
Specifying and Verifying a Real-World Packet
Error-Correction System

Joshua M. Cohen and Andrew W. Appel

Princeton University, Princeton NJ 08544, USA

Abstract. Automated and semi-automated formal methods have been
widely employed to verify properties of network models and per-packet
network functions, which operate on single packets in the middle of a
network (firewall, NAT, etc). But these methods do not extend to end-
to-end network functions, those whose specification relates a stream of
packets sent at one endpoint of the network with a stream received at the
other end. Among other complications, such specifications must account
for the network’s behavior, including packet reordering, duplication, de-
lay, and loss. We develop a methodology for formally specifying and ver-
ifying such code, demonstrating our techniques on a real-world packet
error-correction system that encounters all of these challenges and whose
specification had been highly unclear. We prove a close model of this sys-
tem correct in the Coq proof assistant; along the way, we formalize more
general networking constructs including IP/UDP packets, a metric for
packet reordering, and sequence number comparison. Finally, through
our specification, we develop an improved version of the error-correction
system, giving a more predictable, provably correct program that recov-
ers more packets. We show that formal specification and verification can
be powerful tools to clarify assumptions, improve code quality, and find
and fix bugs in complex, real-world systems.

1 Introduction

Formal verification has been widely applied to networks and network
components, whose correctness is critical for higher-level internet appli-
cations. Broadly, these efforts take one of two forms: verifying properties
of entire networks (reachability, routing protocol convergence, etc) by
using automated solvers on a simple model of the network (e.g. a graph)
or verifying network function implementations that operate per-packet
and which are often implemented at the intermediate nodes of a network
(NAT, firewall, etc). Neither of these methods extends to end-to-end net-
work functions: those run at the end hosts and whose specification cannot
be expressed solely as a function of the input packet but must relate mul-
tiple packets in the stream. These include critical transport-layer func-
tions for reliable delivery including packet reordering, congestion control,
flow control, error correction, and packet retransmission mechanisms.

Proving the correctness of per-packet functions generally involves
reasoning about which header fields in a packet must change (based on
the packet and stored data, e.g. a map of internal/external IPs for a

To appear in VSTTE'23, 15th International Conference on Verified
 Software: Theories, Tools, and Experiments, October 23, 2023

2 Cohen and Appel

NAT) and proving some related higher-level properties (e.g. a firewall
blocks packets from a certain IP range). But end-to-end functions re-
quire a completely different approach, as they have several distinctive
challenges. First, though executed packet-by-packet, their behavior (and
thus, a specification) depends on the often-complex interactions between
the entire stream of packets sent and received, as well as state at both
ends. Second, such implementations typically use timeout mechanisms
and may depend on additional external state such as the system time;
their behavior depends not only on the packet inputs but on the ability
of the network to drop, delay, reorder, and duplicate packets. Finally,
the intended guarantees provided by such a system may be unclear; for
instance, the system may be permitted to drop packets (say, if it has
not seen a missing packet for a long time) or it could assume properties
about the underlying network which may or may not hold.

In this paper, we investigate how formal specification and verifica-
tion can be used to effectively reason about these types of real-world
end-to-end systems. We use as an extended case study an existing, real-
world packet error-correction system written in C; we determine a speci-
fication for it and verify a close model against this spec in the Coq proof
assistant. The core error-correction algorithm and its C implementation
were verified by Cohen et al. [12]; here we reason about the larger sys-
tem to group, store, send, and receive packets at the end hosts. The core
algorithm’s verification was complex – requiring reasoning about sophis-
ticated mathematics and low-level C programming conditions – but its
specification was not, arising from well-known mathematical properties
of the underlying Reed-Solomon code. In contrast, for packet reordering,
duplicating, and timeouts, formulating a specification is difficult, both
because of the end-to-end challenges discussed above and because this
implementation violates any reasonable specification. We detail our pro-
cess and demonstrate how to reason about code whose specification is
unknown, dependent on external conditions, and reliant on invariants
maintained through different executions, and we show that even the act
of specifying a “dusty deck” program can clarify assumptions, find bugs,
and lead to cleaner, more performant, and more predictable code. Our
contributions are as follows:
1. We present a methodology for formally specifying real-world, end-

to-end network functions, especially transport-layer programs for re-
liable delivery.

2. We apply these techniques to specify and verify in the Coq proof
assistant a real-world error-correction system, the first verification
of such a program. We identify many bugs in the implementation
and write a new version that is more predictable, provably correct,
and recovers more packets.

3. Along the way, we formalize in Coq several more general networking
concepts: IP and UDP packets, a well-studied metric for measur-
ing packet reordering, and sequence number arithmetic; the latter
two are particularly useful for reasoning about end-to-end network
functions that use timeouts.

Our proofs are available at github.com/verified-network-toolchain/Verified-
FEC/tree/end-to-end/proofs/FEC.

https://github.com/verified-network-toolchain/Verified-FEC/tree/end-to-end/proofs/FEC
https://github.com/verified-network-toolchain/Verified-FEC/tree/end-to-end/proofs/FEC

Specifying and Verifying a Real-World Packet Error-Correction System 3

2 Background – Verification Techniques

Software verification often proceeds in layers; rather than proving de-
sired properties directly about the source program, one writes a simpler
functional model of the program, proves properties about this model,
and separately proves that the implementation refines this model. This
approach is modular: the two proofs, often requiring very different kinds
of reasoning, are kept separate, and multiple low-level implementations
can be proved correct against the same functional model without repeti-
tion of the high-level proofs. If the two proofs are performed in the same
system, they can compose top-to-bottom to give a single theorem. This
approach has been used to interactively verify distributed systems [14],
an HTTP key-value server [30], a pseudorandom number generator [27],
and an ODE solver [16], among others.

Alternatively, more automated verification efforts, including for net-
works, typically omit one of these steps: either they prove that the imple-
mentation correctly refines the model, but don’t prove important proper-
ties of the model, or they prove that the model has the correct high-level
properties but don’t connect the abstract model to an implementation.

Most network function verification – the verification of individual
network components like firewalls and load balancers – focuses on verify-
ing that the program correctly implements a functional model and treats
these models as the high-level specification [28, 29, 22]. They enable au-
tomation by heavily restricting the use of state, encapsulating specific
data structures in custom libraries (see §9 for more detail). Verifying
properties of entire networks [8, 13, 32] involves using simpler models
tractable for fully automated verification tools like SMT solvers without
verifying implementations.

Many end-to-end network functions make heavy use of state and
require sophisticated higher-level reasoning, including both complex in-
variants describing the relationship between the state and the input/out-
put packet streams, as well as mathematical reasoning in the domain of
interest; for instance, the error-correction algorithm in the system we
verify is based on linear algebra over finite fields. Proving the correct-
ness of an implementation further involves reasoning about memory, in-
teger overflow, and undefined behavior (we do not prove all this, but
we describe how it could be done in §8.4). Therefore, we need a tool
capable of reasoning at all of these levels; we use the Coq interactive
theorem prover, a higher-order, dependently typed logic that is widely
used in software verification, formalized mathematics, and programming
language research. Coq has a large ecosystem of libraries in a variety of
domains that makes proofs about functional models possible [4], as well
as libraries to connect high-level proofs with low-level code, such as the
Verified Software Toolchain (VST) [5] that enables sound reasoning in
Coq about C programs.

3 Specifying End-to-End Network Functions

To further illustrate the challenges involved when specifying end-to-end
network functions, we consider a hypothetical simplified packet reorderer

4 Cohen and Appel

function addPacket(p)
if p.seqNum ≥ e then

insert(p, s);
p.timeout ← currTime() + t

end if
end function

function popPacket
p← s.head
if p.timeout ≥ currTime() or

p.seqNum = e then
e ← p.seqNum + 1;
forward p; popPacket

end if
end function

global e, s
function main

while true do
p← receive(); addPacket(p); popPacket

end while
end function

Fig. 1. A simple packet reorderer with intended invariants (1) s is sorted by sequence
number and (2) all sequence numbers in s are at least e, but arithmetic mod 232 results
in a gap between intention and reality

(Figure 1). The reorderer keeps a list s of packets sorted by sequence
number and the index e of the next expected sequence number; on arrival
addPacket(p) adds the input packet p to s, and popPacket forwards in-
order and timed-out packets, updating e.

Even this simple program is trickier to specify than it may appear. A
natural specification is that all packets outputted by popPacket are from
the sender and appear in sorted order. However, even this illustrates
many of the challenges we will face in writing such a specification and
proving that the program satisfies it:

1. This specification depends on the entire stream of sent and received
packets. The output of a single call to popPacket cannot be specified
except in reference to the larger stream.

2. To prove the program correct against this specification, we need to
maintain invariants about the state (Figure 1), which may them-
selves depend on previously sent or received packets.

3. Such a reorderer may run for a long enough time for sequence num-
bers to wrap around (violating the intended invariants).

4. Even with all of the above, this is a very weak spec: an implemen-
tation that dropped every packet could satisfy it. If we additionally
wanted a guarantee about packets being returned, we would need to
reason both about packet loss and about how many packets arrive
before timing out; this depends on the amount of delay, reordering,
and duplication in the network.

We will address each of these issues in the context of a packet error-
correction system; many of our methods and formalizations are applica-
ble to more general end-to-end network functions.

4 A Packet Error-Correction System

Often, networks deal with loss by retransmitting lost data, but in many
cases, this is expensive or impossible (e.g., due to latency requirements
or limited storage at the sender). Instead, one can use an error-correcting

Specifying and Verifying a Real-World Packet Error-Correction System 5

Sender Receiver

Abstraction of a single,
reliable packet stream

FEC
Producer

FEC
Consumer

Stream O Stream D

(Adversarial)
External
Network

Stream E Stream R

Encoder Decoder

Data
packets

Parity
packets

Received
data + parity

packets

Missing
data

packets

Fig. 2. FEC System Architecture

code, carefully encoding the data to introduce some redundancy, which
allows the original data to be recovered even with some loss. In networks,
this technique is known as Forward Error Correction (FEC).

We verify an FEC implementation developed by Bellcore (now Per-
aton Labs) based on Reed-Solomon coding [23]. The core encoding/de-
coding algorithm [18] was developed about 25 years ago;1 the buffer- and
packet-management system is about 8 years old. The program is written
in C and has been used in various networking projects to support resilient
communication, most recently in the DARPA EdgeCT program. We use
an existing implementation rather than writing our own to show how our
methods can be used to derive specifications from existing but unspeci-
fied code, to demonstrate that such analysis can find bugs in real code,
and to explain how we can improve the code to create a new program
that is simpler, more reliable, more efficient, and correct.

The program architecture is shown in Figure 2. We identify four
streams of packets given as inputs and outputs to different parts of the
system; our specification will reference these streams. The Sender (some
higher-level application) sends a stream of packets (the original stream
O) to the FEC Producer, which calls the Encoder to produce parity
packets. The received data packets and the generated parity packets are
both sent over the network as the encoded stream E. Here, there may
be some adversary or other conditions in the network causing loss, delay,
reordering, and/or duplication. This results in the received stream R
(some subset of E with reordering and duplication) arriving at the FEC
Consumer, which calls the Decoder to reconstruct missing packets. The
resulting decoded stream D is sent to the Receiver. The Sender and
Receiver (and any other higher-level applications) believe that they are
communicating with each other over a mostly reliable connection.

1 See Cohen, et al. [12] for a more detailed history of this algorithm.

6 Cohen and Appel

The FEC system can be broken into two pieces: the Encoder/De-
coder, which implements the Reed-Solomon erasure code to determine
the parities and reconstruct missing packets, and the Producer/Con-
sumer, which sends and receives packets and decides which packets to
send to the Encoder/Decoder to recover missing data. The Reed-Solomon
code is a block code – it encodes a batch of k packets, producing h parity
packets such that if at least k of these k + h total packets are received,
the Decoder can recover all packets in the batch. Accordingly, the Pro-
ducer receives packets and forwards them along, marking each with some
metadata to identify their batch and their data/parity status and storing
copies of these packets until k have been received, at which point it calls
the Encoder to produce parities, outputting the result. The Consumer
groups incoming packets into their batches and calls the Decoder when
k packets in a batch have been received. It also periodically times out
stored batches to prevent long search times and limit memory usage.

5 Developing a High-Level Specification

Any attempt to develop a specification for this system immediately en-
counters all of the challenges described in §3, though the stored state
is much more complicated and the timeout mechanism much less pre-
dictable than for the simple reorderer (§5.1). Comments in the existing
C code indicate that the program was supposed to handle loss, reorder-
ing, duplication, and delay; our spec must account for these as well.

5.1 Implementation-Specific Behavior

Beyond the considerations in §3, efforts to formulate a spec for this FEC
implementation encounter two additional challenges. First, there is no
“natural” specification; it is entirely unclear what such a system should
guarantee. FEC cannot guarantee packet recovery if too many packets are
dropped, so the program might be expected to provide some guarantees
on recovery in a well-behaved network environment or it may operate in
a best-effort fashion to attempt to recover as much data as possible.

Second, the program as written does not satisfy any reasonable spec.
Formally, we cannot yet call this a bug, as the program makes no guar-
antees about its behavior; indeed, part of our motivation in giving a
formal spec is to be able to concretely identify bugs. Yet in the course of
attempting to derive a specification from the code, we discovered (and
fixed, see §7) many problems, which we grouped into 3 categories:
The first consists of issues that should be considered bugs under any
reasonable specification.
1. The code leaks memory. Some of the memory leaks are acknowl-

edged by the code’s comments; others are not. Due to the unpre-
dictable timeout mechanism (see below), the data structure to store
the batches in the Consumer can grow arbitrarily large even in “nice”
cases (e.g. all the packet arrive in order).

2. The code implicitly (and seemingly unintentionally) casts between
signed and unsigned ints.

Specifying and Verifying a Real-World Packet Error-Correction System 7

The second category consists of behaviors that could cause a serious
problem: hallucinatory “reconstruction” of packets that were never sent.
3. The program does not handle sequence number (and integer) wrap-

around correctly; it uses ordinary integer comparison rather than
serial number arithmetic [10]. If enough packets arrive, it can group
packets into batches incorrectly, producing garbage packets that are
“recovered” and sent to the Receiver. This is a problem if program
handles packet streams with more than 231 − 1 packets,2 which is a
fairly small number of packets at current network speeds.

The third category consists of behaviors that cause the program to fail
to recover all packets it could plausibly recover.
4. The implementation does not call the Decoder unless the kth packet

received in a batch is a parity packet; thus, with even a small amount
of reordering, a recoverable batch can be ignored.

5. With only small amounts of reordering, the Consumer ignores the
received packet, forwarding it to the Receiver without storing it.

6. Timeouts are handled inconsistently and unpredictably. They not
only prevent us from giving guarantees about the recovered packets,
but violate any notion of locality about packet-batches – that is,
whether a batch is recovered does not only depend on the packets in
that batch. In particular, both of the following can occur:
(a) An input packet can be forwarded without being stored if some

other batch has timed out.
(b) In other cases, batches that should time out do not, as long

as no packet from a later batch arrives. This, tiny changes in
reordering and/or delay can change whether a batch is recovered.

5.2 Layers of Specification

How then, should we formulate a specification so as to capture which of
these behaviors should be regarded as bugs? We are interested in knowing
both what guarantees the program gives in good scenarios (defining these
appropriately) as well as how bad things can be in bad/adversarial ones.
Our approach is to design different layers of specification based on various
assumptions about the external environment. For the FEC system, we
first want the following under all circumstances:

Property 1. The program does not crash, leak memory, access invalid
memory, have signed integer overflow, or use undefined behavior.

Under this spec, items 1 and 2 in the above list are definitely bugs.
We note that unsigned integer overflow (carry) is expected due to se-
quence numbers; we explicitly account for this below.

Next, we identify two properties which must hold to give the follow-
ing principle: the higher-level Sender/Receiver should never be worse off
for having used FEC (as opposed to just sending packets and accepting
loss). The FEC system should not drop any packets that are correctly
sent and received, and it should not create any invalid packets that were
not originally sent:

2 This implementation uses a custom sequence number that counts packets, not bytes.

8 Cohen and Appel

Property 2. Suppose a data packet (i.e., a packet from stream O) is in
the received stream R. Then it is in the decoded stream D.

Property 3. Every packet in the decoded stream D is in the original
stream O.

Property 3 does not hold of the current implementation due to bug
3 above. To rule out sequence number wraparound, we need some as-
sumption about the environment. To fix this, we change the program to
use 64-bit sequence numbers and assume that no more than 263−1 pack-
ets are sent.3 Additionally, we need serial number arithmetic for other
comparisons that could be affected by wraparound.

Thus, we have two levels of specification: the FEC system should
always satisfy Properties 1 and 2, and if at most 263−1 packets are sent,
it satisfies Property 3 (of course, it will satisfy Property 3 in other settings
as well, but we do not prove this). These properties claim that even in
adversarial network conditions, the FEC system will not do anything
too bad. But this spec is still quite weak; even a system that did nothing
but forward data packets and ignore parities could satisfy it. We want
to give a stronger spec – one that guarantees, under “normal” network
conditions, that the FEC system actually ensures reliable delivery by
recovering lost packets.

We expect the ith batch to be recovered under the following condi-
tion:

Condition 1. k and h are fixed for all packets. 0 ≤ i ≤ |O|
k
, and at least

k packets of the k+h packets between position i(k+h) and (i+1)(k+h)
in stream E appear in stream R.4

We would like to say something like the following:

Property 4. Suppose that Condition 1 holds for i. Then packets ik to
(i+ 1)k from stream O appear in D.

In other words, if the FEC parameters are fixed and no more than k
packets in the batch are lost, then all packets in this batch are received
by the Receiver. It immediately follows from this property that if all
batches are recoverable (no more than k packets in each batch are lost),
then all packets are received. Combined with Property 3, this implies
that streams O and D have exactly the same packets. But Property 4
does not hold unconditionally: a batch can timeout before it is recov-
ered; furthermore, bugs 3-6 cause violations of this property even if a
particular batch did not timeout. Our next step is therefore to deter-
mine assumptions under which Property 4 holds, which involves detailed
reasoning about the external network environment.

3 This is a safe assumption. At gigabit speeds, even if each packet were only 1 bit,
wraparound would only occur after 250 years. Alternatively, we could assume weak
bounds on reordering, duplication, etc to ensure that sequence numbers are never
ambiguous. But we would like Property 3 to hold under any network behavior.

4 This loss condition is not ideal: it reveals the batch structure of the FEC algorithm.
However, other formulations (for example, that k out of every k + h consecutive
packets are received) are overly restrictive or do not correctly capture the condition.

Specifying and Verifying a Real-World Packet Error-Correction System 9

seq[i] 1 2 3 6 4 5 7

RI[i] 1 2 3 4 5 6 7

d[i] 0 0 0 −2 1 1 0

seq[i] 1 4 3 5 3 8 7 6

RI[i] 1 3 4 5 x 6 7 8

d[i] 0 −1 1 0 x −2 0 2

Fig. 3. Reorder Density (RD) (a) without and (b) with duplicates and drops

6 Formalizing Properties of Packet Streams

To prove that the FEC program actually recovers certain batches, we
need a way to state that all packets in a batch arrive before timing out.
In other words, we need the notion that packets sent at similar times from
the Producer (close together in E) should arrive within some specified
time interval at the Consumer (reasonably close together in R). This is
not unique to FEC; any end-to-end program with timeouts and operating
on groups of elements will need similar reasoning.

But reasoning about this is difficult: packets can be delayed, dropped,
reordered, and duplicated, so we cannot assume direct relationships be-
tween a packet’s position in E and its position inR. Instead, we will quan-
tify and formalize well-studied, empirical metrics for each of these fea-
tures and prove that under reasonable bounds on these metrics, batches
will not be timed out before they are completed. Since timeouts serve the
purpose of identifying exceptional circumstances under which we should
not expect some packets to be received, this approach makes sense; if
the external network behaves reasonably, timeouts should not prevent
otherwise recoverable batches from being recovered. To ensure this, we
will modify the program’s timeout mechanism along the way to simplify
it and ensure locality.

6.1 Reordering

Measuring packet reordering is a well-studied problem; metrics for do-
ing so are summarized in RFCs 4737 [19] and 5236 [15]. Some metrics
count the number of reordered packets; other quantify the extent of the
reordering, which is more useful to us. One such metric is Reorder Den-
sity (RD) [7, 21], which measures the displacement of each packet, or the
difference between the packet’s arrival position and its position in the
correctly ordered stream, ignoring duplicates. In a comparative study,
RD compared favorably to a variety of other reordering metrics on its
robustness to packet loss and duplication, ability to capture reordering,
usefulness in evaluating network behavior, time and space complexity,
and more [20]; the same study found that reordering events are frequent
but small. This validates our approach; most reordering is quite small,
so we can safely assume a bound on the maximum displacement that the
vast majority of packet streams will satisfy.

Figure 3 shows how RD is computed: the input sequence is compared
with the Receive Index (RI) sequence, indicating the in-order arrivals;
these values are subtracted to get the displacement (d) of each packet.
Duplicate packets are ignored; they have no d or RI value, and dropped

10 Cohen and Appel

packets are skipped in the RI sequence. We choose RD as our reordering
metric and we will assume a bound d on the displacement of each packet
between the sent stream E and the received stream R. §8.3 discusses our
formalization of RD in Coq.

6.2 Duplication and Timeouts

Bounds on reordering help us prove that packets in the same batch are
received before the batch times out by quantifying how many packets can
arrive in between packets in the same batch. However, duplicate packets
cause problems: not only could arbitrarily many packets arrive in the
middle of a batch (without a further bound), but reordering metrics like
RD intentionally ignore duplication.

Metrics for duplication are sparse; RFC 5560 [24] defines a metric
that simply counts the number of occurrences of each packet, but it is
unclear if this metric has ever been empirically studied. We instead care
about how spread out packets can be, so we use the following condition:
there is a bound m such that any two duplicate packets in R have at most
m packets between them. This is inspired by RD: if we imagine duplicate
packets as two different packets sent from the sender in sequence, then
this metric is very close to difference between their displacements.

To reason about timeouts, we must combine the assumed bounds
on reordering and duplicates with an assumption about the arrival times
of packets close together in R. But this is indirect and unsatisfactory: it
depends on network speeds and congestion, and does not allow the Pro-
ducer to pause between batches. Moreover, reasoning about duplication
and reordering together is difficult; this approach results in only weak,
multiplicative bounds. Instead, we argue that the timeout mechanism
should be changed: instead of measuring in seconds, we should count the
number of unique packets received. This choice improves the program,
the spec, and the proofs in several ways. The sender is allowed to wait
between packet arrivals or batches; the condition does not depend on net-
work speeds or system time (making the Consumer a pure function of the
packet inputs). Moreover, this improves efficiency: the program already
checks for duplicate packets, but now the size of the data structures can
be bounded exactly; they also do not depend on network speeds. Finally,
reasoning is much simpler: RD is naturally expressed in terms of unique
packets; aligning our timeout mechanism with this allows us to reason
about reordering and duplication separately and give stronger, additive
bounds (§8.3).

With all of these features in mind, we can write our final strong
spec, first specifying the bounds on the external conditions and some
parameters to prevent overflow.

Condition 2. The following bounds hold:

1. For all packets, the displacement between E and R is bounded by d.

2. Any two identical packets in R have at most m packets between
them.

3. The timeout threshold is at least k + h+ 2d+m.

Specifying and Verifying a Real-World Packet Error-Correction System 11

Condition 3. The timeout threshold is smaller than 231, all sequence
numbers are unique and less than 263, 0 < k ≤ 127, and 0 < h ≤ 128.5

Property 5. Suppose Conditions 2 and 3 hold and Condition 1 holds for
i. Then all packets in batch i (packets ik to (i+ 1)k in O) appear in D.

This specification tells us that the program guarantees recovery of
certain packets under reasonable network conditions. Now, we have two
tasks: correct the program’s bugs so that it satisfies Properties 1, 2, 3,
and 5 and then prove that this is the case.

7 A New Program

To fix the problems described in §5.1, we make some modifications to
the source program:

– We fix the memory leaks resulting from the lack of free after malloc.

– We use 64-bit sequence numbers instead of 32-bit ones (§5.1).
– For all sequence number comparisons (including the batch ID num-

bers, which are based on the first packet’s sequence number), we use
serial number arithmetic (§8.3), which handles wraparound correctly.

– In the Consumer, we change the timeout mechanism to count unique
packet arrivals rather than seconds (§6.2). In reality, this is an esti-
mate (packets may have timed out, causing duplicates to be identi-
fied as unique); we account for this in our correctness proofs (§8).

– Finally, we completely change the timeout mechanism. Before, the
Consumer only timed out batches if a packet from a previous batch
(before the latest) arrived, it only ever timed out a single batch, and
it violated locality as described in §5.1. The new implementation
iterates through the entire list after each arrival, deleting all timed-
out batches.

With these changes, the system is more reliable, more predictable, and
recovers more packets. However, the new timeout mechanism seemingly
reduces the performance, adding iteration through the batch list each
time. But this is not necessarily the case. Before, the batch list could
be arbitrarily long, and thus a single iteration could take much longer
(even in typical cases, such as a packet arriving in the batch immediately
preceding the latest). More importantly, the lack of iteration in the pre-
vious implementation was really a bug, both because it led to space leaks
and because the unpredictable timeout mechanism made the system re-
cover fewer packets than it otherwise could have. This would degrade
the performance further if retransmissions were required to recover these
missing packets. Finally, we note that our new approach could be imple-
mented efficiently with the right data structures: a hash table to identify
the batch and a priority queue to remove old batches would reduce the
time per arrival to logarithmic in the number of batches, which itself is
kept quite small with the new timeout mechanism.

5 The k and h bounds arise from the FEC algorithm.

12 Cohen and Appel

8 Proving the Program Correct

8.1 Functional Models and Data Structures

As §2 describes, we create a functional model of the program, which we
prove correct according to the various high-level specs (Properties 1, 2,
3, and 5; we mainly focus here on Property 5). Our models are functional
programs in Coq, one Coq function closely matching each C function. We
use machine-length integers and data structures closely mirroring those
in the C program. The models of the Producer and Consumer take as
input some internal state, the current packet, and some external state,
returning the updated internal state and a list of output packets; from
this, we define iterated versions that input and output packet streams,
updating the internal state with each arrival.

Representing the state of each function is a crucial ingredient in our
proofs. The Producer and Consumer operate over streams of packets,
passing appropriate batches to the core Encoder/Decoder; to link these
streams together, we introduce a Block data type, which bundles together
the data and parity packets in a batch (using our separate formalization
of IP and UDP packets) along with additional metadata (batch ID, FEC
k and h values, etc). This abstraction serves two purposes: we can reason
about the state of each function in a similar way (the Producer stores
an option Block, and the Consumer stores a list Block, each representing
the batch(es) in progress) and we can view the E and R packet streams
alternatively as a stream of Blocks satisfying particular invariants. This
allows us to reason about the Producer and Consumer separately and
provides a common view of the inputs, outputs, and internal state.

8.2 Linking the Producer and Consumer

The Block abstraction helps us in the following way: the Producer main-
tains a currently-in-progress Block; when a batch is complete, it clears
its internal state and begins the next batch. Thus, the Blocks comprising
the stream E consist of those formed by the Producer. Meanwhile, the
Blocks in stream R are subblocks of those from E – since packets may
be dropped but no new packets can be created. The internal state of
the Consumer stores the currently-in-progress batches as Blocks, each of
which is a subblock of a Block from R (some packets may be dropped
due to timeouts). Therefore, our basic proof strategy is to prove proper-
ties of the Blocks in E by proving invariants about the internal state of
the Producer, then proving that these properties hold of subblocks and
therefore hold of the Consumer’s state as well.

For example, the Consumer calls the Reed-Solomon Decoder on a
batch when it receives k packets. For the operation to be valid, all packets
from k to k+h in the batch must be parity packets produced by the Reed-
Solomon Encoder from some input data consistent with the received data
packets (packets 0 to k− 1 in the batch). Then, the Decoder will recover
the original input (proved in Coq in [12]). We prove that the Blocks
stored in the Consumer have this structure (which we call well-formed)
by showing that the Producer creates a batch by appropriately calling
the Reed-Solomon Encoder and that subblocks remain well-formed.

Specifying and Verifying a Real-World Packet Error-Correction System 13

Model 3: int, timeouts

Model 2: Z, timeouts

Model 1: Z, no timeouts

Property 4

Condition 3 (overflow)

Condition 2 (reordering + duplication)

Condition 1 (loss)

Fig. 4. Consumer Refinement Proofs

8.3 The Consumer

The Consumer is complicated, and its proofs must reason about the
Decoder correctness, sequence number wraparound, and timeouts. To
handle this cleanly, we use a refinement-based approach, writing 3 layers
of functional models (Figure 4). Model 1 uses mathematical (unbounded)
integers and has no timeouts; under the loss assumptions, we prove that
it satisfies Property 4. Model 2 adds timeouts; we prove that under the
reordering and duplication bounds, it is equivalent to Model 1. Model 3
uses machine-length integers and serial number arithmetic; we prove that
under the bounds assumptions for sequence numbers and the timeout
threshold, it is equivalent to Model 2. We compose all of these proofs to
show that Property 5 holds of Model 3.

The Consumer with no timeouts Proving Model 1 correct follows
from the observation that, with no timeouts, the Blocks stored in the
Consumer’s state are exactly the blocks of the received stream R. By the
loss assumption, the ith batch has at least k packets in the stream, so
when the kth packet arrives, the Consumer will call the Reed-Solomon
Decoder and (by the well-formedness result above and [12]), output the
missing data packets. There is some subtlety; the Block abstraction is
useful for avoiding reasoning about reordering and duplication when not
needed, as it only notes the presence of a packet, not its location in the
stream. Thus, to lift our location-based loss condition (Condition 1) to
the Block level, we show that packets i(k + h) to (i + 1)(k + h) in E
comprise exactly the packets of some block in E.

The Consumer with Timeouts With timeouts, it is no longer
the case that the Consumer’s blocks are those of R; instead, each is a
subblock of a block from R (and thus of a block from E). To prove
Models 1 and 2 equivalent, we show that the bounds on reordering and
duplication imply that all packets in a batch arrive before the batch
times out. We first formalize the Reorder Density metric (§6.1) in Coq.
Since this metric ignores duplicates, we can express it naturally via the
sent and received packet streams with duplicates removed. This fits very

14 Cohen and Appel

nicely with our packet-based timeout mechanism; a packet’s arrival time
is its index in deduplicated received packet stream. Thus, we can relate
the RI and diplacement values directly with the timing mechanism and
show the following:

Theorem 1. Consider sent and received packet lists E and R, with no
duplicates in E, and suppose that the displacements of all arriving packets
are bounded by d. Then if packets p1 and p2 are separated by at most n
packets in E, they are separated by at most n+ 2d unique packets in R.

This theorem is intuitive – the worst case is that each packet moves
d spaces in the “opposite” direction – but is nontrivial to show; it requires
reasoning about the precise relationship between RI, displacement, and
sequence numbers. However, the duplication case is independent and
much simpler:

Theorem 2. Suppose that at most m packets appear between any pair
of duplicates in R. Suppose that p1 and p2 are separated by at most n
packets in E and that p1 arrives before p2 in R. Then, p2 arrives at most
n+m timesteps after p1.

These theorems imply a bound on our timeout threshold: any value
at least k+h+2d+m suffices, where k and h are the FEC parameters, d
is the displacement bound, and m is the duplication bound. This bound
is additive rather than multiplicative and thus much tighter than those
achievable with the time-based timeout mechanism. In practice, k and
h are often smaller than 10, d has rarely exceeded 50 in real-world tests
[7, 20] (though these studies are 15-20 years old – higher network speeds
may result in higher displacements), and m is not measured but seems
likely to be no larger than d (we would expect more reordering than
duplication in practice). Thus, a threshold of a few hundred packets is
likely sufficient to handle normal network conditions; our proofs are all
parametric in the choice of threshold.

With these results, we prove by a series of invariants that Model 2
never times out blocks that have packets yet to arrive; this implies that
its output is the same as Model 1.

Machine and Sequence Number Arithmetic Finally, for our
machine-length-integer version, we formalize Serial Number Arithmetic
from RFC 1982 [10] and prove it correct. We can define serial number
comparison efficiently with the following C function:6

int seq cmp(unsigned int i1, unsigned int i2) { return ((int)(i1−i2)); }

a is considered smaller than b if seq cmp(a, b) is negative, equal if zero,
and larger otherwise. In this definition, integers close to each other
(within 231) are comparable, with the expected behavior (e.g., 232 − 1 <
0). To formalize this in Coq, we define functions seq lt, seq eq, seq gt
that compute the appropriate comparisons, and we prove the theorem:

6 We use 32-bit as an example; our proofs are generic and we also need the 64-bit case.

Specifying and Verifying a Real-World Packet Error-Correction System 15

Theorem 3. Let repr be the function that gives the 32-bit representation
of an integer (i.e., z mod 232). Let z1 and z2 be unbounded integers such
that |z1−z2| < 231. Then, seq lt(repr(z1),repr(z2)) = true ⇐⇒ z1 < z2.

In other words, given two integers close to each other, sequence num-
ber comparison correctly decides which is smaller, even with wraparound
(and likewise for the other two functions). With these results, formalized
using CompCert’s [17] machine-length integer Coq library, we show that
all sequence number comparisons are performed between unsigned inte-
gers whose values are within 231 (this results in the 230 upper bound
on the timeout threshold); hence, by Theorem 3, all uses of serial num-
ber arithmetic exactly correspond to unbounded integer comparison and
therefore Models 2 and 3 are equivalent.

Finally, we compose all 3 layers and the Producer proofs to prove a
single theorem about the machine-length functional model;7 this model
should exactly correspond to the C program’s behavior:

Theorem 4. Suppose Conditions 2 and 3 hold and Condition 1 holds
for i. Then, packets ik to (i+ 1)k in O appear in D, the decoded stream
formed by the Producer and Model 3 of the Consumer.

This theorem provides guarantees even if particular batches are un-
recoverable. If all batches are recoverable, we have the following:

Corollary 1. Suppose Conditions 2 and 3 hold, Condition 1 holds for
all 0 ≤ i ≤ |O|

k
, and k divides |O|. Then all packets in O appear in D.

8.4 From Coq to C code

From here, we could use the Verified Software Toolchain (VST) [5] to
prove that the C code refines our machine-length functional model, com-
posing the proofs with our functional-model proofs above. VST is proved
sound with respect to the CompCert verified C compiler [17], so our
proofs would hold down to the assembly-language level. Additionally,
this would also show that the program is free of memory leaks, unde-
fined behavior, or I/O beyond what is written in the specification. This
approach is feasible for verifying real C code [12, 27, 3], and we designed
our functional model to adhere closely to the C code and be verifiable
with VST, for instance using CompCert’s machine-length integers.

We did not carry on our verification down to the C code, as our
primary focus was in developing tools for specifying and reasoning about
end-to-end network functions at a higher level. We note that even without
a VST proof, we identified and fixed many bugs in our target program,
leading to simpler, more predictable, and correct code, demonstrating
that formal specification and verification techniques are useful even par-
tially applied.

7 The Producer only compares integers between 0 and 256; wraparound is impossible.

16 Cohen and Appel

9 Related Work

As discussed in §2, most previous network verification efforts take one of
two approaches, both of which are orthogonal to our work. Network ver-
ification models a network as a simpler abstraction, proving properties
with SMT solvers and other automated methods. Some recent work on
control plane verification includes Minesweeper [9], Tiramisu [1], Hoyan
[26], SRE [32] and Timepiece [2]. In the data plane, verification tools
include Katra [8] and Flash [13]. Network function verification devel-
ops verified per-packet network function implementations (NAT, firewall,
load balancer, etc); examples include VigNAT [29], Vigor [28], Klint [22],
and Gravel [31]. While these network functions can maintain state up-
dated on packet arrival, this use is restricted to particular data struc-
tures separately (interactively) verified against a functional specification
or axiomatized using SMT formulas. These restrictions, and others on
the presensece of loops, pointers, and the overall program structure, en-
able automation. Crucially, the specifications treat these data structures
as abstract, enabling reasoning about how an individual packet interacts
with them but not about how this state relates to previous packets.

Other work has focused on verifying transport-layer components.
Cluzel, et. al. [11] verify a TCP implementation by translating to SPARK.,
verifying against the protocol expressed as a state machine – the reason-
ing is still per-packet, since they do not prove higher-level reliability
guarantees. Arun, et. al. [6] verify congestion control algorithms against
first-order logic specifications using SMT solvers; they prove higher-level
properties, and the SMT-outputted packet traces may include duplicates
and timeouts. Beyond network components, Verdi [25] is a Coq library to
verify distributed systems; it allows the user to define the assumed net-
work environment, including reordering, duplication, loss, and timeouts;
however, this controls the presence, not the extent, of these effects.

10 Conclusion and Future Work

Formally specifying and verifying end-to-end network functions involves
numerous challenges, many of which are widely applicable to other real-
world programs. Specifications may be unclear, dependent on external
conditions, and more complicated to express than via simple inputs and
outputs (as the behavior may depend on previously processed pack-
ets). We show that a layered, interactive approach can clarify assump-
tions, identify intended guarantees, and lead to cleaner, more predictable,
provably correct code. We would like to demonstrate our methods on
other end-to-end transport-layer network functions and even more gen-
eral “dusty deck” programs that are underspecified and encounter similar
issues. We would also like to automate some of our verification and to
develop more general libraries for reasoning about external conditions
like timeouts and packet reordering. We believe that our techniques are
applicable to a wide variety of complex software, and we hope that for-
mal specification and verification can become standard ways to analyze
and improve real-world systems.

Specifying and Verifying a Real-World Packet Error-Correction System 17

Acknowledgment.

This material is based upon work supported by the Defense Advanced
Research Projects Agency (DARPA) under Contract No. HR001120C0160.

References

1. Abhashkumar, A., Gember-Jacobson, A., Akella, A.: Tiramisu: Fast
multilayer network verification. In: 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20). pp. 201–
219. USENIX Association, Santa Clara, CA (Feb 2020)

2. Alberdingk Thijm, T., Beckett, R., Gupta, A., Walker, D.: Modular
control plane verification via temporal invariants. Proc. ACM Pro-
gram. Lang. 7(PLDI) (June 2023). https://doi.org/10.1145/3591222

3. Appel, A.W.: Verification of a cryptographic primitive: SHA-
256. ACM Trans. Program. Lang. Syst. 37(2) (Apr 2015).
https://doi.org/10.1145/2701415

4. Appel, A.W.: Coq’s vibrant ecosystem for verification engineering
(invited talk). In: Proceedings of the 11th ACM SIGPLAN Interna-
tional Conference on Certified Programs and Proofs. p. 2–11. CPP
2022, Association for Computing Machinery, New York, NY, USA
(2022). https://doi.org/10.1145/3497775.3503951

5. Appel, A.W., Dockins, R., Hobor, A., Beringer, L., Dodds, J., Stew-
art, G., Blazy, S., Leroy, X.: Program Logics for Certified Compilers.
Cambridge University Press, USA (2014)

6. Arun, V., Arashloo, M.T., Saeed, A., Alizadeh, M., Balakrishnan,
H.: Toward formally verifying congestion control behavior. In: Pro-
ceedings of the 2021 ACM SIGCOMM 2021 Conference. p. 1–16.
SIGCOMM ’21, Association for Computing Machinery, New York,
NY, USA (2021). https://doi.org/10.1145/3452296.3472912

7. Bare, A.A., Jayasumana, A.P., Banka, T.: Metrics for degree of
reordering in packet sequences. In: Proceedings LCN 2002. 27th
Annual IEEE Conference on Local Computer Networks. p. 0333.
IEEE Computer Society, Los Alamitos, CA, USA (nov 2002).
https://doi.org/10.1109/LCN.2002.1181802

8. Beckett, R., Gupta, A.: Katra: Realtime verification for multilayer
networks. In: 19th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 22). pp. 617–634. USENIX Associ-
ation, Renton, WA (Apr 2022)

9. Beckett, R., Gupta, A., Mahajan, R., Walker, D.: A gen-
eral approach to network configuration verification. In: Proceed-
ings of the Conference of the ACM Special Interest Group
on Data Communication. p. 155–168. SIGCOMM ’17, Associ-
ation for Computing Machinery, New York, NY, USA (2017).
https://doi.org/10.1145/3098822.3098834

10. Bush, R., Elz, R.: Serial Number Arithmetic. RFC 1982 (Aug 1996).
https://doi.org/10.17487/RFC1982

11. Cluzel, G., Georgiou, K., Moy, Y., Zeller, C.: Layered
formal verification of a TCP stack. In: 2021 IEEE Se-
cure Development Conference (SecDev). pp. 86–93 (2021).
https://doi.org/10.1109/SecDev51306.2021.00028

https://doi.org/10.1145/3591222
https://doi.org/10.1145/2701415
https://doi.org/10.1145/3497775.3503951
https://doi.org/10.1145/3452296.3472912
https://doi.org/10.1109/LCN.2002.1181802
https://doi.org/10.1145/3098822.3098834
https://doi.org/10.17487/RFC1982
https://doi.org/10.1109/SecDev51306.2021.00028

18 Cohen and Appel

12. Cohen, J.M., Wang, Q., Appel, A.W.: Verified erasure correction
in Coq with MathComp and VST. In: Shoham, S., Vizel, Y. (eds.)
Computer Aided Verification. pp. 272–292. Springer International
Publishing, Cham (2022)

13. Guo, D., Chen, S., Gao, K., Xiang, Q., Zhang, Y., Yang, Y.R.: Flash:
Fast, consistent data plane verification for large-scale network set-
tings. In: Proceedings of the ACM SIGCOMM 2022 Conference. p.
314–335 (2022). https://doi.org/10.1145/3544216.3544246

14. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J., Parno, B.,
Stephenson, J., Setty, S., Zill, B.: Ironfleet: Proving practical dis-
tributed systems correct. In: Proceedings of the ACM Symposium
on Operating Systems Principles (SOSP). ACM - Association for
Computing Machinery (October 2015)

15. Jayasumana, A., Piratla, N., Banka, T., Bare, A., Whitner, R.: Im-
proved packet reordering metrics. RFC 5236, RFC Editor (June
2008)

16. Kellison, A.E., Appel, A.W.: Verified numerical methods for ordinary
differential equations. In: Isac, O., Ivanov, R., Katz, G., Narodytska,
N., Nenzi, L. (eds.) Software Verification and Formal Methods for
ML-Enabled Autonomous Systems. pp. 147–163. Springer Interna-
tional Publishing, Cham (2022)

17. Leroy, X.: Formal verification of a realistic com-
piler. Commun. ACM 52(7), 107–115 (Jul 2009).
https://doi.org/10.1145/1538788.1538814

18. McAuley, A.J.: Reliable broadband communication using a
burst erasure correcting code. In: Proceedings of the ACM
Symposium on Communications Architectures & Protocols.
p. 297–306. SIGCOMM ’90, New York, NY, USA (1990).
https://doi.org/10.1145/99508.99566

19. Morton, A., Ciavattone, L., Ramachandran, G., Shalunov, S., Perser,
J.: Packet reordering metrics. RFC 4737, RFC Editor (November
2006)

20. Piratla, N.M., Jayasumana, A.P.: Metrics for packet reordering—a
comparative analysis. International Journal of Communication Sys-
tems 21(1), 99–113 (2008). https://doi.org/10.1002/dac.884

21. Piratla, N.M., Jayasumana, A.P., Bare, A.A.: Reorder density (RD):
A formal, comprehensive metric for packet reordering. In: Boutaba,
R., Almeroth, K., Puigjaner, R., Shen, S., Black, J.P. (eds.) NET-
WORKING 2005. Networking Technologies, Services, and Protocols;
Performance of Computer and Communication Networks; Mobile
and Wireless Communications Systems. pp. 78–89. Springer (2005)

22. Pirelli, S., Valentukonytė, A., Argyraki, K., Candea, G.: Automated
verification of network function binaries. In: 19th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 22).
pp. 585–600. USENIX Association, Renton, WA (Apr 2022)

23. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields.
Journal of The Society for Industrial and Applied Mathematics 8,
300–304 (1960)

24. Uijterwaal, D.H.A.: A One-Way Packet Duplication Metric. RFC
5560 (May 2009). https://doi.org/10.17487/RFC5560

https://doi.org/10.1145/3544216.3544246
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/99508.99566
https://doi.org/10.1002/dac.884
https://doi.org/10.17487/RFC5560

Specifying and Verifying a Real-World Packet Error-Correction System 19

25. Wilcox, J.R., Woos, D., Panchekha, P., Tatlock, Z., Wang, X.,
Ernst, M.D., Anderson, T.: Verdi: A framework for implement-
ing and formally verifying distributed systems. In: Proceedings
of the 36th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. p. 357–368. PLDI ’15, Asso-
ciation for Computing Machinery, New York, NY, USA (2015).
https://doi.org/10.1145/2737924.2737958

26. Ye, F., Yu, D., Zhai, E., Liu, H.H., Tian, B., Ye, Q., Wang, C., Wu,
X., Guo, T., Jin, C., She, D., Ma, Q., Cheng, B., Xu, H., Zhang, M.,
Wang, Z., Fonseca, R.: Accuracy, scalability, coverage: A practical
configuration verifier on a global wan. In: Proceedings of the Annual
Conference of the ACM Special Interest Group on Data Commu-
nication on the Applications, Technologies, Architectures, and Pro-
tocols for Computer Communication. p. 599–614. SIGCOMM ’20,
Association for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3387514.3406217

27. Ye, K.Q., Green, M., Sanguansin, N., Beringer, L., Petcher,
A., Appel, A.W.: Verified correctness and security of
MbedTLS HMAC-DRBG. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Se-
curity. p. 2007–2020. CCS ’17, New York, NY, USA (2017).
https://doi.org/10.1145/3133956.3133974

28. Zaostrovnykh, A., Pirelli, S., Iyer, R., Rizzo, M., Pedrosa, L., Argy-
raki, K., Candea, G.: Verifying software network functions with no
verification expertise. In: Proceedings of the 27th ACM Symposium
on Operating Systems Principles. p. 275–290. SOSP ’19, New York,
NY, USA (2019). https://doi.org/10.1145/3341301.3359647

29. Zaostrovnykh, A., Pirelli, S., Pedrosa, L., Argyraki, K., Can-
dea, G.: A formally verified NAT. In: Proceedings of the Con-
ference of the ACM Special Interest Group on Data Communi-
cation. p. 141–154. SIGCOMM ’17, New York, NY, USA (2017).
https://doi.org/10.1145/3098822.3098833

30. Zhang, H., Honoré, W., Koh, N., Li, Y., Li, Y., Xia, L.Y., Beringer,
L., Mansky, W., Pierce, B., Zdancewic, S.: Verifying an HTTP
Key-Value Server with Interaction Trees and VST. In: Cohen,
L., Kaliszyk, C. (eds.) 12th International Conference on Inter-
active Theorem Proving (ITP 2021). Leibniz International Pro-
ceedings in Informatics (LIPIcs), vol. 193, pp. 32:1–32:19. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany
(2021). https://doi.org/10.4230/LIPIcs.ITP.2021.32

31. Zhang, K., Zhuo, D., Akella, A., Krishnamurthy, A., Wang, X.: Auto-
mated verification of customizable middlebox properties with Gravel.
In: 17th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 20). pp. 221–239. USENIX Association, Santa
Clara, CA (Feb 2020)

32. Zhang, P., Wang, D., Gember-Jacobson, A.: Symbolic
router execution. In: Proceedings of the ACM SIGCOMM
2022 Conference. p. 336–349. SIGCOMM ’22, Association
for Computing Machinery, New York, NY, USA (2022).
https://doi.org/10.1145/3544216.3544264

https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/3387514.3406217
https://doi.org/10.1145/3133956.3133974
https://doi.org/10.1145/3341301.3359647
https://doi.org/10.1145/3098822.3098833
https://doi.org/10.4230/LIPIcs.ITP.2021.32
https://doi.org/10.1145/3544216.3544264

