-
nition is suitable as a manual for the programmer;
there is too much formal notation and not enough
worked examples for that. But the student of lan-
guage design, or the serious compiler-writer, can
use the De�nition as a reference to understand the
meaning of any construct that might be in doubt.
This leads to portability between implementations,
provability of programs (in principle), and con�-
dence in the safety and security of ML programs.

The De�nition has, over time, proved to be
tractable enough to serve as the basis for useful
technical discussion among its many readers. Even
when there have turned out to be holes in the De�-
nition, they can be discussed and repaired with con-
�dence and agreement over what the changes mean.

A formal de�nition is merely a complicated good-
luck charm unless it can be used to prove important
properties of the language. The De�nition is math-
ematically tractable enough to prove, for example,
that programs that type-check will execute \safely,"
that there can be no \dangling references" (invalid
pointers), that the type inference algorithm always
�nds the most general type for an expression, and
many other theorems that inspire con�dence in the

5

semantics of the language6 [30].
The proponents of formal speci�cations of pro-

gramming languages have long claimed that seman-
tics should be used as a tool for language design, not
just for writing down the semantics of existing lan-
guages. The conciseness and completeness of the
ML De�nition stem, in part, from the reluctance of
the Standard ML design committee to admit fea-
tures into the language for which they didn't un-
derstand how to write a provably sound semantics.

Higher-order functions

In ML, as in Scheme and other languages derived
from the �-calculus, functions are �rst-class values
that may be passed as arguments, returned as re-
sults, and put into data structures.
Of course, the C programming language has

\�rst-class" functions, too; but there is an impor-
tant di�erence between the functional values of ML
and those of C. ML has nested function de�nitions
with lexical scope; the inner functions can refer to
local variables and formal parameters of the outer
functions. Thus, each time an outer function is
invoked with di�erent actual parameters, a \new"
version of the inner function is built. A simple ex-
ample:

fun add(x: int) =

let fun f(y) = x+y

in f

end

val smallinc = add(1)

val biginc = add(10)

val twelve = smallinc(biginc(1))

The fun keyword introduces a function declaration.
The let dec in exp end syntax introduces a local
declaration dec visible only in the expression exp.
Thus, when add is applied to 1, the function f1(y) =
1 + y is created and returned as a result. When
add 10 is computed, the function f10(y) = 10 + y
is the result.7

Imagine, for a moment, a programming language
in which character-string values can be stored in
variables, passed as arguments, returned as re-
sults; suppose there are character-string literals,
and it's possible to extract the individual char-
acters from string values. But suppose there are

6Some of the theorems mentioned have actually been
proved only for subsets of Standard ML.

7This add function can be written more concisely as
fun add x y = x+y:int

where the type constraint :int is necessary because of over-
loading; see section 3.

no operators (such as concatenate) that can create
new character-string values at run time! Then the
character-string type would be of limited utility;
one might use it for printing interactive prompts
de�ned at compile time, and so on. Any data type
in which one can only pass around compile-time lit-
erals, is hardly \�rst-class."
But this is exactly the situation for function

pointers in C! The only function values are those
created at compile time; one cannot make \new"
functions like f1 and f10 shown in the example
above. This is because C does not allow nested
functions with lexical scope. Similarly, even though
Modula-3 has nested functions and lexical scope,
only functions at the outermost level of nesting can
be passed as arguments.
On the other hand, Pascal allows nested functions

(with lexical scope) to be passed as arguments, but
not to be returned as results or stored in data struc-
tures. This restriction limits the utility of func-
tion values. Both the C restriction and the Pas-
cal restriction are motivated by the desire to avoid
the need for garbage collection: �rst-class functions
with nested scope cannot be implemented with a
conventional stack of activation records. But when
the system has a garbage collector already, �rst-
class nested functional values don't add great com-
plexity to the implementation of the language.
Perhaps one must write some programs with

higher-order functions to really appreciate their ex-
pressiveness. However, I will present some examples
of their use:

Reduction functions on lists: Take a binary
operator (like + or �), and apply it to an entire
sequence of values, thus:

a1 � a2 � :::� an � 1

(Append the term �1 in order to appropri-
ately handle the case where n = 0.) This no-
tion can be easily generalized: given an oper-
ator opr and an identity I for that operator,
reduce(opr ; I) is the function that applies the
operator to an entire list of values. Thus, the
function sum that totals the elements of a list
is just reduce(+; 0) and product is reduce(�; 1).
In ML one might write:

fun reduce(opr,I) =

let fun f(nil) = I

| f(a::rest) = opr(a, f(rest))

in f

end

6

val sum = reduce(op +, 0)

val product = reduce(op *, 1)

fun min(a, b:int) = if a<b then a else b

val infinity = 1000000000

val minlist = reduce(min,infinity)

val fifteen = sum(1::2::3::4::5::nil)

The op keyword allows an in�x operator like *
to be used as an ordinary identi�er.

Window manager: One could organize a window
interface so that an application running in
a window is represented by its keyboard and
mouse.8 To hand the application characters
typed into its window, one calls its keyboard
function; to give it mouse-clicks, one calls its
mouse function. Thus:

type window_app =

{keyboard: string->unit,

mouse: int*int->unit}

This says that window_app is a record type
containing two �elds, keyboard and mouse.
keyboard is a function that takes a string pa-
rameter and returns \unit" (which is a place-
holder like \void" in C), and mouse takes a
coordinate-pair as an argument. Now, the win-
dow manager can pass keypresses and mouse-
clicks to the application by calling these func-
tions. This has an \object-oriented" avor; the
private data of the application (i.e., \self" in
OOP terminology) is hidden in the free vari-
ables of the two functions. In C it would be
necessary to include an explicit \self" �eld in
the window_app record, and pass this as an ex-
tra argument to keyboard and mouse.

Most of the interesting uses of �rst-class functions
combine the use of nested lexical scope (where inner
functions' free variables are bound in outer func-
tions) with functions returned as results or stored
in data structures. Thus, the very combination that
is left out of C and Pascal because it is di�cult to
implement (it requires a garbage collector for acti-
vation records) is the most useful.

E�ciency

An elegant language will have few applications if
programs written in it always run too slowly. So

8An interesting and useful windowing library has been
implemented in ML by Gansner and Reppy[36] as a very
elegant interface to an X server. The example here does not
describe their system.

it is important that ML can be compiled to run
e�ciently. There are many reasons to believe that
it can. ML has compile-time type checking, which
means that type tags need not be carried around at
run time, and operators need not check the types of
their arguments at run time. ML does not have the
\dynamic method lookup" required of many object-
oriented languages.
ML does do array-bounds checking, which is not

present in C and which slows things down unless
safely removed by a good optimizing compiler. ML
does check pointers for nil before dereferencing; but
the way this is incorporated in pattern-matching
feature of the language, these tests will be part of
the ordinary control ow written by the program-
mer. (Unfortunately, sometimes the programmer
knows that a list can't be nil, but the check must
be done anyway except by an impossibly intelligent
compiler.) And ML checks for overow of arith-
metic expressions, but on most computers this is
handled by the hardware without the need to issue
extra instructions.
But can ML be as e�cient as C? To some extent,

this is still a research question (one that interests me
very much). It's a di�cult question to answer, be-
cause it requires that \the same" program be writ-
ten both in C and in Standard ML. And what does
it mean to say that a program written in idiomatic
C is \the same" as one written in idiomatic ML?
One might make a good attempt at a quantita-

tive measurement by rewriting some C programs in
idiomatic ML, and vice versa, and running the re-
sults with \good" compilers on the same hardware.
This is a su�ciently unrewarding job that few peo-
ple have done it on \realistic" programs.
On the other hand, there are many good Scheme

compilers. While Scheme does not run as e�ciently
as C on all problems, Scheme and Common Lisp are
su�ciently e�cient that many real applications are
written in them. It should be possible to get ML to
run at least as e�ciently as Scheme, since the lan-
guages are similar in many ways but ML doesn't re-
quire the run-time type checking that Scheme does.
In any case, there is at least one reasonably ef-

�cient implementation of ML [6]. This and other
implementations 9 have many users, for whom they

9Several Standard ML implementations are available:

� Standard ML of New Jersey, from Princeton Uni-
versity and AT&T Bell Laboratories (contact ap-
pel@princeton.edu)

� Poly/ML, from Abstract Hardware Ltd. (contact
bob@ahl.co.uk)

� Poplog ML, from the University of Sussex
(isl@integ.uucp, pop@cs.umass.edu)

7

are adequately e�cient; this might not be the case
if they were too slow by an order of magnitude.

ML programs (run under some compilers) have
used much more space than comparable C pro-
grams. This is a serious problem, but recent re-
search [4, chapter 12] has hinted at solutions. At
present, it appears that ML is e�cient enough to
use for a wide variety of applications. C programs
are faster probably by no more than a factor of two,
and often less than that. For many purposes, ML's
advantages in safety, elegance, ease of storage man-
agement, and so on may outweigh this di�erence in
performance. And programs that require compli-
cated and expensive storage management in C may
run faster in an ML implementation with a good
garbage collector [8].

Why some people don't like ML

An (anonymous) early reviewer of this paper com-
plained about ML's \lack of dynamic types, muta-
tion (and lack thereof), lack of access to machine (as
in C), restrictive type system, small changes usually
require complete recompilation, bizarre syntax, lack
of macros, etc."

These criticisms merit some discussion.

Lack of dynamic types: There are some things
that are easier to do in a dynamically-typed
language. For example, subtyping is easy to do
in Lisp, since list-of-real is automatically a sub-
type of list-of-(real-or-string); and ML doesn't
have a subtyping mechanism. But such exam-
ples are not very compelling; an ML program
might have a few more injection and projection
functions than a Lisp program.

A more interesting use of dynamic types is for
programs that wish to do type-safe, structured
input/output, which is problematic in Stan-
dard ML. Within the ML community, the type
dynamic has been proposed as a solution to
this problem[22]: values of type dynamic would
carry full ML-style types as part of their run-
time representation, and could be coerced into
ordinary statically-typed values with a runtime
check.

� Edinburgh ML 4.0, from the University of Edinburgh
(lfcs@ed.ac.uk)

� ANU ML, from the Australian National University
(mcn@anucsd.anu.oz.au)

� MicroML, from the University of Umea, Sweden
(olof@cs.umu.se)

Restrictive type system: ML's type system is
less restrictive than that of most statically-
typed languages (except those, like C, that al-
low evasion of the type system). In return for
obeying the type rules, the programmer is re-
warded with compile-time error messages in-
stead of run-time bugs.

Mutation (and lack thereof): ML makes it in-
covenient (but not extremely so) to modify
�elds of data structures: such �elds must be
declared in advance. This is just enough to
encourage a functional style of programming
(which is good) with an escape hatch where
necessary (which is also good).

Lack of access to machine: ML succeeds all too
well in abstracting away from the machine.
This makes it di�cult to implement those pro-
grams that must do machine-level things, with
memory words, pages, protections, signals, etc.
It is possible to make interfaces to these things
in ML; but it must still be admitted that a
typical ML system has a large runtime system
written in C to handle the things that couldn't
be implemented in ML.

Recompilation: Separate compilation is essential
in a programming environment. In statically-
typed languages such as C or Modula, a system
like make can recompile just those �les that
may need it; in dynamically-typed languages
such as Lisp, only �les actually modi�ed need
recompilation (in the absence of macro de�ni-
tions, of course).

Implementations of Standard ML have not usu-
ally had very good separate compilation sys-
tems. This is partly a problem with the lan-
guage, as elaborated in section 4, but mostly a
problem with the individual implementations.
In any case, it appears to be a problem that
can be solved without modifying the language
de�nition.

Bizarre syntax: Lisp syntax has a wonderful con-
sistency, but is an acquired taste. Standard
ML syntax is a mediocre example of the Al-
gol school, in which keywords are used instead
of some of the parentheses, and in which in�x
operators are used where it makes sense to do
so. Some of the obvious \bugs" in the gram-
mar are reported later in this paper; but in
general, don't we have better things to argue
about than syntax?

8

Lack of macros: This is clearly an advantage, not
a disadvantage. For the programmer to have to
calculate a string-to-string rewrite of the pro-
gram before any semantic analysis invites prob-
lems of the worst kind. Where macros are used
to attain the e�ect of in-line expansion of func-
tions, they are doing something that should be
done by an optimizing compiler. Where macros
are used to attain call-by-name, the e�ect can
be obtained by passing a suspension as an ar-
gument; in ML this is written with the syntax
fn()=> which though admittedly ugly is fairly
concise, and is better than tolerating the se-
mantic havoc wrought by macros.

2 ML is fun to compile

Some of ML's characteristics enable compilers to
use interesting techniques that are applicable to few
other languages. On the other hand, many aspects
of the language are best attacked by quite conven-
tional techniques. And there are features of ML
that might be considered an annoyance (or a \chal-
lenge") by compiler writers; these are described in
section 4.

Safety

Compilers for safe languages, in which every com-
pileable program has a well-de�ned result, can per-
form certain transformations that compilers for
unsafe languages may not. For example, if the
programmer cannot access data structures except
through the \o�cial" operators, then the compiler
is free to choose arbitrary representations|even dif-
ferent representations for the same data structure in
di�erent parts of the same program. In an unsafe
language, the programmer can access the underly-
ing bit pattern of a data type; this tends in practice
(and by convention) to force the compiler into pre-
dictable choices.

Another example of the use of safety is given
below under the heading \Accurate control depen-
dence." Essentially, the input program is the rep-
resentation of a computable program, and the com-
piler may use \extensional equality" to substitute
any other representation of the same function. On
the other hand, in an unsafe language, some aspects
of the program can be represented only by an opera-
tional semantics specifying a sequence of operations
whose order cannot be rearranged.

Compile-time type checking

Compilers for languages with run-time type check-
ing, such as Lisp and Smalltalk, must work very
hard to minimize the execution cost of type check-
ing. An advantage of ML (and all languages of the
Algol and BCPL families) is that all type check-
ing is done at compile time, and does not slow the
execution of the program.

Representation analysis

The types of variables in ML are known su�ciently
at compile time to guarantee, as in Algol-like lan-
gauges, that primitive operators will never be ap-
plied to values of the wrong type. However, be-
cause of ML's parametric polymorphism, there are
other contexts (such as inside the cons function) in
which the types of (polymorphic) variables are not
completely known. In such cases, the program al-
ways manipulates values without inspecting their
internal representation. But in order to manipu-
late them (pass them as arguments, store them in
data structures, etc.) it is necessary to know their
size. The solution is to represent all polymorphic
variables by bit-patterns of the same size (e.g., one
word). Then polymorphism will work: at run time,
polymorphic variables will be passed from one place
to another by machine code that is oblivious of its
actual type. This is exactly the strategy used in im-
plementing Lisp: the cons function needs to know
that the size of every object is the same, but does
not need to know the internal representation of the
objects it is consing.
This has been interpreted to mean that every

variable, every function closure, and every argu-
ment of a function, must be represented in exactly
one word. Where the natural representation of a
value does not �t into one word (as with a list,
a oating-point number, etc.), then a pointer to
a heap-allocated object is used instead. This is a
source of great ine�ciency.
Parametric polymorphism is a useful kind of ab-

straction; abstraction often leads to ine�ciency.
ML programmers have always had to face this
tradeo�, which the language has resolved in favor
of abstraction. But perhaps it is possible to pay
for the abstraction only where abstraction is actu-
ally used.
Xavier Leroy has recently pointed out that it

is not necessary to represent every variable in
one word, just polymorphic variables [21]. The
type-checker can identify those places where non-
polymorphic values are passed to polymorphic vari-
ables, and vice versa. Then the compiler can choose

9

specialized representations, just as languages of
the Algol family do, for nonpolymorphic variables.
Then, to the extent that an ML program uses non-
polymorphic variables (as a Pascal program does),
it will be as e�cient as a Pascal program. This
could be a very signi�cant savings, as Leroy's mea-
surements show. And it is a kind of optimization
that would be impossible in Lisp (because the types
cannot be safely analyzed at compile time).

Separation of static and dynamic se-
mantics

In an ML compiler the static semantics (type check-
ing) and dynamic semantics (evaluation) can be
evaluated independently of each other, and in either
order. In a compiler, dynamic semantics determines
the machine code to be generated.
This may have interesting consequences for the

implementation of a separate compilation facility.
It should be possible to generate machine code for a
module in vacuo; that is, without knowing the types
of the module's free identi�ers. Then, at link time
the module can be type-checked, since the types
of free identi�ers then become known. Since code
generation is much more expensive than type check-
ing, we might gain signi�cant bene�t from this ap-
proach. The algorithms for in vacuo separate com-
pilation have been worked out [38], and are now
being implemented.
A more mundane advantage of the separation of

static and dynamic semantics is that a simple, un-
typed intermediate representation can be used; and
the translation of ML into this intermediate rep-
resentation need not pay attention to types. This
somewhat simpli�es a compiler.
Of course, the representation analysis described

above makes the implementation of dynamic se-
mantics dependent on static semantics. So a com-
piler that uses link-time type checking, or a simpler
translation to intermediate representation, could
not take use representation analysis.

Immutable records

A common problem that plagues optimizing compil-
ers is aliasing. It is often very di�cult to determine
when two pointers point to the same thing; this in-
hibits certain kinds of optimizing transformations.
For example (in Pascal):

a := p^.x;

q^.x := b;

c := p^.x;

or, similarly,

a := p^.x;

f(x);

c := p^.x;

we might like to replace the statement c := p^.x,
which involves a fetch, by c := a, which might be
a register-register move. However, if there is a pos-
sibility that q points to the same record as p, (i.e.,
is aliased); or if f(x) might modify p^.x, then this
transformation is invalid.
It's no easier to solve aliasing problems in ML

than in any other language. However, they don't
need to be solved! Fetches from immutable objects
cannot possibly be a�ected by any store instruc-
tions. And the vast majority of objects created
are immutable (over 99% in a variety of real ap-
plications). Thus, most fetches can be moved past
stores and procedure calls, and common subexpres-
sions involving fetches from immutable objects can
be eliminated. It is very pleasant to exploit this
freedom in writing an optimizing compiler.

Mutable cells

In ML the updateable parts of data structures (ref
cells) are identi�ed at compile time. This could be
useful to a garbage collector. Generational garbage
collectors[24, 42] segregate heap-allocated records
by age. Because records are initialized (to point
to already-existing records) when they are created,
newer records usually point to older records. The
only way that an older record can point to a newer
record is by an update to the older record after the
newer one has been created. Generational collectors
need to e�ciently identify all those cells in an older
generation that have been updated to point into a
newer generation.
There are many ways to keep track of updated

cells. A software approach is to have the compiler
generate code after each assignment statement to
keep a list of all cells updated [42]. It's not nec-
essary to put newly-allocated cells on this list, of
course. So all the compiler needs to do is distinguish
initializing store instructions from updating stores.
This is easy to do in ML, as it is in Lisp and any
other language where records are initialized as they
are allocated. It is more di�cult in Algol-like lan-
guages where records are created uninitialized and
are then stored into afterwards to initialize them.
An alternate approach to updates is to use the

virtual-memory hardware of the computer [39]. By
making older generations read-only, an updating
store will cause a page fault. This fault can be han-
dled by making the page writeable, and marking all
the objects on that page as possibly updated. Then

10

future updates to the same object, or to nearby ob-
jects, will not incur the cost of a fault.
The page-based technique will work best if there

is locality of reference among the updates. It would
be best, for example, to put all the mutable objects
close to each other on a small set of pages, so that
fewer updating page faults occur. This is possible if
the runtime system can guess which objects can be
or will be updated. Fortunately, in ML the ref cells
can be distinguished from immutable records, data
constructors, and closures, as they are created. The
compiler can mark ref cells as they are allocated,
or allocate them in a di�erent area of memory, and
the runtime system can rely on this marking. Such
a technique is not possible in Lisp, since any ob-
ject can in principle be updated (even though few
objects are actually updated in practice).
It is interesting to compare ML (which allows

programmers to execute updating side e�ects) with
lazy functional languages such as Haskell [14], from
the garbage collector's point of view. Since gen-
erational garbage collectors hate updates to ex-
isting objects, it would seem at �rst glance that
a purely functional language with no assignment
statement would be easier to garbage-collect. But
lazy languages are constantly updating lazy closures
(\thunks") with the results of evaluating them.
Paradoxically, from collector's viewpoint ML has
many fewer assignments than Haskell, and garbage
collection in ML is likely to be more e�cient.

Accurate control dependence

A statement guarded by a conditional is said to be
control dependent on the conditional. However, this
de�nition can be re�ned for safe languages such as
ML.
Consider these two ML fragments and a C frag-

ment:

a) if i>0 then case q of u::v => u

| nil => ...

else ...

b) case q of u::v => if i>0 then u

else ...

| nil => ...

c) if (i>0) if (j>0) s = p->link;

In each case there is a fetch guarded by a two condi-
tionals. The compiler might wish to hoist the fetch
above the inner conditional, perhaps to improve in-
struction scheduling or register allocation.
In case (a) this is impermissible, since q might be

nil|a fetch from nilmight be illegal on the target

machine. The pattern u::v ensures that q is a cons
cell. In case (b) it is clearly permissible to hoist the
fetch, since the validity of the pointer q cannot be
a�ected by the value of i.

But in example (c) we cannot tell anything about
the relationship between j and p. The programmer
might know that j is the length of the linked list
p, so that the fetch cannot be hoisted; or the value
of j could be unrelated to whether p is nil, so the
fetch can be hoisted. ML provides more precise in-
formation to the compiler than C does about the
true control-dependences of fetches.

In summary, the safety of the language gives us a
tool for reasoning accurately about control depen-
dencies.

No pointer equality

Pointers in ML cannot be tested for identity. That
is, except for ref cells, the program cannot deter-
mine if two similar objects are located at the same
address. Since non-reference objects cannot be up-
dated, the program cannot even perform the ex-
periment of modifying one object and seeing if the
other changes. This unusual feature leads to several
interesting consequences.

Compilers can perform common subexpression
elimination on record expressions. That is, in the
program

val t = (a,b)

val s = f(x)

val u = (a,b)

the last line can be implemented as val u = t by
the compiler. This transformation would not work
in Lisp, Pascal, or almost any other language be-
cause the program would be able to test whether u
and t pointed to the same address.

Compilers and garbage-collectors can do \hash-
consing." That is, if the record (a,b) is to be cre-
ated, and a similar record already exists (and can be
found using a special hash table), then a pointer to
the existing record is used instead of making a new
one. In systems that allow address comparisons,
hash-consing would entail an observable semantic
change to the program; in ML it would not. Now,
hash-consing may be intolerably slow. But consider
a variation in which a generational garbage collector
does hash-merging of objects that survive into the
second generation. Then it's only necessary to hash
a very small percentage of the objects that get allo-
cated (since only a few objects survive a garbage
collection). This idea has been implemented by
Marcelo Gon�calves at Princeton University.

11

Garbage collectors like to move an object from
one place to another; but then they need to update
all the pointers to the object. A concurrent garbage
collector might have trouble �nding all these point-
ers quickly. In that case, it might be desireable to
have two usable copies of the object|old and new|
until all the pointers can be \forwarded" [33].

Distributed systems can copy objects without
worrying about identity. Suppose we want to make
the distributed nature of a system transparent to
the programmer. If several processors want to look
at a data structure at the same time, to obtain ad-
equate performance it is necessary to copy pieces
of the data structure onto the di�erent processors.
With a conventional programming language we now
have to worry about address identity and mak-
ing updates visible to all the processors. These
problems are usually solved in hardware (e.g., with
snoopy caches). In ML, worries about updates dis-
appear for all but reference values, which are rare
enough that conventional synchronization and mes-
sage passing would be adequately e�cient.

The module system

Run-time aspects of the module system turn out
to be very simple [5]. A structure that exports n
types and m values can be implemented as an or-
dinary m-tuple (types are needed only at compile
time). Functors can be implemented as functions
that take structures (tuples) as arguments and re-
turn structures as results. Since all inter-module
linkage can be expressed this way, a conventional
link-loader is not even necessary|which is partic-
ularly convenient in an interactive system that can
load and execute programs and modules on the y.

First-class continuations

A very interesting and powerful feature of
Scheme[34] is the call-with-current-continuation
mechanism, whereby the dynamic calling context
of a function can be abstracted as another func-
tion. Standard ML does not have such �rst-class
continuations; but it turns out that they can easily
be introduced, and they �t very nicely into the ML
type system[11].

First-class continuations make it easy to imple-
ment coroutines, or their generalization, lightweight
processes [45]. Low-level details that must ordinar-
ily be confronted in such implementations|such as
the allocation of new activation stacks, the garbage-
collector interface, and the mechanisms for saving

registers to invoke a new thread|are all neatly en-
capsulated in the continuation mechanism.
Thread scheduling is much more e�cient when

done in the client process, without requiring
hardware- and operating-system context switches
when synchronizing or interleaving thread execu-
tions. Recent operating-system research [2] has
shown how to let the operating system schedule pro-
cessors while the client programs manage processes
to take advantage of the e�ciency of user-mode
schedulers. In ML extended with �rst-class contin-
uations, the scheduler can be a source-language pro-
gram that manipulates continuations directly. This
approach is very elegant and robust, and has proved
successful in Concurrent ML [35] and ML-Threads
[9], two quite di�erent concurrent programming en-
vironments for ML.

3 ML traps and pitfalls

The syntactic and semantic pitfalls that an ML pro-
grammer encounters are much less severe and less
numerous than those described in languages such as
C [20], which is an egregious example.

Misspelled constructors

A well-known and most dangerous pitfall awaiting
the ML programmer is the misspelling of a constant
data constructor in a pattern. Because there is no
syntactic distinction between constructors and vari-
ables, any identi�er declared as a constructor is un-
derstood by the compiler as a constructor, and any
other identi�er is interpreted as a variable (which
matches anything). Thus, a misspelled constructor
looks like a variable, and is accepted by the com-
piler. For example, the misspelling of nil in this
implementation of length causes the function al-
ways to return zero:

fun length (nill) = 0

| length (head::rest) = 1 + length rest

In many cases (as in this one), the pattern-match
will have redundant rules as a result of the program-
mer's mistake. Since the compiler warns about re-
dundant rules, perhaps the error can be detected
that way. But not in all cases. And warning mes-
sages are easily ignored by the programmer.
The approach Prolog takes to solve the same

problem is to make constructors syntactically dif-
ferent from variables: Prolog constructors begin
with lower-case, variables with upper-case. The
same solution would not quite work in ML, for two
reasons: ML allows \symbolic" identi�ers such as

12

:: and + that don't begin with a letter (and for
which an upper/lower-case rule wouldn't apply);
and ML allows data-constructors to be \thinned"
to identically-named value bindings at module in-
terfaces, so that what is seen as a constructor in
one module is seen as a function (variable) in an-
other module. These are both small things; they are
cute but minimally useful, and programmers could
easily work around their absence.
Some variation of the Prolog approach would

solve this problem without signi�cantly altering the
nature of Standard ML. The Haskell language [14]
uses such an approach.

Overloading

Most languages support some kind of overloading of
operators, also known as ad hoc polymorphism. In
its simplest form, this means that an operator such
as + can be applied to integer arguments (yielding
an integer result) or to real arguments (yielding a
real result). This is not the same as the parametric
polymorphism of ML or Lisp functions such as cons
or map: The algorithm used to implement + is dif-
ferent for integers and reals, but the implementation
of cons is the same for all types.
Languages of the Algol and BCPL families have

always had overloaded operators built in, with over-
loading resolution (the determination of argument
types, and therefore of what implementation func-
tion to use) at compile-time. Languages of the
\mathematical" family have typically had overload-
ing resolution at run-time.
Several languages in all three families have al-

lowed programmers to de�ne new overloaded iden-
ti�ers, and to specify the implementation function
to use for each argument type. Object-oriented lan-
guages, especially, have sophisticated support for
user-de�ned overloading.

Compile-time overloading resolution and ML-
style polymorphic type inference do not work well
together [10]. In processing a function de�nition
such as

fun double(x) = x+x

it is impossible to know at compile-time whether
+ is to be implemented as integer or oating-point
addition.
This is not a dangerous \trap" for the program-

mer, since any ambiguous function such as double
will be caught at compile-time as a type-checking
error; the programmer will �x the problem (pre-
sumably) by inserting a type constraint, e.g.

fun double (x: real) = x+x

But it's a frequent annoyance; when writing a pro-
gram on the integers I am just not thinking about
real numbers, and I am constantly surprised to see
the overloading-resolution failures. And in teach-
ing the language, I must always qualify statements
such as \The ML type inference algorithm can al-
ways derive a most-general type for any expression"
with technicalities about a half-dozen built-in oper-
ators.
One way to solve this problem is to allow run-time

resolution of overloading, as in the language Haskell
[44, 15] and in other extensions of typed lambda
calculus [18]. In these languages, class operators
are passed (at runtime) as implicit extra arguments
to functions that take polymorphic overloaded types
as arguments.
But this mechanism makes dynamic semantics

dependent on static semantics, which precludes cer-
tain kinds of separate compilation schemes. And
Haskell uses a rather heavyweight mechanism for
an apparently small gain. After all, making do with
non-overloaded identi�ers wouldn't make programs
any bigger|one would just have to make up di�er-
ent names for di�erent operations.
I am often asked whether I seriously mean that

oating point addition should not be represented
by the + symbol. That is exactly what I mean:
Standard ML provides only a half-dozen overloaded
operators anyway, and the use of +` or some such
admittedly ugly symbol would be a reasonable price
to pay for the deletion of overloading from the lan-
guage. The designers of Standard ML considered
the problem carefully and came to the opposite
conclusion|so it must be a matter of taste.

Weak type variables

The ML type system, and type inference algorithm,
works very e�ectively on programs without side ef-
fects. Particularly important is that the types are
\intuitive:" the inferred types seem very natural
and obvious to most programmers in most cases.
It has long been known that this algorithm does

not work for polymorphic references. To illustrate
with an oft-used example, consider

let val f = fn x=>x in f 1; f true end

The function f has the type 8�: � ! �, and can
correctly be applied to an int and a bool.
But let f be a reference to a polymorphic function

and the type inference algorithm cannot be naively
applied. It seems natural to give polymorphic types
to the ref, :=, and ! operators:

ref : 8�: �! (� ref)

13

:= : 8�: (� ref � �)! unit

! : 8�: � ref ! �

Now try to type-check the expression

let val f = ref(fn x=>x)

in f := (fn x=>x+1);

(!f) true

end

If f had type 8�: ((� ! �)ref), then the program
would (inappropriately) type-check, and would \go
wrong" at run time by incrementing a boolean. So
the naive polymorphic type checker has proved in-
adequate to handle reference cells. A more appro-
priate type for f might be (8�: �! �)ref), with the
quanti�er nested inside the ref constructor; but the
ML type inference system cannot cope with \inner"
quanti�ers.

Cardelli's ML compiler [7], and the initial pro-
posal for Standard ML [29], required that reference
cells be completely monomorphic; that is, the com-
piler must be able to infer a type without type vari-
ables for any argument of the ref constructor. This
is certainly safe, but insu�ciently exible. Tofte[41]
generalized this idea, introducing \weakly polymor-
phic" references and \imperative types." These al-
low a function that creates references to be applied
to more than one type, as long as each such type
is itself monomorphic. Tofte's imperative types are
a substantial improvement, and make for a usable
language; they have been adopted as part of the
Standard ML De�nition.

However, Tofte's scheme can be made more exi-
ble. In particular, it does not seem to work very nat-
urally with higher-order functions; currying a func-
tion of imperative type can lead to a function that
is rejected by Tofte's algorithm. MacQueen solved
this problem by assigning numerical weakness in-
dices to the type variables[27]. MacQueen's scheme
is strictly more powerful than Tofte's, and has been
implemented in Standard ML of New Jersey.
However, MacQueen's weak types aren't very

easy for programmers to understand. It's di�cult
for the uninitiated to infer types for functions that
make ref cells; typically I write the expression and
get the compiler to print out the type, which I can
then use in writing module signatures, etc. This
approach to interface design is the opposite of that
usually recommended!
The most annoying thing about Tofte's and

MacQueen's imperative types is the \visibility"
of locally-used references in interface descriptions.
Consider a function

sort: (int * 'a) list -> (int * 'a) list

which is given a list of pairs; the �rst element of
each pair is an integer key and the second element is
of arbitrary type (though, of course, the same type
for each element of the list). The sort function
returns the list sorted by key. It is easy to write a
purely functional quicksort or merge sort to solve
this problem e�ciently.
But suppose one expects all the integers to be in

the range 1{1000, and the list contain thousands
of elements. Then a bucket sort is faster, using an
array of 1000 elements. But even though the array
is not returned from sort, or retained way after
sort returns, the type of this bucket-sort program
would now be

sort: (int * '_a) list -> (int * '_a) list

indicating that the non-key elements of the list can-
not be polymorphic values. It is too bad that this
purely internal data structure must be \mentioned"
in the interface.
Many researchers have recently been engaged in

devising better type inference systems for polymor-
phic programs with references[25, 23, 17, 40, 48],
which indicates that the problem of type-checking
references is not yet regarded as \solved;" some of
these systems address the problem of internal, tem-
porary references described above.

The ML Grammar

The designers of Standard ML worked very hard
to get the semantics right, and to de�ne the se-
mantics as completely and as formally as possible.
Unfortunately, the same attention was not paid to
syntax. Thirty years after Algol, and �fteen years
after Yacc, The De�nition of Standard ML does not
contain an unambiguous context-free grammar for
the syntax of the language.
As presented, the grammar is ambiguous for two

reasons: The parser must \guess" whether an iden-
ti�er in a pattern is a variable or a constructor; and
it must \guess" whether an identi�er is de�ned as
infix, and if so, at what precedence and associa-
tivity.
These problems are not very di�cult to solve se-

mantically. For example, one might think the ex-
pression a b c d e f has to be parsed very di�er-
ently if b is an in�x operator than if c is. The solu-
tion is to parse such an expression as a sequence of
atoms, and implement a simple precedence parser
(37 lines of code in SML/NJ) as a \semantic action"
for in�x operators.
So the problem is not that ML has no context-free

grammar; it's that the grammar is not clearly spec-
i�ed in the De�nition. One immediately runs into

14

problems when one wants to implement a parser
for ML. A good language de�nition should include
a complete LR(1) grammar with no reduce/reduce
conicts and as few shift/reduce conicts as pos-
sible. Even if the implementor intends to parse
using a di�erent strategy (e.g., LL(1) or recursive
descent), the LR(1) grammar is a useful starting
point. The Standard ML of New Jersey implemen-
tation [6] uses such a grammar (with 68 terminals,
76 nonterminals, 231 productions, 452 LALR(1)
states).
Most languages have a shift/reduce conict with

else. In the expression
if A then if B then C else D

it's not clear whether the else is supposed to match
the �rst then or the second. This is customarily
resolved by saying that the innermost (in this case,
the second) then is matched; that is, an LR parser
should resolve the conict by shifting.
ML cleverly avoids this problem by requiring that

every if have both a then and an else clause. But
a similar problem occurs in case expressions:

case A

of X => case B

of Y => C

| Z => D

Now, is the Z pattern part of case A or case B?
The De�nition says that it's the latter; and this
corresponds to resolving a shift/reduce conict in
favor of the shift. This is the only shift/reduce con-
ict in the Standard ML of New Jersey grammar.
Programmers have grown accustomed to the be-

havior of if-then-else. But as an ML program-
mer I often fall into the case trap: I often write
pattern-matches like the one above. The solution is
to enclose the inner case expression in parentheses,
but I would rather the problem didn't occur in the
�rst place.
These extra parentheses are ugly. In fact, having

a shift/reduce conict in the grammar is ugly. A
better solution might be to require that case and
fn expressions end with end, so the example above
would be written:

case A

of X => case B

of Y => C

end

| Z => D

end

Now there is no ambiguity. It is, however, a matter
of taste whether the end is uglier than the extra
parentheses.
There are some other syntactic glitches. It was

clearly the intent of the designers to make semi-

colons optional after declarations. Thus, the decla-
ration

val a = 5;

val b = 6;

would have the same meaning without the
semicolons.10

This is a good thing; I'd rather not have semi-
colons cluttering up my programs (my prose is an-
other matter). But it turns out that between a
structure declaration and a functor declaration
a semicolon is required (though not between two
structure declarations or two functors). The
only apparent reason for this discrepancy is that
the syntax of module declarations was not carefully
thought out.
Finally, I will remark that I have heard from

many di�erent people that they �nd ML syntax
confusing, ugly, and di�cult to learn. As a long-
time ML programmer, I am quite comfortable with
ML syntax; but perhaps the frequency of these com-
plaints might serve as a hint that there is an oppor-
tunity for a syntax designer of rare taste and genius.

In�x operators

Programmers may de�ne new in�x operators in
Standard ML, and may give them a precedence
(between 0 and 9, where a higher number indi-
cates tighter binding) and left or right associativity.
If the programmer wants to de�ne an exponentia-
tion operator ** and make it right-associative and
tighter-binding than multiplication, the declaration
infixr 8 ** works quite well.
The De�nition states

infix and infixr dictate left and right
associativity respectively; association is al-
ways to the left for di�erent operators of
the same precedence.

This is not as good a rule as it could be. Consider
the list-like datatype

datatype 'a list2 = NIL

| $$ of 'a * 'a list2

| && of 'a * 'a list2

infixr 5 $$ &&

Here there are two avors of cons cells. Then the
expression

1 $$ 2 $$ 3 && 4 $$ NIL

is intended to be a \list2" of integers, some of which
are marked with $$ and others with &&, just as
1::2::3::4::nil is an ordinary list of integers.

10The ML \top level" (read-eval-print loop) adds some
twists of its own; these are discussed elsewhere in the paper.

15

In both cases, the cons operators (::, $$, &&) are
meant to associate to the right. But the ML Def-
inition requires that the \list2" expression above
should associate to the left because di�erent oper-
ators of the same precedence are used. Perhaps
the De�nition \meant" to say that \operators of
the same precedence but opposite associativity asso-
ciate to the left." But an even better rule would be
that left- and right-associative operators of the same
precedence don't mix without parentheses; this is
the rule in Haskell [14].

In�x vs. Modules

In�x declarations are not exported from modules,
and cannot be speci�ed in signatures. This makes
them signi�cantly less useful.
For example, if one implements a module Vector

to implement random-access, integer-keyed tables,
one might want a signature like

signature VECTOR =

sig type 'a vector

val vector: 'a list -> 'a vector

val sub: 'a vector * int -> 'a

end

structure Vector: VECTOR = . . .

One might then want to make sub an in�x operator,
so that expressions like V sub i could be used for
getting the ith element of a vector.
To use vectors in another module B, one could

refer to the vector-creation function Vector.vector
and the subscript function Vector.sub. But it is
more convenient to write open Vector inside B, so
that vector and sub can be used without pre�x
within B.
However, one cannot write infix sub in the sig-

nature VECTOR; within B the sub operator won't be
in�x unless there is a separate infix sub declara-
tion in B.
The idea behind the module system is that an

arbitrary piece of static environment can be \en-
capsulated;" then open will reconstitute that en-
vironment in another scope. By prohibiting this
encapsulation of the \�xity" portion of the static
environment, the De�nition makes infix declara-
tions second-class.
The only good argument against allowing open

to reconstitute �xity declarations is that it might
make programs hard to understand; the interpre-
tation (i.e., �xity) of an operator cannot be under-
stood by looking lexically upwards in the text of the
program for a declaration of that identi�er, because
one might not notice the open of a module identi-
�er (e.g., Vector). But this argument applies to

all declarations implicitly introduced by open, not
just �xity declarations. The semantics (i.e., type,
value, etc.) of an operator can't be determined lex-
ically because of the use of open; the programmer
who can parse the operators but doesn't know what
they do is almost as badly o� as the one who isn't
sure about operator precedence.

The De�nition [31, page 10] states that \a
more liberal scheme (which is under consideration)"
would allow in�x specs in signatures, and then an
open declaration would re-install �xities of opera-
tors. Such a scheme has been implemented in Stan-
dard ML of New Jersey[6], and is quite convenient
to use.

Separate compilation

The ML language de�nition is purposely quite
vague about the pragmatics of putting programs to-
gether. The De�nition chooses to pretend that all
programs are typed into an interactive \top level"
read-eval-print loop, and vaguely alludes to the fact
that programs might be compiled from �les.11

This is reasonable: there is nothing wrong with
de�ning a programming language in the abstract,
without tying it to the concrete details of operating
systems and �le systems. It is far better to un-
derspecify this aspect of a language than to get it
wrong.

However, modern languages with module facil-
ities (including C, Modula, Ada) usually specify
quite clearly which parts of a program can be com-
piled separately from the rest of the program: in C,
a .c �le generally requires some .h �les for com-
pilation, but not other .c �les[19]; the Modula-2
de�nition[47] is even more speci�c about the orga-
nization of compilation units.

Since ML has a rather elaborate module system,
it would seem that each module should be a sepa-
rately compileable unit. But this is not necessarily
the case; structures with free structure identi�ers
do not su�ciently specify what they are import-
ing. The Commentary suggests some (severe) re-
strictions on the module system that would allow
separate compilation. But on the whole, the rela-
tionship between structures, modules, and separate
compilation could use some further work.

11In fact, most implementations have a function called use

that allows �les to be compiled; but they disagree on the
semantics of nested uses.

16

Abstract structures

When a structure de�nition in ML is constrained
by a signature, the representations of types are not
hidden; they \show through." Thus, the declaration
of a module implementing complex numbers,
signature COMPLEX =

sig type complex

val * : complex*complex -> complex

end

structure Complex : COMPLEX =

struct

type complex = real * real

val op * = fn ((r1,theta1):complex,

(r2,theta2):complex) =>

(r1*r2, theta1+theta2)

end
does not hide the fact that the polar representation
is used: structure declarations, even when con-
strained by signatures, allow type and sharing in-
formation to \show through" the constraint. Other
modules that make use of the Complex structure
will be able to access the components of a complex
number, unless they import Complex as the param-
eter of a functor. I have found that most people
learning ML are surprised by this, because the sig-
nature declaration itself makes no mention of the
representation.
In some cases the transparency of signatures is

necessary and useful; but in many cases it would
be useful to use the module system to implement
abstract data types. MacQueen's original module
proposal[26] provided for abstraction, a special
kind of structure declaration in which all type rep-
resentation and sharing information not speci�ed
in the signature constraint would be hidden. Giv-
ing programmers the choice between structure and
abstraction would better support programming
with abstract data types. Abstract datatypes with
hidden representations are the apple pie and moth-
erhood of modern software engineering, and rightly
so.
Of course, there exist other mechanisms for

abstract data types in Standard ML (abstype
and functor). But it is particularly convenient
to use abstract data types at the module level,
where abstraction is more straightforward than
abstype. And functors can be a clumsy mechanism
for structuring programs.
The Commentary to the de�nition shows that

abstraction is not semantically problematical [30,
page 85], and even gives a useful generalization of
MacQueen's proposal. It's a pity that this feature
was omitted from the De�nition.

open in signatures

It is customary, in writing modular software, to
specify the interfaces between modules and to im-
plement the modules to meet those interfaces. Even
when the programmer develops the implementation
�rst, it is good practice to pretend otherwise by
writing the interface signature and cleaning up the
implementation as necessary to meet the signature.
Then the reader of the program can �rst under-
stand the interfaces (which are generally more con-
cise than the implementations), and then proceed to
learn about the implementation of one module at a
time. The signatures of the Standard ML module
system support the writing of clear interface speci-
�cations.
Now imagine an interface de�nition that says,

in e�ect, \the signature S is de�ned to be what-
ever interface happens to be met by the implemen-
tation module M ." Then to understand S, one
must read through the entire implementation M ,
inferring types for all the values, keeping track of
which identi�ers are visible in the outermost scope.
A right-thinking software engineer should certainly
frown at such a method of de�ning interfaces.
But this is exactly what is provided by open specs

in signatures! The signature
signature S = sig open M end

speci�es that the interface S is just whatever
(largest) interface is obtained by elaborating the
structure M.
The open spec may be pleasingly symmetrical

to the theoretician; it may be technically useful in
de�ning the semantics of the rest of the module sys-
tem. But it has no place in a real programming
language.12

A related problem has to do with overlap-
ping open (or include) specs. Since open M or
include S has the e�ect of including many identi-
�ers, it is easy for the programmer to inadvertantly
(or even purposefully) include two di�erent signa-
tures containing the same type, value, or structure
identi�er. Though there is no ambiguity in the se-
mantics (the later spec takes precedence), multiple
de�nitions make the scope of specs much more com-
plicated to follow, and make the implementation of
semantic analysis for signatures and sharing much
more di�cult.
The scope rules for ML expressions, while sim-

ple, are not completely trivial; and that is appropri-
ate: programs are complicated things. But it seems

12A sharing constraint can also relate a signature interface
to a free structure. But this is not so problematical for the
reader of the program, since it has no e�ect on the visibility
of names.

17

worthwhile to strive for extreme simplicity in inter-
face (signature) de�nitions: scope rules for signa-
tures should be trivial. A clear understanding of the
interfaces of a program is a prerequisite to under-
standing the program. Removing open, local, and
include specs13 from Standard ML would result in
much cleaner interfaces, without causing great in-
convenience.
One of the arguments for include is that it helps

in writing concisely a signature for modules that
satisfy several di�erent speci�cations. Consider a
signature HASH of hashable values, and a signature
GROUP for mathematical group structures:

signature HASH =

sig type value

val hash : value -> int

end

signature GROUP =

sig type elem

val id : elem

val * : elem * elem -> elem

val inverse: elem -> elem

end

How can these be combined to make a signature for
hashable groups? With include, one could write

signature HASHGROUP =

sig include HASH

include GROUP

sharing type value = elem

end

But substructures serve almost as concisely, with-
out using include:

signature HASHGROUP =

sig structure H: HASH

structure G: GROUP

sharing type H.value = G.elem

end

In fact, the latter approach is more robust, since
unfortunate naming coincidences between the two
signatures can be distinguished by quali�ed iden-
ti�ers (imagine that the HASH signature also had
an identity function id: value->value). The only
disadvantage is that the client of HASHGROUP must
either open G and H, or use quali�ed identi�ers such
as G.id instead of id.

4 Problems in compiling ML

ML is designed to be compiled: many things can be
evaluated at compile time. ML has static types,

13I am not proposing to remove open declarations from
expressions, just open specs from signatures.

static (lexical) scope, statically-checked modules.
However, some aspects of the language design are
hard to compile e�ciently.

Polymorphic equality

ML has an operator = to test the equality of two
values (which must have the same type). Values of
any of the primive types (integer, real, string, etc.)
may be tested for equality, but values of function
type may not. Abstract types, of which the pro-
grammer has purposely hidden the representation,
also do not \admit equality;" they are not \equality
types."
Any values of a record type or datatype built only

from \equality types" may be compared for equal-
ity. Equality of records, lists, and so on is structural:
the record (x1; y1) is equal to (x2; y2) if x1 = x2 and
y1 = y2; there is no way to tell if the two records
are at the same address.
This is all very well, but now there is a complica-

tion. Consider the program

fun alleq(a,b,c) = a=b andalso b=c

val t = alleq(3,3,3)

val x = alleq(fn x=>x+1, (* ILLEGAL! *)

fn x=>1+x,

fn x=>x+1)

The function alleq should have a type resembling
8�: � � � � � ! bool , so that we can pass three
integers to it, or three strings, or three lists of real
numbers. But we cannot pass any values of a type
(such as int ! int) that does not admit equality;
thus the last declaration must be illegal. (After all,
to tell whether two functions are \equal" the com-
piler must be able to tell whether they give the same
results on all inputs, which is rather di�cult.)
In Standard ML the problem is resolved by intro-

ducing \equality type variables," which can be in-
stantiated only by types that admit equality. Thus,
the type of alleq is something like

8�=: �= � �= � �= ! bool

where we can substitute int for �=, but not int !
int. In an (ASCII) ML program, equality type vari-
ables are written starting with two apostrophes in-
stead of just one.
This seems like a clever solution, but it introduces

three kinds of problems into the ML language:

1. The static semantics of the language become
very complicated;

18

2. code generation and the runtime system re-
quire unpleasant special cases;

3. and perhaps programming with equality types
isn't a good idea anyhow.

Static semantics: Now the language design-
ers must worry about type constructors that ad-
mit equality, specs in signatures of types that ad-
mit equality, propagation of the equality property
through sharing constraints and functors, and so
on. In The De�nition of Standard ML, no fewer
than twenty-two pages mention some syntactic or
semantic aspect of equality types; this is approxi-
mately one out of every four pages of the De�ni-
tion. The rami�cations of equality similarly metas-
tasize throughout a Standard ML compiler. Equal-
ity types add signi�cant complexity to the language
and its implementation.
Dynamic semantics: In almost every respect

the type checking of an ML program is distinct from
the evaluation of the program. Thus, type checking
can be done at compile time, and type tags need
not be carried on runtime objects. This saves con-
siderable space and time, and is one of the most
important features of the language.
But a function (such as alleq, above) must be

able to test variables for equality, even though
the type of these variables is polymorphic and not
known until run time. There are two ways that this
might be accomplished:

1. The runtime representation of each object can
have su�cient tag information to determine
whether the object is a pointer, and if so, how
many �elds are in the pointed-to record, and
whether the record is a ref cell. Then an
\equality interpreter" can recursively traverse
data structures to test bitwise equality on non-
pointers, and structural equality on pointers. I
believe this is the solution chosen in all existing
ML compilers.

2. The representation of any formal parameter
whose type is a polymorphic equality type vari-
able could be a pair, whose �rst �eld is the
value itself and whose second �eld is a func-
tion for testing equality on values of that type.
Then a function such as alleq could use these
implicit parameters to perform equality test-
ing. This is the solution adopted in Haskell[44],
which generalizes the notion of equality types
to include other kinds of overloading.

There are disadvantages to either solution. The
�rst requires runtime tags which are otherwise not

necessary for ordinary execution. The argument is
often made that these tags are there to allow the
garbage collector to traverse pointers and records.
But it's possible to devise a garbage collector that
relies on the static type information computed at
compile time [3], without any runtime tags on data.
Furthermore, even a conventional garbage collector
might use a BIBOP (Big Bag of Pages) scheme that
groups many objects of similar type on the same
page, so that one tag su�ces for all of them. Then
the runtime \equality interpreter" faces a very com-
plex task in understanding the structure of objects.

As to the provision of implicit arguments to func-
tions, this is workable but inelegant. As the Com-
mentary on Standard ML states, \the static and
dynamic semantics can be studied independently of
one another." [30, preface] In structuring a com-
piler, it is very convenient that translation of ex-
pressions into machine language is independent of
the types of the expressions. Requiring that some
expressions must be treated specially depending on
their types corrupts the interface between the com-
ponents of the compiler.

Programming with equality types: An oft-
used example of the utility of equality types is the
implementation of sets (with union, intersection,
etc.) as lists. Thus,

fun set(x) = x::nil

fun member(x, nil) = false

| member(x, a::r) = x=a orelse

member(x,r)

fun union(a::r,b) =

if member(a,b)

then union(r,b)

else a::union(r,b)

| union(nil,b) = b

Then these functions can be used to make sets
whose elements are any type �, as long as � ad-
mits equality (i.e., doesn't contain components of
functional or abstract type). And the programmer
doesn't even have to provide an explicit equality
function|the compiler �gures it all out.

But there are two very signi�cant problems with
this program, and these problems are su�ciently
general that they may a�ect any program that
makes much use of equality type variables. First,
the set union function takes quadratic time. Any
realistic program that deals with sets will want to
make set union take linear time; and this can only
be done if there is some sort of ordering (less-than)
comparison operator available on the elements, or
some way to hash the elements to integer values.
Thus, a \production quality" set abstraction will be

19

parameterised by more than just an equality func-
tion.
Second, consider what happens with sets of sets.

As an example,

val a = union(set(1),set(2))

val b = union(set(2),set(1))

val x = set(a)

val t = member(b,x)

The set x has a single element that is the set f1;2g;
the last line tests the set f2; 1g for membership.
Of course, the program will tell us that b 62 fag,
which violates the set abstraction. The problem
is that structural equality is the wrong equality to
use on sets; the programmer should really provide
an eq_set function that tests whether two sets have
the same elements.
Thus, implicit structural equality is often bad

programming practice. The programmer should
provide an explicit equality function because (1) the
explicit function will likely be more e�cient to use,
and (2) the explicit function will have the right se-
mantics for the application.
A reasonable compromise would be to allow a

kind of statically overloaded equality function, of
the kind found in earlier versions of Standard ML
[29]. This equality operator worked on any non-
functional monomorphic type. Such an operator is
quite convenient to the programmer, and does not
unduly complicate the language semantics, com-
piler, or runtime system. (Half as many pages of
the De�nition14 would mention equality; equality
attributes would cease to interact with the type
checker or the module system; no \equality inter-
preter" would be needed in the runtime system.) It
must be admitted that with this solution (as with
ML overloading) we are left without principal types
in some cases.

Datatype representations

Recursive data types are declared in ML using
datatype, which de�nes the constructors (and as-
sociated types) of a disjoint union type. Linked lists
are just a special case of this more general notion.
The runtime representation of a typical datatype

element consists of a constructor and an associated
value. A straightforward implementation of this
representation would be as a two-element record,
with one �eld containing a small integer tag (stand-
ing for the constructor) and the other containing
the value (since ML has polymorphic types, every

14Pages 4, 18, 19, 21, 22, 25, 26, 74, 75, 77, 79 of the
De�nition[31] would still mention equality; pages 13, 16, 33,
35, 36, 39, 40, 41, 43, 44, 57 would no longer need to.

value must be the same size|one word in a typical
implementation).

This scheme, if applied to a datatype like list,
would require that the representation of a::b be a
pointer to a two-element record containing a con-
structor and a value; the value would be a pointer
to another pair containing a and b. Each element of
the list, then, requires not one \cons cell" but two!
Cardelli's ML compiler[7] avoided this extrava-

gance by taking advantage of the fact that in the
runtime representation of values, pointers could be
distinguished from small integers. Thus, the com-
piled code could tell which constructor (nil or ::)
had been applied by seeing if the value was a small
integer (nil) or a pointer (::). The pointer would
then point directly at a record containing a and b.
Thus the representation of lists in Cardelli's com-
piler (and in every subsequent ML compiler) is just
like the representation used in Lisp.
In fact, all these compilers generalize the idea

slightly: in any datatype with just one non-constant
constructor (and any number of constant construc-
tors), if the non-constant constructor carries a value
that is always represented by a pointer, then an ex-
tra indirection to carry the constructor is not nec-
essary.
Now, consider the following perfectly legal Stan-

dard ML program:

functor F(type 'a t

datatype 'a list =

nil | :: of 'a t

) = struct . . . end;

structure S =

F(datatype 'a list =

nil | :: of 'a * 'a list

type 'a t = 'a * 'a list

);

In compiling the functor F , the compiler does not
know whether the representation of 'a t is always
a pointer; so an explicit indirection (a record for the
constructor) must be used in the representation of
list.
But in compiling the structure S, the actual pa-

rameter has a datatype list in which the value car-
ried by :: is a record, and thus always a pointer.
So the representation chosen by the compiler will
use Cardelli's optimization.
Then when lists created outside of F are passed

to functions inside F , the program will go wrong:
di�erent compilation units will disagree about the
representation of lists.
Thus, Standard ML does not permit Cardelli's

20

optimization;15 but all the implementations use it
because the alternative is too expensive.

The problem is a bit more general. There are
many other possible generalizations of Cardelli's
technique, all with the aim of making the rep-
resentations of datatypes more compact and e�-
cient. None of these techniques work across functor
boundaries.

Cardelli's technique is a variant of the idea,
pay for abstraction only where things are abstract.
Leroy's representation analysis applies to functions;
Cardelli's to data structures. But it appears that
this idea cannot be made to apply to recursive
datatypes in Standard ML; this is extremely un-
fortunate. I believe the problem lies in the partial
abstraction of datatypes. In the example above,
the programmer has abstracted � � � list into � t,
but has not abstracted the datatype list. This is
an unusual program. The whole point of a con-
crete datatype is that it is not abstract; if the pro-
grammer wanted an abstract type in the interface
then the parameter of F wouldn't have mentioned
a datatype at all.

Thus, a solution to this problem might be to
change very slightly the notion of a datatype. In-
stead of saying that a datatype is the disjoint sum
of several types, let us say that it is the disjoint
sum of several product types. That is, the value
carried by a constructor is not just a type, it is a
record type. Note that this is exactly the way that
a variant record works in Pascal.

Then the problematic program above would not
be legal. The functor de�nition would be allowed,
but the datatype in the actual parameter would not
match the datatype in the formal parameter.

This slight restriction would allow compilers to
use much more e�cient representations of concrete
datatypes in ML. At present we are experiment-
ing with an implementation of this representation
(and consequent language restriction) to explore
this tradeo�.

One might think that a compiler should also rep-
resent each element of an (int � int)list as a triple
(int ; int; tail � pointer). But here the product type
(int�int) is not part of the datatype itself, but part
of the type parameter of the list constructor. This
would lead to problems when polymorphic functions
on list types are applied to a specially-represented
lists. Thus, such an optimization has problems not
only at functor boundaries but at function bound-
aries.

15Cardelli, of course, was not compiling a language with
functors.

The initial basis

The De�nition speci�es an initial basis, that is, a set
of prede�ned types, values, and exceptions that are
the \built-in functions" (etc.) of any ML system.
These include the arithmetic operators on integers
and reals, string concatenation, a few operators on
lists, and so on.
The initial basis is not large enough to write real

programs that use nontrivial input/output, or that
interact much with the operating system. That's
perfectly acceptable; this is a language de�nition,
not a library module. The type and module systems
of Standard ML are adequate to describe appropri-
ate libraries, and that's what is important.
But the initial basis, such as it is, has some rough

edges:

� There are functions for reading and writing
strings of characters, for converting integers
into single-character strings (and back), and
for concatenating strings, and for \exploding"
strings into lists of single-character strings, and
\imploding" (concatenating a list of strings to-
gether). But there is no way to access the ith
character of a string in constant time|there is
no substring operator! The only way to extract
an internal character of a string is to explode
the string and then to traverse the resulting
list; this takes time linear in the length of the
string.

� There is no way to make updateable arrays
with constant-time access to arbitrary ele-
ments. Arrays can be simulated by lists (or
trees) of ref cells, but access and update op-
erations will then take linear (or logarithmic)
time. Updateable arrays are certainly not out
of place in a language with updateable refs.

� The arithmetic operators may overow, in
which case the De�nition prescribes that + will
raise the Sum exception, *will raise the Prod ex-
ception, and so on. It is extremely inconvenient
for the implementor to have distinct excep-
tions for the di�erent operators; most comput-
ers don't raise separate hardware exceptions for
di�erent kinds of overow. And the program-
mer would almost always be served just as well
by a single exception called Overflow.

� There is no bit string type, and there are no
bitwise logical operators on the integer type.
There are many applications of bitwise oper-
ators in graphics, number theory, cryptogra-
phy, and other areas. On the other hand, it

21

is worth noting that ML's div and mod have
rounding behavior (towards negative in�nity,
not towards zero) that allow shifts and masks
to be de�ned using powers of two; compilers
could optimize this case, in principle.

� Upon an input/output error, the Io exception
is raised with a string argument. The format
of the argument is speci�ed in the De�nition,
and this format does not provide enough in-
formation for serious applications. It would
have been preferable to leave the contents of
the string unspeci�ed rather than prematurely
settling on an inadequate standard.

� To �nish on a trivial note: the list concatena-
tion operator @ is declared in�x, associating to
the left. Programs would compute the same
result under right associativity, but would run
faster, since @ must copy its left argument but
not its right one.

It is worth noting that every implementation of
ML since Cardelli's has had a constant time array
subscript and an e�cient substring function; the
De�nition could have provided a helpful standard-
ization.

5 Conclusion

The popularity of ML seems to be increasing, both
as a language for writing real programs and as a
starting point for theoretical investigations of type
theory and language design. Programmers should
note that the good points of ML discussed in this
paper are all rather general and important; the crit-
icisms tend to be narrow, technical, and not always
important.

Theorists should note that, even though some of
the criticisms are minor and not of much theoretical
interest, they all a�ect the usability of the language.
Those theorists who anticipate designing a language
themselves someday might want to remember this
critique, along with the classics of the genre[13, 46].

Acknowledgment

I would like to thank Doug McIlroy and an anony-
mous referee for many valuable comments.

References

[1] Military standard: Ada programming language.
Technical Report MIL-STD-1815, Department of

Defense, Naval Publications and Forms Center,
Philadelphia, PA, 1980.

[2] Thomas E. Anderson, Brian N. Bershad, Ed-
ward D. Lazowska, and Henry M. Levy. Scheduler
activations: E�ective kernel support for the user-
level management of parallelism. ACM Trans. on
Computer Systems, 10(1):53{79, February 1992.

[3] Andrew W. Appel. Runtime tags aren't necessary.
Lisp and Symbolic Computation, 2:153{62, 1989.

[4] Andrew W. Appel. Compiling with Continuations.
Cambridge University Press, 1992.

[5] Andrew W. Appel and David B. MacQueen. A
Standard ML compiler. In Gilles Kahn, editor,
Functional Programming Languages and Computer
Architecture (LNCS 274), pages 301{24, New York,
1987. Springer-Verlag.

[6] Andrew W. Appel and David B. MacQueen. Stan-
dard ML of New Jersey. In Martin Wirsing, edi-
tor, Third Int'l Symp. on Prog. Lang. Implemen-
tation and Logic Programming, pages 1{13, New
York, August 1991. Springer-Verlag.

[7] Luca Cardelli. Compiling a functional language. In
1984 Symp. on LISP and Functional Programming,
pages 208{17, New York, 1984. ACM Press.

[8] Will Clinger and Lars Thomas Hansen. Is explicit
deallocation really faster than garbage collection?
unpublished manuscript, 1992.

[9] Eric C. Cooper and J. Gregory Morrisett. Adding
threads to Standard ML. Technical Report CMU-
CS-90-186, School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, December 1990.

[10] Luis Damas. Type Assignment in Programming
Languages. PhD thesis, Department of Computer
Science, University of Edinburgh, 1985.

[11] Bruce Duba, Robert Harper, and David Mac-
Queen. Typing �rst-class continuations in ML.
In Eighteenth Annual ACM Symp. on Principles
of Prog. Languages, pages 163{73, New York, Jan
1991. ACM Press.

[12] M. J. Gordon, A. J. Milner, and C. P. Wadsworth.
Edinburgh LCF. Springer-Verlag, New York, 1979.

[13] C. A. R. Hoare. Hints on Programming-Language
Design, pages 193{216. Prentice Hall, 1989.
keynote address to the ACM SIGPLAN conference
in 1973.

[14] Report on the programming language Haskell: Ver-
sion 1.1. Technical Report Technical Report, Yale
University and Glasgow University, August 1991.

[15] Report on the programming language Haskell, a
non-strict, purely functional language, version 1.2.
SIGPLAN Notices, 27(5), May 1992.

[16] Kathleen Jensen and Niklaus Wirth. Pascal: User
Manual and Report. Springer-Verlag, New York,
1974.

22

[17] Pierre Jouvelot and David K. Gi�ord. Algebraic
reconstruction of types and e�ects. In Eighteenth
Annual ACM Symp. on Principles of Prog. Lan-
guages, pages 303{310, New York, Jan 1991. ACM
Press.

[18] Stefan Kaes. Type inference in the presence of
overloading, subtyping and recursive types. In
Proc. 1992 ACM Conf. on Lisp and Functional
Programming, pages 193{204. ACM Press, 1992.

[19] Brian W. Kernighan and Dennis M. Ritchie. The C
Programming Language. Prentice-Hall, Englewood
Cli�s, NJ, 1978.

[20] Andrew Koenig. C Traps and Pitfalls. Addison-
Wesley, Reading, Mass, 1989.

[21] Xavier Leroy. Unboxed objects and polymorphic
typing. In Nineteenth Annual ACM Symp. on
Principles of Prog. Languages, pages 177{188, New
York, January 1992. ACM Press.

[22] Xavier Leroy and Michel Mauny. Dynamics in
ml. In J. Hughes, editor, Functional Programming
Languages and Computer Architecture: 5th ACM
Conference (LNCS 523), pages 406{426. Springer-
Verlag, 1991.

[23] Xavier Leroy and Pierre Weis. Polymorphic type
inference and assignment. In Eighteenth Annual
ACM Symp. on Principles of Prog. Languages,
pages 291{302, New York, Jan 1991. ACM Press.

[24] Henry Lieberman and Carl Hewitt. A real-time
garbage collector based on the lifetimes of objects.
Communications of the ACM, 26(6):419{29, 1983.

[25] John M. Lucassen and David K. Gi�ord. Poly-
morphic e�ect systems. In Fifteenth Annual ACM
Symp. on Principles of Prog. Languages, pages 47{
57, New York, Jan 1988. ACM Press.

[26] David MacQueen. Modules for Standard ML. In
Proc. 1984 ACM Conf. on LISP and Functional
Programming, pages 198{207, New York, 1984.
ACM Press.

[27] David B. MacQueen. weak-types. Distributed
with Standard ML of New Jersey, 1988.

[28] Robin Milner. A theory of type polymorphism in
programming. Journal of Computer and System
Sciences, 17:348{75, 1978.

[29] Robin Milner. A proposal for Standard ML. In
ACM Symposium on LISP and Functional Pro-
gramming, pages 184{97, New York, 1984. ACM
Press.

[30] Robin Milner and Mads Tofte. Commentary
on Standard ML. MIT Press, Cambridge, Mas-
sachusetts, 1991.

[31] Robin Milner, Mads Tofte, and Robert Harper.
The De�nition of Standard ML. MIT Press, Cam-
bridge, MA, 1989.

[32] Greg Nelson, editor. Systems Programming with
Modula-3. Prentice Hall, Englewood Cli�s, NJ,
1991.

[33] Scott Nettles and James W. O'Toole. Carnegie
Mellon Univ., Pittsburgh, PA, personal communi-
cation from Scott Nettles, 1990.

[34] J. Rees and W. Clinger. Revised report on the
algorithmic language Scheme. SIGPLAN Notices,
21(12):37{79, 1986.

[35] John H. Reppy. Concurrent programming with
events. Technical report, Cornell University, Dept.
of Computer Science, Ithaca, NY, 1990.

[36] John H. Reppy and Emden R. Gansner. The eXene
library manual. Cornell Univ. Dept. of Computer
Science, March 1991.

[37] Colin Runciman and David Wakeling. Heap pro�l-
ing of lazy functional programs. Technical Report
172, University of York, Dept. of Computer Sci-
ence, Heslington, York Y01 5DD, United Kingdom,
April 1992.

[38] Zhong Shao and Andrew W. Appel. Smartest
recompilation. In Proc. Twentieth Annual ACM
SIGPLAN-SIGACT Symp. on Principles of Pro-
gramming Languages, page to appear. ACM Press,
1993.

[39] Robert A. Shaw. Improving garbage collector per-
formance in virtual memory. Technical Report
CSL-TR-87-323, Stanford University, Palo Alto,
CA, 1987.

[40] Jean-Pierre Talpin and Pierre Jouvelot. Polymor-
phic type, region, and e�ect inference. Technical
Report EMP-CRI E/150, Ecole des Mines de Paris,
February 1991.

[41] Mads Tofte. Type inference for polymorphic ref-
erences. Information and Computation, 89:1{34,
November 1990.

[42] David M. Ungar. The Design and Evaluation of a
High Performance Smalltalk System. MIT Press,
Cambridge, MA, 1986.

[43] Philip Wadler. The essence of functional program-
ming (invited talk). In Nineteenth Annual ACM
Symp. on Principles of Prog. Languages, pages 1{
14, New York, Jan 1992. ACM Press.

[44] Philip Wadler and Stephen Blott. How to make
ad-hoc polymorphism less ad hoc. In Sixteenth An-
nual ACM Symp. on Principles of Prog. Languages,
pages 60{76, New York, January 1989. ACM Press.

[45] Mitchell Wand. Continuation-based multiprocess-
ing. In Conf. Record of the 1980 Lisp Conf., pages
19{28, New York, August 1980. ACM Press.

[46] J. Welsh, W. J. Sneeringer, and C. A. R. Hoare.
Ambiguities and insecurities in Pascal. Software|
Practice and Experience, 7(6):685{96, 1977.

[47] Niklaus Wirth. Programming in Modula-2.
Springer-Verlag, New York, NY, 1981.

23

[48] Andrew K. Wright. Polymorphic references for
mere mortals. In Proceedings of the European Sym-
posium on Programming, 1992.

24

