
A Compositional Logic for Control Flow

Gang Tan1 and Andrew W. Appel2

1 Computer Science Department, Boston College. gtan@cs.bc.edu
2 Computer Science Department, Princeton University. appel@cs.princeton.edu

Abstract. We present a program logic, Lc, which modularly reasons
about unstructured control flow in machine-language programs. Unlike
previous program logics, the basic reasoning units in Lc are multiple-
entry and multiple-exit program fragments. Lc provides fine-grained com-
position rules to compose program fragments. It is not only useful for
reasoning about unstructured control flow in machine languages, but
also useful for deriving rules for common control-flow structures such
as while-loops, repeat-until-loops, and many others. We also present a
semantics for Lc and prove that the logic is both sound and complete
with respect to the semantics. As an application, Lc and its semantics
have been implemented on top of the SPARC machine language, and are
embedded in the Foundational Proof-Carrying Code project to produce
memory-safety proofs for machine-language programs.

1 Introduction

Hoare Logic [1] has long been used to verify properties of programs written in
high-level programming languages. In Hoare Logic, a triple {p}s{q} describes
the relationship between exactly two states—the normal entry and exit states—
associated with a program execution. That is, if the state before execution of s
satisfies the assertion p, then the state after execution satisfies q. For a high-level
programming language with structured control flow, a program logic based on
Hoare triples works fine.

However, programs in high-level languages are compiled into machine code
to execute. Since it is hard to prove that a compiler with complex optimizations
produces correct machine code from verified high-level-language programs, sub-
stantial research effort [2–4] during recent years has been devoted to verifying
properties directly at the machine-language level.

Machine-language programs contain goto statements with unrestricted des-
tinations. Therefore, a program fragment or a collection of statements possibly
contains multiple exits and multiple entries to which goto statements might
jump. In Hoare Logic, since a triple {p}s{q} is tailored to describe the relation-
ship between the normal entry and the normal exit states, it is not surprising that
trouble arises in considering program fragments with more than one entry/exit.

To address the problem of reasoning about control flow in machine-language
programs, this paper makes two main contributions:

appel
Text Box
To appear in VMCAI 2006, Seventh International Conference on Verification, Model Checking and Abstract Interpretation, January 8-10, 2006.© 2006 Springer-Verlag

– We propose a program logic, Lc, which modularly reasons about machine-
language program fragments. Its basic reasoning units are multiple-entry and
multiple-exit program fragments. The logic composes program fragments in
a set of fine-grained composition rules. As a result, Lc is more modular than
previous program logics for control flow.

– We also develop for Lc a semantics. We will show that a naive semantics does
not work. We need to use a semantics based on approximations of counting
computation steps. Based on this semantics, soundness and (relative) com-
pleteness of Lc are proved.

Before a full technical development, we present an overview of Lc and its
related work.

Overview of Lc. Two design features give Lc its modularity: its judgment (form
of specification) and its composition rules. The judgment in Lc is directly on
multiple-entry and multiple-exit program fragments. For example, Lc treats a
conditional-branch statement “if b goto l” as a one-entry and two-exit fragment.
Lc then provides for “if b goto l” a rule, which associates the entries and exits
with appropriate invariants, depicted as follows:

p

gotob l

∧p b∧p b¬
l

if

The above graph associates the invariant p with the entry, and associates p∧¬b
and p ∧ b with two exits, respectively. As a note to our convention, we put
invariants on the right of edges; we put labels, when they exist, on the left.

Lc also provides a set of inference rules to compose judgments on program
fragments. These inference rules reason about control flow in smaller steps than
Hoare Logic. For example, to reason about while loops, Hoare Logic provides a
while rule:

{p ∧ b}s{p}
{p}while b do s{p ∧ ¬b} while

l : if ¬b goto l′;
l1 : s;
l2 : goto l
l′ :

(1)

A while loop, however, is a high-level language construct. When mapped to
machine code, it is implemented by a sequence of more primitive statements.
One implementation is shown on the right of the previous figure. Since the
implementation contains unstructured control flow, Hoare logic cannot reason
about it. In contrast, our logic can treat each statement in the implementation
as a multiple-entry and multiple-exit fragment. Using its composition rules, the
logic can combine fragments and eliminate intermediate entries and exits. In
the end, from its composition rules, the logic can derive the Hoare-logic rule
for while loops. Furthermore, it can derive the rules for sequential composition,

2

repeat-until loops, if-then-else statements, and many other structured control-
flow constructs. Therefore, our logic can recover structured control flow, when
present, in machine-language programs.

Related work on program logics for goto statements. Many researchers have also
realized the difficulty of verifying properties of programs with goto statements
in Hoare Logic [5–9]. Some of them have proposed improvements over Hoare
Logic. Almost all of these works are at the level of high-level languages. They
treat while loops as a separate syntactic construct and have a rule for it. In
comparison, Lc derives rules for control-flow structures.

These previous works also differ from Lc in terms of the form of specification.
The work by de Bruin [8] is a typical example. In his system, the judgment for
a statement s is:

〈L1 : p1, . . . , Ln : pn|{p}s{q}〉, (2)

where L1, . . . , Ln are labels in a program P ; the assertion pi is the invari-
ant associated with the label Li; the statement s is a part of the program
P . Judgment (2) judges a triple {p}s{q}, but under all label invariants in
a program. By explicitly supplying invariants for labels in the judgment, de
Bruin’s system can handle goto statements, and its rule for goto statements is
〈L1 : p1, . . . , Ln : pn|{pi}goto Li{false}〉.

Judgment (2) is sufficient for verifying properties of programs with goto state-
ments. Typed Assembly Language (TAL [3]) by Morrisett et al. uses a similar
judgment to verify type safety of assembly-language programs. However, judg-
ment (2) assumes the availability of global information, because it judges a
statement s under all label invariants of a program— L1 : p1, . . . , Ln : pn. Con-
sequently, it is impossible for de Bruin’s system or TAL to compose fragments
with different sets of global label invariants. We believe that a better form of
specification should judge s under only those label invariants associated with
exits in s. This new form of specification makes fewer assumptions (fewer label
invariants) about the rest of the program and is more modular.

Floyd’s work [10] on program verification associates a predicate for each
arc in the flowchart representation of a program. The program is correct if each
statement in the program has been verified correct with respect to the predicates
associates with the entry and exit arcs of the statement. In Floyd’s system,
however, the composition of statements is based on flowcharts and is informal,
and it has no principles for eliminating intermediate arcs. Our Lc provides formal
rules for composing statements. When verifying properties of goto statements
and labels, Floyd’s system also assumes the availability of the complete program.

Cardelli proposed a linking logic [11] to formalize program linking. Glew and
Morrisett [12] defined a modular assembly language to perform type-safe linking.
Our logic is related to these works because exit labels can be thought as imported
labels in a module, and entry labels as exported labels. In some sense, we apply
the idea of modular linking to verification of machine code. But since we are
more concerned with program verification, we also provide a semantics for our
logic, and prove it is both sound and complete.

3

operator symbols OPSym op
relation symbols RSym re
variables Var x, y, z
labels Label l
primitive statements PrimStmt t ::= x := e | goto l | if b goto l
statements Stmt s ::= t | l : s | (s1; s2)
expressions Exp e ::= x | op(e1, . . . , ear(op))
boolean expressions BExp b ::= true | b1 ∨ b2 | ¬b | re(e1, . . . , ear(re))

Fig. 1. Language syntax, where ar(op) is the arity of the symbol op.

Recent works by Benton [13], Ni and Shao [14], and Saabas and Usstalu [15]
define compositional program logics for low-level machines; their systems also
reason modularly about program fragments and linking. To deal with procedure
calls and returns, Benton uses Hoare-style pre- and postconditions. Since our
compiler uses continuation-passing style, so can our calculus; therefore our labels
need only preconditons.

The rest of this paper is organized as follows. Section 2 presents the logic Lc

on a simple imperative language that has unstructured control flow. In Section 3,
we develop a semantics for the logic. The soundness and completeness theorems
are then presented. In Section 4, we briefly discuss the implementation and the
role of Lc in the Foundational Proof-Carrying Code project [4]. In Section 5,
we conclude and discuss future work. A more detailed treatment of the logic, its
semantics, and its applications can be found in the first author’s PhD thesis [16].

2 Program Logic Lc

We present Lc on a simple imperative language. Figure 1 presents the syntax of
the language. Most of the syntax is self-explanatory, and we only stress a few
points. First, since the particular set of primitive operators and relations does
not affect the presentation, the language assumes a class of operator symbols,
OPSym, and a class of relation symbols, RSym. For concreteness, OPSym could
be {+,×, 0, 1} and RSym could be {=, <}. Second, boolean operators do not
include standard constructors such as false, ∧ and ⇒; they can be defined by
true, ∨ and ¬.

The language in Fig. 1 is tailored to imitate a machine language. The des-
tination of a goto statement is unrestricted and may be a label in the middle
of a loop. Furthermore, the language does not have control structures such as
if b then s, and while b do s. These control structures are implemented by a
sequence of primitive statements.

To simplify the presentation, the language in Fig. 1 differs from machine
languages in several aspects. It uses abstract labels while machine languages
use concrete addresses. This difference does not affect the results of Lc. The

4

fragments Fragment f ::= l : (t) : l′

fragment sets FragSet F ::= {l1 : (t1) : l′1, . . . , ln : (tn) : l′n}
assertions Assertion p ::= true | p1 ∨ p2 | ¬p | re(e1, . . . , ear(re)) | ∃x.p
label-continuation sets LContSet Ψ ::= {l1 � p1, . . . , ln � pn}

Fig. 2. Lc: Syntax

language also lacks indirect jumps (jump through a variable), pc-relative jumps,
and procedure calls. We will discuss in Section 4 how we deal with these features.

2.1 Syntax and Rules of Lc

The syntax of Lc is in Fig. 2.

Program fragments. A program fragment, l : (t) : l′, is a primitive statement
t with a start label l and an end label l′. The label l identifies the left side of
t, the normal entry, and l′ identifies the right side of t, the normal exit. We
also use l1 : (s1; s2) : l3 as an abbreviation for two fragments: l1 : (s1) : l2 and
l2 : (s2) : l3, where l2 is a new label. We use the symbol F for a set of fragments.

Assertions and label continuations. Assertions are meant to describe predicates
on states. Lc can use any assertion language. We use first-order classical logic
in this presentation (see Fig. 2). This assertion language is a superset of the
language of boolean expressions. We omit conjunction and universal quantifiers
since they can be defined by other constructors classically.

Lc is parametrized over a deduction system, D, which derives true formulas
in the assertion language. We leave the rules of D unspecified, and assume that
its judgment is �D p, which is read as that p is a true formula.

A label identifies a point in a program. To associate assertions with labels,
Lc uses the notation, l � p, pronounced “l with p”. In Hoare Logic, when an
assertion p is associated with a label l in a verified program, then whenever the
control of the program reaches l, the assertion p is true on the current state.
In Lc, we interpret l � p in a different way: If l � p is true in a program, then
whenever p is satisfied, it is safe to continue from l (or, jump to l). Therefore,
we call p a precondition of the label l, and call l � p a label continuation. We use
the symbol Ψ for a set of label continuations.

Form of specification. In Lc, the judgment to specify properties of multiple-entry
and multiple-exit program fragments has the syntax:

F ; Ψ ′ � Ψ,

where F is a set of program fragments; Ψ ′ and Ψ are sets of label continuations.
We next explain this judgment. Suppose

Ψ ′ = {l′1 � p′1, . . . , l
′
m � p′m}, and Ψ = {l1 � p1, . . . , ln � pn}.

5

Labels l′1, . . . , l
′
m in Ψ ′ are exits of F , and l1, . . . , ln in Ψ are entries of F . The

following graph depicts the relationship between F , Ψ , and Ψ ′:

ψ′
′l

l1

l ′1

p1 pnln

p′1 m′p

F

ψ

m

With this relationship in mind, an informal interpretation of the judgment
F ; Ψ ′ � Ψ is as follows: for a set of fragments F , if it is safe to continue
from any of the exit labels, provided that the associated assertion is true, then
it is safe to continue from any of the entry labels, provided that the associated
assertion is true. This interpretation draws conclusions on entry labels based
on assumptions on exit labels. Note, however, this interpretation is simplified
and the precise interpretation we will adopt for F ; Ψ ′ � Ψ in Section 3 has an
additional requirement: It takes at least one computation step from an entry to
reach an exit. We ignore this issue for now and will come back to it.

Using this judgment, Lc provides rules for primitive statements. For example,
Fig. 3 provides a rule for the assignment statement. In the assignment rule, the
fragment, l : (x := e) : l′, has one entry, namely l, and one exit, namely l′. The
assignment rule states that if it is safe to continue from the exit l′, when p is
true, then it is safe to continue from the entry l, when p[e/x] is true. The reason
why it is safe to continue from l can be informally established as follows: Suppose
we start from l in an initial state where the next statement to execute is x := e
and p[e/x] is true; the new state after the execution of the statement reaches
the exit l′, and based on the semantics of x := e, the assertion p is true; since
we assume it is safe to continue from l′, when p is true, the new state is safe to
continue; hence, the initial state can safely continue from l, when p[e/x] is true.

In Hoare Logic, the assignment rule is {p[e/x]} x := e {p}. This is essentially
the same as the assignment rule in Lc. In general, for any statement s that has
only the normal entry and the normal exit, a Hoare triple {p}s{q} has in Lc a
corresponding judgment: {l : (s) : l′} ; {l′ � q} � {l � p}.

But unlike Hoare triples, F ; Ψ ′ � Ψ is a more general judgment, which is on
multiple-entry and multiple-exit fragments. This capability is used in the rule
for conditional-branch statements, if b goto l1, in Fig. 3. A conditional-branch
statement has two possible exits. Therefore, the if rule assumes two exit label
continuations.

Composition rules. The strength of Lc is its composition rules. These rules can
compose judgments on individual statements to form properties of the combined
statement. By internalizing control flow of the combined statement, these com-
position rules allow modular reasoning.

Figure 3 shows Lc’s composition rules. We illustrate these rules using the
example in Fig. 4. The figure uses informal graphs, but they can be translated
into formal syntax of Lc without much effort.

6

F ; Ψ1 � Ψ2

{l : (x := e) : l′} ; {l′ � p} � {l � p[e/x]} assignment

{l : (goto l1) : l′} ; {l1 � p} � {l � p} goto

{l : (if b goto l1) : l′} ; {l1 � p ∧ b, l′ � p ∧ ¬b} � {l � p} if

F1 ; Ψ ′
1 � Ψ1 F2 ; Ψ ′

2 � Ψ2

F1 ∪ F2 ; Ψ ′
1 ∪ Ψ ′

2 � Ψ1 ∪ Ψ2
combine

F ; Ψ ′ ∪ {l � p} � Ψ ∪ {l � p}
F ; Ψ ′ � Ψ ∪ {l � p} discharge

� Ψ ′
1 ⇒ Ψ ′

2 F ; Ψ ′
2 � Ψ2 � Ψ2 ⇒ Ψ1

F ; Ψ ′
1 � Ψ1

weaken

� Ψ1 ⇒ Ψ2 m ≥ n

� {l1 � p1, . . . , lm � pm} ⇒ {l1 � p1, . . . , ln � pn} s-width

�D p′ ⇒ p

� Ψ ∪ {l � p} ⇒ Ψ ∪ {l � p′} s-depth

Fig. 3. Lc: Rules

Assume we already have two individual statements, depicted in the first col-
umn of Fig. 4, The first statement is an increment-by-one operation. If x > 0
before the statement, then after its completion x > 0 still holds. The second
statement is if x < 10 goto l. It has one entry, but two exits. The entries and
exits are associated with the appropriate assertions that are shown in the fig-
ure. The goal is to combine these two statements to form a property of the
two-statement block. Notice that the block is effectively a repeat-until loop: it
repeats incrementing x until x reaches 10. For this loop, our goal is to prove that
if x > 0 before entering the block, then x ≥ 10 after the completion of the block.

Figure 4 also presents the steps to derive the goal from the assumptions using
Lc’s composition rules.

In step 1, we use a rule called combine in Fig. 3. When combining two frag-
ment sets, F1 and F2, the combine rule makes the union of the entries of F1

and F2 the entries of the combined fragment; the same goes for the exits. For
the example in Fig. 4, since both statements have only one entry, we have two
entries after the combine rule. Since the first statement has one exit, and the
second statement has two exits, we have three exits after the combine rule.

After combining fragments, there may be some label that is both an entry
and an exit. For example, the label l after the step 1 in Fig. 4 is both an entry
and an exit. Furthermore, the entry and the exit for l carry the same assertion:
x > 0. In such a case, the discharge rule in Fig. 3 can eliminate the label l as an
exit. Formally, the discharge rule states that if some l � p appears on both the
left and the right of the �, then it can be removed from the left; Remember exits

7

Step 3: weaken.

2l1

l1

x 10≥

x:=x+1

l

l

goto l10x<if

x>0x>0

x>0
x>0

l2

l1

x 10≥

x:=x+1

l

goto l10x<if

x>0
x>0

l2

goto l10x<if

x 10≥

x:=x+1

l x>0

Step 1: combine.Assumptions

l

l1 l1

x := x + 1

l

l1 x>0

x>0

x ≥ 10

l1

l2

lgoto

x>0

l x>0

x<10if

and l

Step 2: discharge. Goal

Remove exits Remove entry

Fig. 4. An example to illustrate Lc’s composition rules

are on the left, so this rule removes an exit. The label l1 is also both an entry
and an exit, and the entry and the exit carry the same assertion. The discharge
rule can remove l1 as an exit as well. Therefore, the step 2 in Fig. 4 applies the
discharge rule twice to remove both l and l1 as exits. After this step, only one
exit is left.

In the last step, we remove l1 as an entry using the weaken rule. The weaken
rule uses a relation between two sets of label continuations: � Ψ1 ⇒ Ψ2, which is
read as Ψ1 is a stronger set of label continuations than Ψ2.

The rule s-width in Fig. 3 states that a set of label continuations is stronger
than its subset. Therefore, � {l1�(x > 0), l�(x > 0)} ⇒ {l�(x > 0)} is derivable.
Using this result and the weaken rule, the step 3 in Fig. 4 removes the label l1
as an entry.

After these steps, we have one entry and one exit left for the repeat-until
loop, and we have proved the desired property for the loop.

One natural question to ask is which labels the logic should keep as entries.
The example eliminates l1 as an entry, while l remains. The reason is that the
final goal tells what should be entries. In other scenarios, we may want to keep
l1 as an entry; for example, in cases when other fragments need to jump to l1.
This is possible in unstructured control flow even though l1 points to the middle
of a loop. In general, the logic Lc itself does not decide which entries to keep
and needs extra information.

The example in Fig. 4 has used almost all composition rules, except for the
s-depth rule. The s-depth rule states that a label continuation with a weaker
precondition is stronger than a continuation with a stronger precondition. The
rule is contravariant over the preconditions. An example of using this rule and
the weaken rule is to derive F ; Ψ ′ � {l � p ∧ q} from F ; Ψ ′ � {l � p}.

Deriving Hoare-logic rules. The composition rules in Lc can derive all Hoare-
logic rules for common control-flow structures. We next show the derivation
of the while rule. Assume that a while loop is implemented by the sequence in

8

Equation (1) on page 2, which will be abbreviated by “while b do s”. As we have
mentioned, a Hoare triple {p}s{q} corresponds to {l : (s) : l′} ; {l′ � q} � {l � p}
in Lc. With this correspondence, the derivation of the rule is:

(1) {l1 : (s) : l2} ; {l2 � p} � {l1 � p ∧ b} (2)
goto

{l : (while b do s) : l′} ; {l � p, l1 � p ∧ b, l2 � p, l′ � p ∧ ¬b}
� {l � p, l1 � p ∧ b, l2 � p}

combine

{l : (while b do s) : l′} ; {l′ � p ∧ ¬b} � {l � p, l1 � p ∧ b, l2 � p} discharge

{l : (while b do s) : l′} ; {l′ � p ∧ ¬b} � {l � p} weaken

where (1) = {l : (if ¬b goto l′) : l1} ; {l′ � p ∧ ¬b, l1 � p ∧ b} � {l � p}3.
and (2) = {l2 : (goto l) : l′} ; {l � p} � {l2 � p}

In the same spirit, Lc can derive rules for many other control-flow struc-
tures, including sequential composition, repeat-until loops, if-then-else state-
ments. More examples are in the thesis [16, chapter 2].

3 Semantics of Lc

In this section, we develop a semantics for Lc. We will show that a semantics
based on pure continuations does not work. We adopt a semantics based on
continuations together with approximations of counting computation steps.

3.1 Operational Semantics for the Language

First, we present an operational semantics for the imperative language in Fig. 1.
The operational semantics assumes an interpretation

∮
of the primitive symbols

in OPSym and RSym in the following way: Val is a nonempty domain; for each
op in OPSym, its semantics, op, is a function in (Valar(op) → Val); for each re
in RSym, re is a relation ⊂ Valar(re), where ar(op) is the arity of the operator.

A machine state is a triple, (pc, π, m): a program counter pc, which is an
address; an instruction memory π, which maps addresses to primitive statements
or to an illegal statement; a data memory m, which maps variables to values.
Figure 5 lists the relevant semantic domains.

Before presenting the operational semantics, we introduce some notation.
For a state σ, the notation control(σ), i of(σ), and m of(σ) projects σ into
its program counter, instruction memory, and data memory, respectively. For a
mapping m, the notation m[x �→ v] denotes a new mapping that maps x to v
and leaves other slots unchanged.

The operational semantics for the language is presented in Fig. 6 as a step
relation σ �→θ σ′ that executes the statement pointed by the program counter.
The operational semantics is conventional, except that it is parametrized over a
label map θ ∈ LMap, which maps abstract labels to concrete addresses. When
the next statement to execute is goto l, the control is changed to θ(l).
3 The judgment is derived from the if rule and the weaken rule, assuming that �D

p ∧ ¬¬b ⇒ p ∧ b

9

Name Domain Construction
values, v Val is a nonempty domain
addresses, n Addr = N

instr. memories, π IM = Addr → PrimStmt ∪ {illegal}
data memories, m DM = Var → Val
states, σ Σ = Addr × IM × DM
label maps, θ LMap = Label → Addr
where N is the domain of natural numbers.

Fig. 5. Semantic domains

(pc, π,m)
→θ σ where

if π(pc) = then σ =

x := e (pc + 1, π,m[x
→ V [[e]] m])

goto l (θ(l), π, m)

if b goto l

j
(θ(l), π,m) if B [[b]] m = tt
(pc + 1, π, m) otherwise

where V : Exp → DM → Val , and B : BExp → DM → {tt, ff}.
Their definitions are

V [[x]] m � m [[x]] V [[op(e1, . . . , ear(op))]] m � op(V [[e1]] m, . . . , V [[ear(op)]] m).

B [[true]] m � tt B [[b1 ∨ b2]] m �
j

tt if B [[b1]] m = tt or B [[b2]] m = tt
ff otherwise

B [[¬b]] m �
j

tt if B [[b]] m = ff
ff otherwise

B [[re(e1, . . . , ear(re))]] m �
j

tt if 〈V [[e1]] m, . . . , V [[ear(re)]] m〉 ∈ re
ff otherwise

Fig. 6. Operational semantics of the language in Fig. 1

In the operational semantics, if the current statement in a state σ is an illegal
statement, then σ has no next state to step to; such a state is called a stuck state.
If a state σ will not reach a stuck state within k steps, it is safe for k steps :

safe state(σ, k) � ∀σ′ ∈ Σ.∀j < k. σ �→j
θ σ′ ⇒ ∃σ′′. σ′ �→θ σ′′,

where �→j
θ denotes j steps being taken.

3.2 Semantics of Lc

The semantics of Lc is centered on an interpretation of the judgment F ; Ψ ′ � Ψ .
We have discussed an informal interpretation: for the set of fragments F , if Ψ ′

is true, then Ψ is true; a label-continuation set Ψ being true means it is safe
to continue from any label in Ψ , provided that the associated assertion is true.
However, this interpretation is too naive, since it cannot justify the discharge

10

rule. When both Ψ ′ and Ψ in the discharge rule are empty sets, the rule becomes

F ; {l � p} � {l � p}
F ; ∅ � {l � p}

According to the informal interpretation, the above rule is like stating “from
l � p ⇒ l � p, derive l � p”, which is clearly unsound.

The problem is not that Lc is intrinsically unsound, but that the interpre-
tation is too weak to utilize invariants implicitly in Lc. The interpretation that
we adopt is a stronger one. The basic idea is based on a notion of label con-
tinuations being approximately true. The judgment F ; Ψ ′ � Ψ is interpreted
as, by assuming the truth of Ψ ′ at a lower approximation, Ψ is true at a higher
approximation. In this inductive interpretation, Ψ ′ and Ψ are treated differently,
and it allows the discharge rule to be justified by induction.

Appel and McAllester proposed the indexed model [17], where all predicates
are approximated by counting computation steps. Our own work [18] used the
indexed model to construct a semantic model for a typed assembly language.
Next, we will adopt the idea of approximation by counting computation steps
from the indexed model to develop a semantics for Lc.

Label continuations being approximately true. We first introduce a semantic func-
tion, A : Assertion → DM → {tt, ff}, which gives a meaning to assertions:

A [[∃x.p]] m �
{

tt if ∃d ∈ Val . A [[p[d/x]]] m = tt
ff otherwise.

The definition of “A [[p]] m” on other cases of p is the same as the definition of
B (in Fig. 6) except every occurrence of B is replaced by A.

Next, we present a notion, σ; θ |=k l � p, to mean that a label continuation
l � p is k-approximately true in state σ relative to a label map θ:

σ; θ |=k l � p �
∀σ′ ∈ Σ. σ �→∗

θ σ′ ∧ control(σ′) = θ(l) ∧ A [[p]] (m of(σ′)) = tt
⇒ safe state(σ′, k)

(3)

where �→∗
θ denotes multiple steps being taken.

There are several points that need to be clarified about the definition. First,
by this definition, l � p being a true label continuation in σ to approximation k
means that the state is safe to execute for k steps. In other words, the state will
not get stuck within k steps.

Second, the definition is relative to a label map θ, which is used to translate
the abstract label l to its concrete address.

Last, the definition quantifies over all future states σ′ that σ can step to
(including σ itself). The reason is that if σ; θ |=k l�p, provided that p is satisfied,
it should be safe to continue from location l, not just now, but also in the future.
In other words, if l � p is true in the current state, it should also be true in all
future states. Therefore, the definition of σ; θ |=k l �p has to satisfy the following
lemma:

11

Lemma 1. If σ �→∗
θ σ′, and σ; θ |=k l � p, then σ′; θ |=k l � p.

By quantifying over all future states, the definition of σ; θ |=k l � p satisfies the
above lemma. On this aspect, the semantics of σ; θ |=k l � p is similar to the
Kripke model [19, Ch 2.5] of intuitionistic logic: Knowledge is preserved from
current states to future states.

The semantics of a single label continuation is then extended to a set of label
continuations: σ; θ |=k Ψ � ∀(l � p) ∈ Ψ. σ; θ |=k l � p

Loading statements. The predicate loaded(F, π, θ) describes the loading of a
fragment set F into an instruction memory π with respect to a label mapping θ:

loaded(F, π, θ) � ∀(l : (t) : l′) ∈ F. π(θ(l)) = t ∧ θ(l′) = θ(l) + 1.

Note that some θ are not valid with respect to F . For example, if F = {l :
(x := 1) : l′}, and θ maps l to address 100, then to be consistent θ has to
map l′ to the address 101. This is the reason why the definition requires4 that
θ(l′) = θ(l) + 1.

Semantics of the judgment F ; Ψ ′ � Ψ . We define a relation, F ; Ψ ′ |= Ψ , which
is the semantic modeling of F ; Ψ ′ � Ψ .

F ; Ψ ′ |= Ψ �
∀σ ∈ Σ, θ ∈ LMap. loaded(F, i of(σ), θ) ⇒

∀k ∈ N.
(
σ; θ |=k Ψ ′ ⇒ σ; θ |=k+1 Ψ

)
.

The definition quantifies over all label maps θ and all states σ such that F is
loaded in the state with respect to θ. It derives the truth of Ψ to approximation
k + 1, from the truth of Ψ ′ to approximation k. In other words, if it is safe to
continue from any of the labels in Ψ ′, provided that the associated assertion
is true, for some number k of computation steps, then it is safe to continue
from any of the labels in Ψ , provided that the associated assertion is true, for
k + 1 computation steps. This inductive definition allows the discharge rule to
be proved by induction over k.

We have given F ; Ψ ′ |= Ψ a strong definition. But the question is what about
rules other than the discharge rule. Do they support such a strong semantics?
The answer is yes for Lc, because of one implicit invariant—for any judgment
F ; Ψ ′ � Ψ that is derivable, it takes at least one computation step from labels
in Ψ to reach labels in Ψ ′. Or, it takes at least one step from entries of F to reach
an exit of F . Because of this invariant, although it is safe to continue from exit
labels only for k steps, we can still show that it is safe to continue from entry
labels for k + 1 steps.

4 There is a simplification. The definition in the thesis [16] also requires that θ does
not map exit labels to addresses occupied by F ; otherwise, the exit label would not
be a “true” exit label.

12

Finally, since Lc also contains rules for deriving � Ψ ⇒ Ψ ′ and �D p, we
define relations, |= Ψ ⇒ Ψ ′ and |= p, to model their meanings, respectively.

|= Ψ ⇒ Ψ ′ � ∀σ ∈ Σ, θ ∈ LMap, k ∈ N. (σ; θ |=k Ψ) ⇒ (σ; θ |=k Ψ ′)
|= p � ∀m ∈ DM . A [[p]] m = tt

Soundness and completeness. Based on the semantics we have developed, we
next present soundness and completeness theorems for Lc. Due to space limit,
we only informally discuss related concepts and cannot present detailed proofs;
they can be found in the thesis [16].

As a start, since Lc is parametrized by a deduction system D, which derives
formulas in the assertion language, it is necessary to assume properties of D

before proving properties of Lc: If �D p ⇒ |= p, for any p, then D is sound ; if
|= p ⇒ �D p, for any p, then D is complete.

Next, we present the soundness and completeness theorems of Lc.

Theorem 1. (Soundness) Assume D is sound. If F ; Ψ � Ψ ′, then F ; Ψ |= Ψ ′.

The proof is by induction over the derivation of F ; Ψ � Ψ ′. The most interesting
case is the proof of the discharge rule, which is proved by induction over the
number of future computation steps k.

Theorem 2. (Completeness.)
Assume D is complete and Assertion is expressive relative to

∮
. Assume Assertion

is negatively testable by the statement language. Assume (F, Ψ ′, Ψ) is normal. If
F ; Ψ ′ |= Ψ , then F ; Ψ ′ � Ψ .

We informally explain the meanings of expressiveness, Assertion being negatively
testable, and (F, Ψ ′, Ψ) being normal below; their precise definitions are in the
thesis [16]. As pointed out by Cook [20], a program logic can fail to be complete,
if the assertion language is not powerful enough to express invariants for loops
in a program. Therefore, the completeness theorem assumes that the assertion
language is expressive. Also, the theorem assumes that the assertion language is
negatively testable by the statement language. It means that for any assertion p,
there is a sequence of statements that terminates when p is false and diverges
when p is true. The triple (F, Ψ ′, Ψ) being normal means that any label is defined
in F at most once; it includes also other sanity requirements on Ψ ′ and Ψ .

4 Implementation in FPCC

This work is a part of the Foundational Proof-Carrying Code (FPCC) project [4]
at Princeton. FPCC verifies memory safety of machine code from the smallest
possible set of axioms—machine semantics plus logic. The safety proof is devel-
oped in two stages. First, we design a type system at the machine-code level.
Machine code is type checked in the type system and thus a typing derivation
is a safety witness. In the second stage, we prove the soundness theorem for
the type system: If machine code type checks, it is memory safe. This proof is

13

developed with respect to machine semantics plus logic, and is machine checked.
The typing derivation composed with the soundness proof is the safety proof
of the machine code. The major research problem of the FPCC project is to
prove the soundness of our type system—a low-level typed assembly language
(LTAL [21]). LTAL can check the memory-safety of SPARC machine code that
is generated from our ML compiler.

When proving the soundness of LTAL, we found it is easier to have an inter-
mediate calculus to aid the proving process, because having a simple soundness
proof was not LTAL’s design goal. We first prove the intermediate calculus is
sound from logic plus machine semantics. Then we prove LTAL is sound based
on the lemmas provided by the intermediate calculus.

The intermediate calculus in the FPCC project is Lc, together with a type
theory [22] as the assertion language. By encoding on top of SPARC machine
the semantics of Lc, which we have presented, we have proved that Lc is sound
with machine-checked proofs in Twelf. Then, we prove that LTAL is sound from
the lemmas provided by Lc.

The first author’s thesis [16, chapter 3] covers the step from Lc to LTAL
in great detail. Here we only discuss a point about control-flow structures in
machine code. The simple language in Section 2 on which we presented Lc lacks
indirect jumps, pc-relative jumps, and procedure calls. Our implementation on
SPARC handles pc-relative jumps, and handles indirect jumps using first-class
continuation types in the assertion language. These features will not affect the
soundness result of Lc, as our implementation has shown. However, we have not
investigated the impact of indirect jumps to the completeness result, which is
unnecessary for the FPCC project. We have not modeled procedure call-and-
return—since our compiler uses continuation-passing style, continuation calls
and continuation-passing suffice. Procedure calls, if needed, could be handled by
following the work of Benton [13].

5 Conclusion and Future Work

Previous program logics for goto statements are too weak to modularly rea-
son about program fragments with multiple entries and multiple exits. We have
presented Lc, which needs only local information to reason about a program frag-
ment and compose program fragments in an elegant way. Lc is not only useful for
reasoning about unstructured control flow in machine languages, but also useful
for deriving rules for common control-flow structures. We have also presented for
Lc a semantics, based on which the soundness and completeness theorems are
formally proved. We have implemented Lc on top of SPARC machine language.
The implementation has been embedded into the Foundational Proof-Carrying
Code Project to produce memory-safety proofs for machine-language programs.

One possible future extension is to combine this work with modules, to pro-
duce a module system with simple composition rules, and with a semantics based
on counting computation steps.

14

References

1. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the Association for Computing Machinery 12 (1969) 578–580

2. Necula, G.: Proof-carrying code. In: 24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, New York, ACM Press (1997) 106–119

3. Morrisett, G., Walker, D., Crary, K., Glew, N.: From System F to typed assembly
language. ACM Trans. on Programming Languages and Systems 21 (1999) 527–
568

4. Appel, A.W.: Foundational proof-carrying code. In: Symposium on Logic in Com-
puter Science (LICS ’01), IEEE (2001) 247–258

5. Clint, M., Hoare, C.A.R.: Program proving: Jumps and functions. Acta Informatica
(1972) 214–224

6. Kowaltowski, T.: Axiomatic approach to side effects and general jumps. Acta
Informatica 7 (1977) 357–360

7. Arbib, M., Alagic, S.: Proof rules for gotos. Acta Informatica 11 (1979) 139–148
8. de Bruin, A.: Goto statements: Semantics and deduction systems. Acta Informatica

15 (1981) 385–424
9. O’Donnell, M.J.: A critique of the foundations of hoare style programming logics.

Communications of the Association for Computing Machinery 25 (1982) 927–935
10. Floyd, R.W.: Assigning meanings to programs. In: Proceedings of Symposia in

Applied Mathematics, Providence, Rhode Island (1967) 19–32
11. Cardelli, L.: Program fragments, linking, and modularization. In: 24th ACM

Symposium on Principles of Programming Languages. (1997) 266–277
12. Glew, N., Morrisett, G.: Type-safe linking and modular assembly language. In:

26th ACM Symposium on Principles of Programming Languages. (1999) 250–261
13. Benton, N.: A typed, compositional logic for a stack-based abstract machine. In:

3rd Asian Symposium on Programming Languages and Systems. (2005)
14. Ni, Z., Shao, Z.: Certified assembly programming with embedded code pointers.

In: 33rd ACM Symposium on Principles of Programming Languages. (2006) To
appear.

15. Saabas, A., Uustalu, T.: A compositional natural semantics and Hoare logic for low-
level languages. In: Proceedings of the Second Workshop on Structured Operational
Semantics (SOS’05). (2005)

16. Tan, G.: A Compositional Logic for Control Flow and its Application in Founda-
tional Proof-Carrying Code. PhD thesis, Princeton University (2005)

17. Appel, A.W., McAllester, D.: An indexed model of recursive types for foundational
proof-carrying code. ACM Trans. on Programming Languages and Systems 23
(2001) 657–683

18. Tan, G., Appel, A.W., Swadi, K.N., Wu, D.: Construction of a semantic model
for a typed assembly language. In: Fifth International Conference on Verification,
Model Checking and Abstract Interpretation (VMCAI 04). (2004) 30–43

19. Sørensen, M.H., Urzyczyn, P.: Lectures on the Curry-Howard isomorphism. Avail-
able as DIKU Rapport 98/14 (1998)

20. Cook, S.A.: Soundness and completeness of an axiom system for program verifica-
tion. SIAM Journal on Computing 7 (1978) 70–90

21. Chen, J., Wu, D., Appel, A.W., Fang, H.: A provably sound TAL for back-end
optimization. In: ACM Conference on Programming Language Design and Imple-
mentation. (2003) 208–219

22. Swadi, K.N.: Typed Machine Language. PhD thesis, Princeton University (2003)

15

