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Abstract

We study the cache performance of a set of ML programs, com-
piled by the Standard ML of New Jersey compiler. We find that
more than half of the reads are for objects that have just been allo-
cated. We also consider the effects of varying software (garbage
collection frequency) and hardware (cache) parameters. Confirm-
ing results of related experiments, we found that ML programs
can have good cache performance when there is no penalty for
allocation. Even on caches that have an allocation penalty, we
found that ML programs can have lower miss ratios than the C
and Fortran SPEC92 benchmarks.

Topics: 4 benchmarks, performance analysis; 21 hardware
design, measurements; 17 garbage collection, storage allocation;
46 runtime systems.

1 Introduction

With the gap between CPU and memory speed widening, good
cache performance is increasingly important for programs to take
full advantage of the speed of current microprocessors. Most re-
cent microprocessors come with a small on-chip cache, and many
machines add a large second level off-chip cache to that. It is
therefore important to understand the memory behavior of pro-
grams, so that computer architects can design cache organizations
that can exploit the locality of reference of these programs, or
programmers can modify the programs to take advantage of cache
properties, or both. This work studies the cache performance of
programs with intensive heap allocation and generational garbage
collection, such as ML programs compiled by the Standard ML
of New Jersey (SML/NJ) compiler [3].

Dynamic heap allocation is used in the implementation of
many programming languages, but the SML/NJ implementation
is characterized by a much higher allocation rate than most other
implementations: a typical program allocates one word for every
six machine instructions. SML/NJ allocates so frequently because
it allocates function activation records (closures) on the heap, in-
stead of using a stack as do most language implementations [2]. In
order to make heap allocation efficient it is essential that both allo-
cation and deallocation be very fast [1]. Efficient allocation can be
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achieved by allocating sequentially from a large contiguous mem-
ory area, the allocation space. We only need to keep two pointers,
one to the next free address, the allocation pointer, and one to the
last usable address, the limit pointer. Before the allocation of a
new object, if the allocation pointer plus the size of the object is
greater than the limit pointer, a garbage collection must be per-
formed to reclaim the space of objects that are no longer needed.
Otherwise, the object is allocated and the allocation pointer in-
cremented by the size of the object. Efficient deallocation can be
achieved with the use of a generational garbage collector. Early
versions of SML/NJ used a simple two-generational garbage col-
lector. Future releases will use a multi-generational collector,
which we have measured in this work.

It might seem that allocating closures sequentially on the heap
would be terrible for cache performance. After all, stacks provide
a simple and effective way of recycling memory, and have very
good spatial locality. With sequential heap allocation, on the other
hand, the first allocation in each cache block can be a cache miss
(allocation miss), which could result in bad cache performance.

We have comprehensively studied the cache performance of a
set of ML programs. We consider the effects of varying both soft-
ware and hardware (cache) parameters. Our main contributions
are the following:

• We examine in detail the memory reference patterns of a set
of ML programs. We find that more than half of the read
references are to objects (typically closures) that have just
been allocated. This means that heap allocated closures can
have good locality; on suitable cache architectures, stack
allocation should not be preferred over heap allocation just
for reasons of locality. Diwan et al. [14] suggest that ML
programs tend to read objects soon after they have been
written, based on indirect evidence from cache behavior on
different architectures, and we have confirmed this by direct
experiment.

• Varying minor garbage collection frequency (i.e., changing
the size of allocation space) may have an impact on cache
performance. In the case of caches without an allocation
miss penalty, the impact is very small and is largely off-
set by changes in garbage collection overhead. On caches
with a penalty for allocation misses, however, making the
allocation space fit in the cache can result in a significant
improvement in performance. We show quantitatively for
what cache sizes and miss penalties fitting the allocation
space in the cache improves performance.

• We report a comprehensive set of miss ratios, for varying
cache sizes, block sizes, associativity, and write miss poli-
cies. We find that ML programs can have a very good
cache performance on some architectures, comparable to or



even better than that of the C and Fortran SPEC92 bench-
marks. We also found that allocation misses depend mostly
on block size, and if blocks are not too small (at least 32
bytes), even on architectures that do not eliminate alloca-
tion misses, ML programs can have much lower miss ratios
than the C and Fortran programs.

• On the DEC3000 Alpha workstation, we find that fitting the
allocation space in the secondary cache can result in signif-
icant performance improvement, even though the machine
has a deep write buffer that should eliminate penalties for
allocation misses. The ineffectiveness of the write buffer is
related to the fact that so many reads are to recently allo-
cated objects: some of those reads cause the write buffer to
be flushed prematurely.

• The frequency of major collections and the number of active
generations can have a significant impact on cache perfor-
mance. We found that a large number of active generations
can increase the number of conflict misses.

The problem of the cache performance of programs with se-
quential allocation has been addressed previously. Peng and Sohi
[29] studied the cache performance of a set of Lisp programs.
They show that conventional cache memories were inadequate
for these programs and proposed the use of an allocate instruc-
tion to eliminate allocation misses. They also show that the LRU
replacement policy commonly used in associative caches is bad
for this class of programs and proposed an alternative replace-
ment policy. Finally they proposed the use of a control bit to
avoid writing back cache blocks filled with garbage. Wilson et
al. [38] and Zorn [40, 39] proposed fitting the allocation space in
the cache as an alternative, software-based method for eliminating
allocation misses on large caches. Wilson et al. also show that
modestly set-associative caches can achieve a significant perfor-
mance improvement over direct mapped caches. In essence, the
main conclusion of these papers is that programs with dynamic
heap allocation tend to have bad cache performance—and either
hardware techniques, or software techniques, or a combination of
both, must be used in order to improve cache performance.

More recent work, by Koopman et al [27], Diwan et al. [14]
and Reinhold [31, 32] has shown that some cache design features,
already available on current machines, can eliminate all of the
allocation misses. Moreover, Reinhold shows that sequential al-
location, due to the fact that it tends to spread memory references
uniformly across memory, is naturally suited to direct-mapped
caches.

Following Jouppi [24] we classify cache architectures as fol-
lows. A fetch-on-write cache is one that allocates a block and
fetches the contents of the block from memory on a write miss.
A write-validate cache allocates a block, but does not fetch the
contents from memory on a write miss (and thus, must mark each
word of every cache line as valid or invalid). And a write-around
cache bypasses the cache entirely on a write miss.

Table 1 describes the basic features of the caches of some
current machines.

2 The SML/NJ Runtime System

The SML/NJ runtime system uses a generational garbage collec-
tor. The two-generation collector used up to version 0.93 proved
inadequate on long-running programs, so John Reppy has imple-
mented a multi-generation collector [33]. Our measurements re-
ported here are of an early prototype of Reppy’s collector, which
will be distributed with future versions of SML/NJ.

The heap is divided into an allocation space and from one to
seven generations. The generations are named from one to seven,
and each higher numbered generation contains objects that are

older (i.e., have been allocated at an earlier time) than the objects
in the previous generations. In addition, within each generation,
objects are divided into two age groups.

Most objects (closures and user data structures) are allocated in
the allocation space. The only exception is for big objects (more
than 512 words), which are allocated in the first generation. Each
generation (but not the allocation space) is divided into five are-
nas, one for each class of objects: records, pairs, arrays, strings,
and code. All objects are preceded by a one-word descriptor (tag),
except pairs copied into the first or older generations. Removing
the descriptor from pairs not only saves space, but might also im-
prove cache performance, since more pairs can fit into a single
block, and pairs can be aligned to block boundaries.

There are two types of garbage collections, minor and ma-
jor. Minor collections are very frequent but brief, and copy live
objects from the allocation space to the first generations. Major
collections are longer, but much less frequent, and collect from
the older generations. A kth-generation major collection promotes
the older objects of each generation i into generation i + 1, for
1 ≤ i ≤ k; a fixed number of kth-generation collections occur for
each (k + 1)th-generation collection.

The early prototype we measured lacks certain features of the
collector Reppy describes [33], particularly the use of a mark-
and-sweep collector for machine code and other big objects. This
change is likely to decrease major garbage collection overhead
(from the amount we measured) on some of the benchmark pro-
grams, particularly when a small allocation space is used.

3 Methodology

We used a benchmark suite of ten ML programs, which were
compiled and run in SML/NJ, version 0.93, with the new runtime
system and generational collector. We compiled each program
with the default parameters of the compiler, and saved a heap
image of the system. We then used a MIPS instruction-level sim-
ulator, written by E. Gün Sirer, to simulate execution of the entire
SML/NJ system—including the runtime system, which loads the
heap image and executes the programs. We have extended the
MIPS simulator with a cache simulator, so that cache misses are
determined on the fly, with no need to generate reference traces.
Our simulation results do not include operating system data.

We also ran some experiments on an DEC3000 Alpha worksta-
tion. For these experiments we used SML/NJ version 1.05a, since
version 0.93 was not ported to the Alpha architecture. The main
difference in version 1.05 from version 0.93 is the use of more
efficient closure representations [34], which reduces the amount
of closure allocation. Version 1.05a also uses the newest version
of the multigenerational collector, which uses a mark-and-sweep
collector for large objects.

The benchmark programs are described in Table 2. Some
or all of these programs have been used as benchmark programs
in other works on the performance of SML/NJ programs [2, 34,
14, 36]. Each of these programs is run in its entirety by the
simulator. Four of the programs—Barnes-Hut, Mandelbrot, Ray,
and Simple—use floating-point intensively; the other six use only
integer instructions.

Table 3 shows the run time of the programs, measured on a
DECstation 5000/240, and time breakdowns by user code, garbage
collection (GC) time, and system time. We ran each program a
number of times, and took the run with minimum total time (as
recommended by the SPEC consortium [20]). Table 4 shows
instruction counts and number of reads and writes for user and
garbage collection code. Garbage collection time and instruction
counts can vary considerably if the size of the allocation space
is changed. User times can also vary, as the size of the allo-
cation space may have an impact on cache performance. User
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Table 1: Cache organization of some current machines and CPUs.
Machine/ Year Cache Block Assoc. Write- Write- Expli- Comments/references
CPU size size alloc. Miss cit

(bytes) penalty Alloc.
DEC5000/240 1990 64K-byte I

64K D
4 d-m yes no WV Fetches 8 blocks (32 bytes) on a read miss. [13]

Alpha 21064 1992 8K I
8K D

32 d-m no no� † On-chip first level cache, with on-chip con-
trol for second level cache. †Load instruction
(for explicit cache line allocation by prefetch)
“semi-stalls.” �Write-around. [12]

Alpha 21164 1994 8K I (L1)
8K D (L1)

96K (L2)

32
32

32/64

d-m
d-m

3-way

no no� fetch On-chip control for a third level direct-mapped
cache. Load instruction, usable for explicit
cache line allocation by prefetch, is non-
blocking.

DEC3000/500 1992 8K I(L1) 32 d-m Uses an Alpha 21064 CPU. [15]
8K D(L1) 32 d-m no no� †

512K (L2) 32 d-m yes yes� † �Fetch-on-write.
PowerPC 601 1993 32K 64 8-way yes no§ yes‡ On-chip first level cache. LRU replace-

ment. ‡Cache-line-allocate-and-zero instruc-
tion. [7] §Non-blocking fetch-on-write [23].

PowerPC 603 1993 8K I
8K D

32 2-way yes no§ yes‡ On-chip first level cache. LRU replacement. [8]

PowerPC 604 1994 16K I
16K D

32 4-way yes no§ yes‡ On-chip first level cache. LRU replace-
ment. [35]

Pentium 1993 8K I
8K D

32 2-way no no no On-chip first level cache. Pentium systems usu-
ally have a 256K second level cache. [10]

Intel P6 1995 8K I (L1)
8K D (L1)
256K (L2)

32 2-way
4-way
4-way

? ? fetch¶ L2 cache on a separate die, packaged with the
CPU. ¶For prefetch, 4 concurrent L2-cache ac-
cesses. [22]

SuperSPARC 1993 20K I (L1)
16K D (L1)

4/8
4

5-way
4-way

yes no WV On-chip first level cache. LRU replace-
ment. [17]

HPPA-RISC 1992 4K–1M I
4K-4M D

32 d-m yes no WV On-chip support to dual off-chip caches. Cache
size is system dependent. [18]

I = instruction cache; D = data cache; d-m = direct-mapped cache; L1/L2 = first/second-level cache; ? = unknown.
WV = Explicit alloc not needed with write-validate policy or with 1-word cache line.

Table 2: General information about the benchmark programs.
Program Lines Description
Barnes-Hut 1060 The Barnes-Hut N-body simulation program [6, 5], translated into ML by John H. Reppy.
Boyer 910 An ML implementation of the Boyer benchmark [19].
Knuth-Bendix 580 An implementation by Gerard Huet of the Knuth-Bendix completion algorithm translated into ML by

Xavier Leroy.
Lexgen 1178 A lexical-analyzer generator, written by James S. Mattson and David R. Tarditi [4], processing the

lexical description of Standard ML.
Life 140 Reade’s implementation of the game of Life [30].
Mandelbrot 60 A program to generate Mandelbrot sets.
MLYACC 7422 A LALR(1) parser generator, written by David Tarditi [37], processing the grammar of Standard ML.
Ray 423 A ray tracer, written by Don Mitchell, and translated into ML by John H. Reppy.
Simple 906 A spherical fluid-dynamics program [11, 16], translated into ML by Lal George.
VLIW 3571 A VLIW instruction scheduler written by John Danskin.
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Table 3: Total, user, garbage collection, and system times in sec-
onds for the benchmark programs, measured on a DEC5000/240
workstation, with an allocation space of 512K bytes.

Program Time (sec.)
Total User GC Sys.

Barnes-Hut 26.41 24.96 1.46 0.42
Boyer 2.14 1.32 0.82 0.18
Knuth-Bendix 12.49 9.25 3.24 0.70
Lexgen 10.87 9.97 0.89 0.25
Life 11.66 11.50 0.16 0.05
Mandelbrot 11.15 11.12 0.04 0.04
MLYacc 4.50 3.52 0.98 0.33
Ray 22.34 22.21 0.12 0.71
Simple 37.69 29.14 8.55 1.39
VLIW 21.17 20.43 0.75 0.41

Table 4: Instruction counts, reads and writes for user code and
garbage collection. Garbage collection counts are for an allocation
space of 512K bytes. All numbers are in millions.

Program User GC
instr. reads writes instr. reads writes

Barnes-Hut 617.5 179.8 125.5 39.7 6.1 4.7
Boyer 42.9 9.5 9.0 27.1 5.0 3.7
Knuth-Bend. 281.0 57.2 67.0 73.8 14.2 10.2
Lexgen 296.0 55.4 38.2 25.6 4.7 3.3
Life 422.9 50.0 38.3 4.9 0.9 0.6
Mandelbrot 367.6 82.7 53.1 1.2 0.2 0.1
MLYACC 97.8 21.3 18.7 32.1 5.8 4.3
Ray 679.2 192.4 141.3 2.7 0.5 0.3
Simple 764.3 174.3 130.3 232.0 38.0 27.5
VLIW 427.2 82.1 73.1 19.7 3.3 2.2
Total 3664.6 877.0 694.4 458.8 78.7 56.9

code instruction counts are not affected by the size of the alloca-
tion space. The data shown in these tables are for a 512-Kbyte
allocation space.

Performance Model

We use a simple model to predict the performance of the programs
under different cache organizations. We assume that the machine
can issue one instruction per cycle, with no pipeline stalls, except
for memory accesses. Loads or stores that hit the cache take one
cycle, and cache misses take a fixed number of cycles. We allow
for different read and write miss penalties. We assume that a
cache miss stalls the instruction pipeline. The total number of
cycles of a program is given by:

TotalCycles = IC + IMiss ·Rpenalty +

RMiss · Rpenalty + WMiss ·Wpenalty

where IC is the instruction count, IMiss the number of instruction
fetch cache misses, RMiss the number of read misses, WMiss the
number of write misses, Rpenalty the penalty for read misses in
cycles, and Wpenalty the penalty for write misses in cycles.

Table 5 compares the run time of each program, measured
on a DEC5000/240 workstation1, with the time predicted by the

1The DEC5000/240 has dual 64K-byte direct-mapped caches, with one-word
(4-byte) block and 32-byte fetch size on read misses, and 34-cycle miss penalty.
Instruction and data miss ratios were obtained by simulating caches similar to the
real caches. We approximated the data cache by a 32-byte block write-validate
cache, which should behave similarly to the real cache.

Table 5: Measured time on a DECstation 5000/240 compared
to the time predicted by the simple machine model. All times
are in seconds. The size of the allocation space is 512K
bytes. The value on the column labeled Difference is given by
((Measured time/Predicted time) − 1) ∗ 100.

Program Measured Predicted Difference
time (sec.) time (sec.)

Barnes-Hut 26.41 21.54 23%
Boyer 2.14 2.17 -1%
Knuth-Bendix 12.49 10.63 17%
Lexgen 10.87 10.65 2%
Life 11.66 11.35 3%
Mandelbrot 11.15 9.33 20%
MLYacc 4.50 4.18 8%
Ray 22.34 22.72 -2%
Simple 37.69 32.76 15%
VLIW 21.17 15.72 35%

Table 6: Total allocation (in words), allocation rate (total alloca-
tion divided by number of user instructions), and distribution of
allocation and non-allocation writes for the benchmark programs.

Program Allocation Allocation Fraction of
writes rate alloc. writes

Barnes-Hut 124,368,910 0.201 99.07%
Boyer 8,802,524 0.205 98.25%
Knuth-Bendix 66,837,173 0.238 99.74%
Lexgen 33,024,196 0.112 86.52%
Life 38,104,645 0.090 99.59%
Mandelbrot 48,712,383 0.133 91.81%
MLYACC 17,611,127 0.180 94.22%
Simple 129,215,509 0.169 99.18%
Ray 139,506,521 0.205 98.72%
VLIW 67,076,362 0.157 91.75%
Average 0.169 95.885%

model. Most of the error probably comes from the assumption
that each instruction takes one cycle. The program with highest
relative error, VLIW, executes many integer division operations,
which take several cycles to complete. Barnes-Hut, Mandelbrot
and Simple execute many floating point instructions, which may
take many cycles to complete.

Because we are interested in the performance of the programs
with different settings for garbage collection parameters, which
may affect the instruction count of the programs, we also use
a performance metric that takes this change into account. This
metric is the number of cycles per user program instruction, CPUI.
The number of user program instructions is the total number of
instructions minus garbage collection instructions. That is, we
charge garbage collection and cache miss cycles to user program
instructions. CPUI provides a simple way of evaluating the total
cost of cache and garbage collection overhead. We define CPUI
as:

CPUI =
TotalCycles

number of user instructions

All the results presented in this paper are for separate data and
instruction caches, with both caches of the same size. Only data
miss ratios are shown here, but instruction miss ratios are used to
compute CPUI.
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Figure 1: Write reference patterns for Lexgen.
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Figure 2: Read reference patterns for Lexgen.

Table 7: Allocation profile for closures and user data. All sizes
include the descriptor.

Program Closures User data
Fraction Avg. Fraction Avg.
of size of size
allocation (words) allocation (words)

Barnes-Hut 44.81% 7.81 55.19% 3.10
Boyer 81.98 6.53 18.02 3.02
Knuth-Bendix 86.97 5.37 13.03 3.02
Lexgen 80.51 6.52 19.49 3.30
Life 77.83 5.53 22.17 3.00
Mandelbrot 60.68 7.00 39.32 3.00
MLYACC 71.39 8.24 28.61 3.36
Ray 42.07 5.58 57.93 3.58
Simple 60.88 5.78 39.12 3.02
VLIW 76.91 6.33 23.09 2.95
Average 68.40 6.47 31.60 3.13

4 Memory Reference Patterns

4.1 Write References

We can divide writes into two groups: allocation writes and non-
allocation writes. Most writes from all programs are for allocation.
Table 6 shows the number of allocated words for each program,
the allocation rate, and the fraction of all writes that are for allo-
cation (these numbers do not include garbage collection writes).
The allocation rate is the number of words allocated divided by
the number of user instructions. All programs allocate at a very
fast rate, about one word for each six user program instructions.
On average for the 10 programs, approximately 96% of all writes

are allocation writes. User-code non-allocation writes update user
data structures; but most non-allocation writes are performed by
runtime system.

Allocation writes are sequential, and there is a cyclic pattern
with a period that is equal to the size of the allocation space.
Figure 1 shows this cyclic pattern for the program Lexgen, with
an allocation space of 512K bytes. The graph plots the address
written, modulo 512K, versus time, where time is measured in
words written. The plot shows the write patterns of Lexgen from
time 2000K to 5000K. We can see clearly each allocation cycle,
followed by a vertical line, which is a minor garbage collection.
One of the minor collections, near time 2500K, is followed by
a major collection, which appears as the unusual pattern in the
graph. The horizontal lines are non-allocation writes. For this
program, most non-allocation writes are concentrated on a few
locations that are updated more or less uniformly throughout the
program execution. The difference in the density of the lines
means that some locations are written more frequently than others.
We can see that one of the horizontal lines (the second from top)
seems to move down after the major collection. This is probably
because the collector relocates the object that is being updated.
As the numbers in Table 6 show, Lexgen is the program with the
most non-allocation writes. The horizontal lines that appear in
Figure 1 do not appear on the patterns for other programs.

Objects allocated by each program can be divided into two
groups: closures and user data structures. Table 7 shows the
distribution of allocation by closures and user data structures, and
the average sizes of objects in each group. Closures account for
the greatest fraction of all words allocated, 68% on average for
the benchmark programs. They are also larger, approximately six
and a half words on average. User data, on the other hand, are
much smaller in size, about 3.13 words on average. Most objects
tend to have a very short life. Only a small fraction of objects
survive a garbage collection, and most surviving objects are user
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Table 8: Read references by class.
Program Closure User Compile- Run-time

time sys.
Barnes-Hut 30.46% 52.43% 14.10% 3.01%
Boyer 44.42 20.06 33.95 1.57
Knuth-Bendix 59.50 36.13 4.09 0.28
Lexgen 35.34 45.47 7.55 11.64
Life 45.17 42.84 11.70 0.29
Mandelbrot 30.64 30.87 38.32 0.17
MLYACC 52.49 31.88 11.77 3.86
Ray 23.00 50.60 23.40 3.00
Simple 42.86 30.51 26.39 0.24
VLIW 51.15 27.94 15.86 5.05
Average 41.50 36.87 18.71 2.91

data structures [21, 36]. All objects are preceded by a one-word
descriptor, which is included in the size of the objects. In most
cases, descriptors are only used by the garbage collector, and
since most objects do not survive to a garbage collection, most
descriptors are never used. Descriptors account for approximately
twenty percent of words allocated. Most objects are allocated
in the allocation space. Big objects (more than 2K bytes) are
allocated in the first generation, but they account for a negligible
fraction of the allocation of the programs in the benchmark suite.

4.2 Read References

Non-garbage-collection reads are to closures, user data struc-
tures, user constants, and runtime system objects. Closures and
user data structures are allocated on the allocation space. If they
are still “alive” at the end of an allocation cycle, they are copied to
the first generation, and they can be promoted to older generations
after major collections. Floating-point and string literals reside in
machine-code objects in older generations. Runtime system ob-
jects are located mostly outside the ML heap, but a few may be
located in older generations. Garbage collection references are
to objects in the heap that are being traced and collected, or to
garbage collection data structures outside the ML heap.

Table 8 shows the distribution of reads by closures, user data
structures, compile time allocated data (constants and old heap-
allocated runtime-system objects), and references to locations out-
side the ML heap (static runtime-system objects). Most references
are to closures and user data, but there is also a significant number
of references to compile-time-allocated data. These numbers do
not include garbage collection references.

References to closures and user data can potentially be spread
across large areas of memory. The allocation space and the older
generations can be several megabytes in size. But, in fact, the ma-
jority of these references do have some form of locality. This can
be seen on Figure 3. The graphs show the cumulative distribution
of reads by age. Here, we use allocation to measure time. The age
of the target of a read reference is given by the number of words
allocated since its allocation. For objects in the allocation space,
the age is given by the distance of the object to the allocation
pointer. The graphs show that about 60% of the references are to
objects which are only 256 words (1K bytes) from the allocation
pointer. 70% of those references are to closures, and 84% of all
closure references are within this range. Most of the references
that are farther then 256 words from the allocation pointer are to
user data structures. The remainder, the difference between 1 and
the maximum of each curve, are references to constants and user
data structures. Garbage collection references are not shown in
this graph.

Read references also show a cyclic pattern, following the
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Figure 3: Cumulative distribution of reads as a function of the
distance of the address referenced from the allocation pointer.

cyclic allocation pattern. Figure 2 shows a plot of address read
(modulo 512K) versus time (measured in words written) for Lex-
gen. The graph shows a cyclic pattern similar to the one that can
be seen in Figure 1. This pattern corresponds to closure reads.
For this program, most other reads tend to be concentrated within
a relatively small number of locations, which cause the horizontal
stripes on the graph.

In summary, all programs in the benchmark suite have a very
regular, cyclic write pattern. More than half of reads are to objects
that have just been allocated.

5 Miss Ratios

In this section we report miss ratios for the programs in the bench-
mark suite. We vary cache size from 4K to 4M bytes, block size
from 16 bytes to 256 bytes, and associativity from direct-mapped
to 16-way associative. We report read and write miss ratios sep-
arately. Due to space limitations, we report only the weighted
arithmetic mean of miss ratios of the 10 benchmark programs2.
The complete set of miss ratios is available in [21].

Figure 4 shows read and write miss ratios for direct-mapped
caches, with varying block sizes. The allocation space is 512K
bytes, which explains the sharp drop in write miss ratios for caches
of 512K bytes or more. When the allocation space fits in the
cache, there are no allocation misses, except when there are con-
flicts between blocks in the allocation space and older generations,
which are not too common. When the allocation space is larger
than the cache, the write miss ratios depend mostly on block size,
being approximately 1/block size in words. The actual miss ra-
tios tend to decrease slightly as cache size increases, because some
blocks may be read again after they are evicted from the cache by
the allocation cycle. For large blocks and small caches, the write
miss rate is higher than expected, because of conflict misses. For
reads, the lower miss ratios are seen for 32 and 64-byte blocks,

2Let m1, m2, r1, r2, i1, and i2 be the number of misses, cache references, and

instructions for programs 1 and 2. The average miss ratio is
m1/i1+m2/i2
r1/i1+r2/i2

.
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Figure 4: Read and write miss ratios on direct mapped fetch-on-
write data caches, for different block sizes. The allocation space
is 512K bytes.
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Figure 5: Overall miss ratios on direct mapped fetch-on-write
data caches, for different block sizes, for the ML programs and
SPEC92 benchmarks. The allocation space for the ML programs
is 512K bytes.

on caches up to 128K bytes. For bigger caches, all block sizes
from 32 to 256 bytes have similar miss ratios. When read and
write miss ratios are combined (Figure 5), blocks of at least 64
bytes tend to have significantly lower miss ratios.

Figure 5 also compares the average miss ratios of the ML pro-
grams with those of the SPEC92 benchmarks [20]. In many cases
the ratios for the ML programs are lower than those of the SPEC
programs. In particular, on very small caches (4K and 8K bytes),
and 32-byte or bigger blocks, the miss ratios of the ML programs
are significantly lower than those of the SPEC92 benchmarks.
On very small caches, the ML programs suffer many allocation
misses, but since they have very good locality (i.e., many refer-
ences to addresses close to the allocation pointer), there are fewer
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Figure 6: Read and write miss ratios for direct mapped and set-
associative data caches. Allocation space size is 512K bytes.

of other types of misses. As cache size increases, since the num-
ber of allocation misses remains almost constant, the miss ratios
of SPEC programs become lower. Even if we take into account
the higher fraction of memory references for the ML programs,
we can still say that they have better cache performance than the
SPEC programs. For an 8-Kbyte cache, with 32 byte blocks and a
10 cycle miss penalty, and assuming one instruction per cycle, the
SPEC programs spend an average of 35% of their time on cache
misses, compared with 32% for the ML programs. For 64-byte
block caches, the cache overheads are 36% for SPEC and 23%
for ML.

Figure 6 shows the miss rates for direct-mapped and set-
associative caches, with 32-byte blocks. The size of the allocation
space is 512K bytes. Associativity improves miss ratios signifi-
cantly, since it eliminates many conflict misses between objects in
the allocation space and older generations. Four-way associativity
seems to be good enough, however. There is only a very small
decrease in miss ratios for 8-way and 16-way associative caches.

As expected, write miss ratios fall sharply when the allocation
space fits in the cache. Associativity has unusual results for the
case where the cache matches allocation space size (512K bytes).
At this point there is an inversion, with higher miss ratios for
higher associativity. Wilson et al. observed something similar
[38] in their study of Lisp programs. The problem is that the
LRU replacement policy of the associative caches is not good for
cyclic reference patterns. For a 512K-byte cache there should be
no allocation misses, because the allocation space is also 512K
bytes. But there are many references to objects in the older gener-
ation and these references will cause some blocks to be removed
from the cache. In this case, the LRU replacement policy would
pick the block that is to be written next as the victim, which is
obviously not a good idea. But why does this problem happen
only for a cache that is the same size as the allocation space?
The LRU replacement policy is actually good for objects from
the older generations. These objects are likely to have a very
long life, and be referenced many times. Thus the LRU policy
would tend to keep these objects in the cache, which would re-
duce the number of read misses. For the caches that are larger
than the allocation space, there is plenty of room in the cache
to hold many objects from the older generation without evicting
blocks from the allocation space. And for caches that are smaller
than the allocation space, the write to the first word of each block
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Figure 7: Miss ratios on write-validate and write-around caches,
compared to the read miss ratios of fetch-on-write caches and
with the sum of miss ratios of fetch-on-write caches when the
write misses are counted as read misses.

will cause a miss in both the direct mapped and set-associative
caches.

In summary, write miss ratios depend mostly on block size,
and can be very high for very small blocks. If block sizes are not
too small, miss ratios of ML programs can be lower than that of
SPEC programs.

5.1 Write-validate and write-around caches

Write-validate caches always, and write-around caches usually,
outperform fetch-on-write caches [24]. Write-validate and write-
around avoid fetching data on write misses, but they may have
to fetch data later on a read. In other words, write-validate and
write-around do not have write misses, but they may have more
read misses, although they never have more misses than the sum
of read and write misses of a fetch-on-write cache. Figure 7
compares the miss ratios of the ML programs on write-validate and
write-around caches to the miss ratios on fetch-on-write caches.
This graph shows the read miss ratios of fetch-on-write, write-
validate and write-around caches. The curve labeled “fetch-on-
write read+write misses” is the sum of read and write misses on a
fetch-on-write cache divided by the number of reads. This curve is
shown to give an idea of the fraction of misses that are eliminated
by write-validate and write-around caches.

Write-validate is the best organization for fast-allocating pro-
grams, a result already shown by Koopman et al. [27] and Diwan
et al. [14]. It eliminates all of the write misses without adding
many read misses, as can been seen from the comparison with
the read miss ratio of fetch-on-write caches. On the write-around
caches, on the other hand, most write misses of the fetch-on-write
cache simply become read misses. This is because most objects
are read soon after they are allocated, and, the reads will cause a
miss if the writes bypass the cache. So the miss ratio of write-
around is only a little better than that of fetch-on-write.

Part of the difference between write-around and fetch-on-write
misses comes from garbage collection. Since many objects are not
read right after they are collected, bypassing the cache may save
some misses. Some user data structures may also not be read soon
after being allocated, and some misses may also be saved in this
case.
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Figure 8: Effects of varying allocation space size on read and
write miss ratios, for direct mapped data caches from 4K to 4M
bytes, 32-byte blocks.
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Figure 9: Average cycles per user instructions on 512K-byte,
32-byte-block, write-validate, direct-mapped separate data and in-
struction caches, with 20-cycle read miss penalty.

6 Effect of garbage collection frequency

We varied the size of the allocation space from 16K bytes to
“infinite” (i.e., the allocation space can hold all data allocated by
the programs, with no need for garbage collections.) A small
allocation space means very frequent garbage collections. As the
size of the allocation space increases, the frequency of collections
decreases. Figure 8 shows how miss ratios vary with the size
of the allocation space for direct mapped caches, with 32-byte
blocks. The size of the allocation space has a significant impact
on write misses, but almost no effect on read misses. On small
caches, there is a tendency for a slight increase in read miss ratios
as the frequency of collections decrease, but this is not sufficient
to compensate for the extra garbage collection overhead. There
is a slightly higher increase in read miss ratios on small 2-way
associative caches, but still not high enough to justify the use of
an aggressive garbage collection policy.

The most unusual result was found for the program Simple.
Frequent collections increase miss ratios for this program signifi-
cantly, especially on large direct mapped caches. We found that
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Figure 10: Average cycles per user instructions on 512K-byte,
32-byte-block, fetch-on-write, direct-mapped separate data and in-
struction caches, with 20-cycle read/write miss penalty.

the problem is that the program has a large working set, and do-
ing frequent collections causes objects to be spread among many
generations. These may cause many conflict misses, since it is
possible that different generations may be aligned to the same
cache blocks. When each generation has only a few objects in it,
the alignment of the beginning of each generation is particularly
bad. A “randomized” alignment might help.

When we ran the program with a large first generation, so
that there is no need for major collections, we noticed a signif-
icant decrease in miss ratios. Moreover, the miss ratios become
insensitive to frequency of minor collections, much like the other
programs. So the problem here is frequency of major collections,
and not frequency of minor collections.

Figure 9 shows average CPUI (the arithmetic mean of the
CPUI for each program) on a 512-Kbyte direct-mapped write-
validate cache3 with a 20-cycle miss penalty. CPUI decreases with
the increase in allocation-space size because of the decrease in
garbage collection overhead. However, when the allocation space
becomes larger than 2M bytes, the variation in CPUI is almost
negligible (unless the allocation space becomes very large, close
to “infinity”, which should be impractical for most programs).
Therefore, an allocation space of about 2M bytes should be a
good choice for most programs.

The situation is different for a fetch-on-write cache. Figure
10 shows average CPUI for 512K-byte fetch-on-write cache, with
20 cycle miss penalty. Using an allocation space that fits in the
cache gives improves performance by about 16% in comparison
with the run with an infinite heap, and by 24% in comparison
with the run with an 8M-byte allocation space. For large fetch-
on-write (and write-around) caches, the number of cycles saved by
the elimination of allocation misses is offset by the extra garbage
collection cycles.

In conclusion, the size of the allocation space, which deter-
mines garbage collection frequency, can have a significant impact
on cache performance of caches that have allocation-miss penalty,
such as fetch-on-write and write-around. The size of the alloca-
tion space has almost no effect on the cache performance of ML
programs on write-validate caches.

6.1 Adapting to caches with allocation misses

3In fact, the data is for a fetch-on-write cache with 0-cycle write penalty. As
shown earlier, this should be a very good approximation of a write-validate cache.
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Figure 11: The minimum penalty for which it is better to fit the
allocation space in the cache, instead of using a large allocation
space of 8M bytes. Assuming separate I & D caches, 32-byte
block, direct-mapped, fetch-on-write data caches, and the same
penalty for reads and writes.
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Figure 12: Same as Figure 11, but with the use of a very large
first generation, so that there are no major collections.

Ideally, we would like to be able to run programs with intensive
allocation on machines with caches that have no penalty for allo-
cation writes. But there are many machines that have a cache miss
penalty for allocation, and for those machines, it may be possible
to eliminate allocation misses by fitting the allocation space in the
cache. But doing this can increase garbage collection overhead,
which may offset gains from eliminating cache misses. Whether
it is good to fit the allocation space in the cache depends on the
cache size, miss penalty, and garbage collection overhead of each
program.

We performed the analysis for our benchmark programs. Fig-
ure 11 shows the results. Each curve plots the minimum miss
penalty for each cache size for which fitting the allocation space
in the cache gives better performance than using a very large al-
location space (8M bytes). For a 512K-byte cache, for example,
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it is better to keep the allocation space in the cache if the penalty
is a least 9 cycles. In most cases, a 16K-byte cache would be too
small to justify fitting the allocation space in the cache, except if
the penalty is very high. But for some programs it may be a good
idea to do so for 32K-byte caches.

One problem with the Reppy’s generational collector is that
the sizes of older generations depend on the size of the allocation
space. This may not be a good idea when we want to reduce
the size of the allocation space so that it fits in the cache. We
may want to reduce the size of the allocation space, and increase
the size of older generations, so as to compensate for the in-
crease in minor collector overhead with a decrease (or at least a
non-increase) in major collection overhead. We did the same ex-
periments as above using a very large first generation, so that the
programs run with no major collections. The results are shown
in Figure 12. Because in many of the programs most garbage
collection overhead comes from major collections, in most cases
it is better to keep the allocation space inside the cache.

We conclude that reducing the size the allocation space to fit
in large and medium-sized fetch-on-write or write-around caches
can improve performance of most programs, even though it may
increase garbage collection overhead. Reducing major collection
frequency to compensate for the increase in minor collections can
improve performance even more.

The results presented here should be used only as an approx-
imation. Many features found on real machines that are ignored
by the performance model can affect the results, such as multi-
cycle instructions and non-blocking misses, which should reduce
the relative effect of cache misses on performance. On machines
where these features have an impact on performance, the actual
break-even miss penalties is likely to be a little higher than the
values shown here.

In this paper we have discussed only split I/D caches, but
Gonçalves’s Ph.D. thesis [9] analyzes both split and unified caches.

We have shown measurements for many sizes of single-level
cache. Most modern machines have two or three levels of cache.
We believe that most of our results are applicable to these ma-
chines, taken one cache at a time. For example, consider a ma-
chine with 8k primary and 512k secondary cache, with specific
(perhaps different) write-miss policies for the two caches. Our
analysis might show that the allocation space should not be kept
in the 8k cache, but should be kept in the 512k cache. In this
case, it is obvious how to apply the results. Only in a contrived
configuration (fetch-on-write 500-cycle-miss 8k primary cache,
write-validate secondary cache) would our data give contradic-
tory recommendations (keep allocation space in primary cache
but not secondary).

7 A case study: the DEC3000 Alpha workstation

The DEC3000/500 Alpha workstation [15] uses a DEC Alpha
21064 microprocessor that has 8-Kbyte on-chip instruction and
data caches, and support for a second level cache. The first level
data cache is write-around, and write misses are non-blocking.
There is a four-entry write buffer, with one 32-byte block per
entry, and writes that miss the first level cache go to the write
buffer. The machine has a 512K-byte second-level fetch-on-write
cache (Bcache), but if a full block is in the write buffer, there
is no need to fetch the block from main memory since the entire
block is going to be overwritten.

Because ML programs allocate sequentially at a very fast rate,
we may expect that few partially filled blocks will be written to the
second level cache, and thus we would not have a (second-level
cache-miss) penalty for allocation misses. We ran the benchmark
programs on a DEC3000/500 varying the allocation space from
16K to 16M bytes. The results are shown in Table 9. Surprisingly,

in most cases the best performance occurs when the allocation
space fits in the 512K-byte Bcache, which suggests that there is
a penalty being paid for allocation misses, that is, there must be
some fetches from main memory that are causing the machine to
stall when the allocation space does not fit in the Bcache.

These fetches are probably caused by the reads to recently
written words that are in the write buffer, but have not yet been
flushed to the Bcache. Because the first level data cache is write-
around, many of these reads will be misses to the first level cache
(the first read to a recently written block should be a miss), and
because the miss policy for this cache is to allocate and fetch a
block on read misses, the block that contains the missing word
must be fetched — either from the Bcache, or from memory if the
reference misses the Bcache. If the allocation space does not fit in
the Bcache, and the read is to a recently written word that is still
in the write buffer, then this should be also a miss to the Bcache.
There are two possibilities: the write buffer entry containing this
word is full, or it is only partially filled. If the write buffer entry
is full, then the entry can be flushed to the Bcache without causing
a fetch from memory, and then the block is fetched into the first-
level data cache. The problem is when the write buffer entry is
only partially filled. In this case, the whole block must be fetched
from memory, incurring a main-memory access penalty, to obtain
the remaining words.

We computed the probability of a write buffer being flushed
because of a read to a partially filled block. For the benchmark
programs, on average, 74% of the write buffers would be flushed.
Considering a penalty of 27 cycles to fetch a block from mem-
ory [15], this should add a cost of 0.43 CPUI (cycles per user
instruction).4 Keeping the allocation space in the cache can elim-
inate the memory fetch penalty, but it increases garbage collection
time. On average, the increased garbage-collection time causes a
penalty of about 4% in performance.

In summary, because ML programs tend to have so many reads
to objects that have just been allocated, the Alpha’s write buffer
must be flushed very frequently, and therefore it is not effective
in eliminating allocation misses.

8 Prefetching

Write-allocate caches with no write-miss penalty perform well for
fast-allocating programs. On machines with fetch-on-write (with
a nontrivial write-miss penalty) or write-allocate (where write
misses will inevitably be followed by expensive read misses),
what strategy can the software use? As we have discussed above,
avoiding misses by keeping the allocation space in cache is im-
practical for small caches (under 100 kbytes).

Some machines (such as the IBM R/S 6000 [23]) have an in-
struction to allocate (and zero) a specified cache line. If this is
done in advance of writing to the line, no allocate miss will occur.
The compiler can easily insert such instructions when increment-
ing the allocation pointer: whenever ap ← ap + c, allocate and
zero the cache line surrounding address ap + 100 . Then, when
allocation reaches that line, it will already be in the cache.

On write-around machines without a cache-line-allocate in-
struction, it is always possible to allocate a specified cache line:
just read from it! Reads always allocate in the cache. If, in ad-
dition, read misses do not stall the processor, then the compiler
can simulate cache-line allocate: whenever incrementing ap, just
read from address ap+K into a dead register. If the program allo-
cates (for example) 4 bytes for every 6 instructions executed, then

4For this calculations, it was assumed that writes are strictly sequential, and there
is at most one entry in the buffer (it also ignores non-allocation writes). But, in fact,
when an object is allocated its fields are initialized in reverse order, from last to
first, which means that is possible that more than one entry in the buffer is partially
filled. Therefore, the probability of a write buffer being flushed before an entry is
complete can be even higher.
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Table 9: Total run time (user, garbage collection, an system) on an DEC3000/500 Alpha work-station, with a 512K second level cache,
running OSF-1 version 3.0, for different sizes of the allocation space. The version of the compiler used is 1.05a.

Program Run time in seconds for allocation space size
16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M

Barnes-Hut 19.78 17.42 16.52 15.73 15.28 15.31 18.12 18.06 18.14 18.14 18.14
Boyer 1.11 0.97 0.88 0.83 0.81 0.78 0.90 0.89 0.88 0.89 1.00
Knuth-Bendix 4.68 4.02 3.73 3.58 3.50 3.53 4.36 4.44 4.55 4.60 4.75
Lexgen 4.43 4.04 3.79 3.72 3.67 3.64 3.91 3.84 3.87 3.96 4.21
Life 0.59 0.58 0.55 0.55 0.53 0.53 0.57 0.58 0.60 0.64 0.63
Mandelbrot 6.12 5.79 5.44 5.28 5.16 5.11 7.10 7.11 7.11 7.16 7.28
MLYACC 2.31 2.01 1.87 1.77 1.69 1.65 1.76 1.71 1.73 1.76 1.84
Ray 36.68 34.02 32.84 32.21 32.19 32.31 36.00 36.36 36.69 35.99 36.13
Simple 9.47 8.29 7.67 7.28 7.15 7.21 8.79 8.73 8.74 8.76 8.92
VLIW 7.83 6.96 6.46 6.28 6.33 6.27 6.93 6.87 6.87 6.90 7.04

K = 100 will allow 150 instructions to execute before the attempt
to write into that line—enough time for the read miss to com-
plete. Koopman [27] found that this improved the performance
of combinator graph reduction by “up to 20%” on the VAX 8800.

We have implemented this technique on the DEC Alpha 21064.
On this chip, read misses are “semi-stalling” (they lock up the ad-
dress box for 5 cycles, but allow the processor to issue and com-
plete arithmetic instructions). Thus, we could not predict whether
the extra “semi-stalls” from prefetching would be justified by im-
proved read hits on recently allocated data.

Table 10 shows that prefetching improves the performance
of four benchmarks (the only ones we measured) by about 18%
on a DEC 3000/400. George Necula has recently improved the
instruction scheduler of SML/NJ on the DEC Alpha, and made
more comprehensive and accurate measurements (of all the bench-
marks) than the ones in Table 10. Using the improved scheduler,
with and without prefetching, prefetching causes a 1.5% increase
in instructions executed, and a 4.5% decrease in total cycles on a
DEC 3000/600 [28].

The difference between Necula’s 4.5% and our 18% can be
explained as follows:

• Our measurement is for an allocation space much larger
than the cache, Necula’s allocation space is the same size
as the secondary cache (512k) as recommended in earlier
sections of this paper. Thus, prefetching avoids secondary
cache misses in our measurement, and only avoids primary
cache misses in Necula’s.

• We use (for this measurement) SML/NJ 0.93 with a two-
generation garbage collector [1]; Necula uses a more recent
version of the compiler with improved instruction schedul-
ing and the multi-generation collector.

• We use a DEC 3000/400, he uses a DEC 3000/600.

The DEC Alpha 21164 allows up to six outstanding mem-
ory references at a time (including cache misses) without stalling.
We expect that on such a machine, prefetching will make a much
greater difference than on the Alpha 21064. It appears that many
machines of the near future will have write-around caches with
fully nonblocking read misses, so prefetching garbage should be-
come very important.

9 Full-line write-allocate

Write-validate (write-allocate with partial fill, but not fetch-on-
write) gives much better performance than write-around for fast-
allocating programs. Even for “conventional” C programs, it is
well known [24] that write-validate gives significantly better per-
formance than write-around. Why, then, do the Alpha and several

other modern processors use write-around? A likely motivation
is the desire to keep the primary cache simple (without a “valid
bit” for each) so it can attain the fast access time needed by a fast
CPU.

Another important reason is that write-validate makes multi-
processor cache coherence much more difficult to achieve. If Pro-
cessor P writes word 1 of a cache line, and Processor Q writes
word 2, then (with write-around) an external cache-coherence con-
troller can order the writes appropriately. But with write-validate,
part of the cache line is valid on processor P , and a different part
on processor Q, and perhaps a third part is valid only in main
memory. This is a difficult situation.

The cache coherence problem applies to uniprocessors as well,
because uniprocessors are now built from processor chips which
must be usable (in other products) in multiprocessor configu-
rations. One way to solve the problem is to have the cache-
coherence controller merge the valid portions of lines in P ’s
and Q’s caches. Merging has been demonstrated at the virtual-
memory page level in software [26], and at the cache level in
hardware [25]. If merging can be done cheaply, then we regard
it as a good solution—any technique that allows write-validate is
acceptable.

But we now propose another solution that may be easier to
implement than merging. Our solution is less powerful than merg-
ing for the shared-memory multiple-writers situation, but is just as
good for sequential heap allocation where each processor allocates
in a different region of a shared memory (or on a uniprocessor).
Our solution should be quite simple and cheap to implement with
only small changes to the write buffer and primary cache miss
policy.

We propose a new cache write-miss policy called full-line
write-allocate. In our scheme, any cache write miss goes into the
write buffer and not into the cache. But when the write buffer
accumulates a full cache line, that line is allocated into the cache.
(If the cache is write-through, then the line is also written to the
next level of the memory hierarchy.) Cache read misses that hit in
the write buffer should be satisfied from the write buffer, without
flushing it.

For sequential writes (such as heap allocations), this is as
good as write-validate. It doesn’t require valid bits on each word
of every line in the cache (as only full lines are put there). It
doesn’t require much extra hardware: when the write buffer is
flushing a complete line to secondary cache, it must also send it
to the primary cache; and the write buffer must be able to handle
reads without flushing.

No latency is added to critical execution paths (primary cache
hits). Note, for example, that this technique does not require reads
from the write buffer to be as fast as primary cache hits; what we
wish to avoid is the extremely large latency of a fetch-on-write
from the main memory to the secondary cache.
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Table 10: Performance of garbage-prefetch technique on the Alpha 21064.
Program Normal Garbage-prefetch Speedup Speedup

user sys real user sys real (user+sys) (real)
Life 11.52 0.02 11.70 8.20 0.02 8.32 1.40 1.41
Knuth-Bendix 6.05 0.10 7.38 4.87 0.11 6.12 1.23 1.21
Lexgen 8.42 3.26 12.62 6.53 3.29 10.72 1.19 1.12
Yacc 2.54 0.41 3.75 2.35 0.43 3.83 1.06 0.97
Average 1.22 1.18

Average of three runs of each benchmark are shown. Variation in run times of each benchmark was approximately 10% in each component.

We also claim that full-line write-allocate does not pose more
problems for cache coherence protocols than write-around does.
First, for partial-line writes, our protocol behaves just like write-
around. For full-line writes, a processor would need to claim
ownership of an entire cache line, which it would do by sending
an invalidate message to other processors. This is a standard
technique, and is simpler than merging.

Full-line write-allocate does not guarantee sequential consis-
tency, and neither does write-around. Obtaining sequential consis-
tency is difficult in high-performance protocols, so many machines
(such as the Alpha) do not guarantee sequential consistency unless
a “memory barrier” instruction is executed.

The IBM RS/6000 [23] (and perhaps Power-PC) has a “cache
reload buffer” that (among other things) serves as a write buffer,
satisfies read requests directly, implements non-blocking fetch-on-
write, and puts full lines into the cache. This is at least as good
as (and perhaps not much more complicated to implement than)
full-line write-allocate.

10 Conclusion

We have studied the cache performance of ML programs com-
piled by the SML/NJ compiler. These programs have a very reg-
ular, sequential pattern for write references, and more than half
of references are to objects that have just been allocated, which
means that the programs have good temporal and spatial local-
ity. Confirming the results of previous studies, we found that ML
programs have good cache performance on write-validate cache
architectures. On other architectures, the cache performance of
the ML programs can be bad. However, for the cache architec-
tures of many current machines—with a small on-chip first level
cache and a large second level cache— the cache performance of
ML programs can be better than that of C and Fortran programs.
Garbage collection frequency has little impact on cache perfor-
mance for write-validate caches, but for large or mid-sized fetch-
on-write and write-validate caches, fitting the allocation space in
the cache can improve performance, even though a penalty can
be paid for extra garbage collection overhead. For small fetch-
on-write and write-around nonblocking caches prefetching can be
used to simulate write-allocate and reduce the penalty for alloca-
tion misses. Finally, we commend write-allocate (without stalling)
to machine designers, and suggest that either a cache-allocate in-
struction, or nonblocking cache read misses, or write-merging,
or full-line write-allocate are reasonable ways of implementing
write-allocate.
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[9] Marcelo J. R. Conçalves. Cache Performance of Programs
with Intensive Heap Allocation and Generational Garbage
Collection. PhD thesis, Princeton University, Princeton, NJ,
May 1995.

[10] Intel Corporation. Pentium Processor User’s Manual, Vol-
ume 2: 82496 Cache Controller and 82491 Cache SRAM
Data Book. Intel Literature Sales, Mt. Prospect, Illinois,
1993.

[11] W. Crowley, C. Hendrickson, and T. Rudy. The SIMPLE
code. Technical Report UCID 17715, Lawrence Livermore
Laboratory, Livermore, CA, February 1978.

[12] Digital Equipment Corporation, Maynard, Massachussets.
DECchip 21064 — AA Microprocessor Hardware Reference
Manual, first edition, October 1992. Order number EC-
N0079-72.

12



[13] Digital Equipment Corporation, Palo Alto, California. DEC-
station and DECsystem 5000 Model 240 Technical Overview,
version 2 edition, February 1992. Order number EC-N0194-
51.

[14] Amer Diwan, David Tarditi, and Eliot Moss. Memory sub-
system performance of programs with copying garbage col-
lection. In Proceedings of the 21st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Language, pages
1–13, January 1994.

[15] Todd A. Dutton, Daniel Eiref, Hugh R. Kurth, James J. Reis-
ert, and Robin L. Stewart. The design of the DEC3000 AXP
systems, two high-performance workstations. Digital Tech-
nical Journal, 4(4), 1992.

[16] K. Ekanadham and Arvind. SIMPLE: An exercise in fu-
ture scientific programming. Technical Report Computation
Structures Group Memo 273, MIT, Cambridge, MA, July
1987. Simultaneously published as IBM/T.J. Watson Re-
search Center Research Report 12686, Yorktown Heights,
NY.

[17] Jean-Marc Frailong et al. The next generation SPARC mul-
tiprocessing system architecture. In Proceedings of COMP-
CON, pages 475–480, San Francisco, California, February
1993. IEEE Computer Society Press.

[18] Tom Asprey et el. Performance features of the PA7100
microprocessor. IEEE Micro, 13(3):22–35, June 1993.

[19] Richard P. Gabriel. Performance and Evaluation of Lisp
Systems. MIT Press, Cambridge, MA, 1985.

[20] Jeffrey D. Gee, Mark D. Hill, Dionisios N. Pnevmatikatos,
and Alan J. Smith. Cache performance of the SPEC92 bench-
mark suite. IEEE Micro, 13(4):17–27, August 1993.
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