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Abstract
P4 is a standardized programming language for the network data plane. But P4 is not just for
routing anymore. As programmable switches support stateful objects, P4 programs move beyond just
stateless forwarders into new stateful applications: network telemetry (heavy hitters, DDoS detection,
performance monitoring), middleboxes (firewalls, NAT, load balancers, intrusion detection), and
distributed services (in-network caching, lock management, conflict detection). The complexity of
stateful programs and their richer specifications are beyond what existing P4 program verifiers can
handle.

Verifiable P4 is a new interactive verification framework for P4 that (1) allows reasoning about
multi-packet properties by specifying the per-packet relation between initial and final states; (2)
performs modular verification, especially providing a modular description for stateful objects; (3)
is foundational, i.e., with a machine-checked soundness proof with respect to a formal operational
semantics of P416 (the current specification of P4) in Coq. In addition, our framework includes a
proved-correct reference interpreter.

We demonstrate the framework with the specification and verification of a stateful firewall that
uses a sliding-window Bloom filter on a Tofino switch to block (most) unsolicited traffic.
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1 Introduction

The data plane for software-defined network switches i s increasingly programmed in P4 [3]. 
But P4 is a quirky language, and programs are often contorted to fit within the constraints of
a particular target architecture, so the correctness of these programs has become a concern.
To address that concern, there are several verification tools for P4 programs (see §7).

In many classic P4 applications, processing a packet does not change the state of
the switch. However, recent applications are stateful and go far beyond making routing 
decisions: the processing of a packet may alter the state of registers or result in the
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installation of new forwarding rules, and thus affect the processing of following packets.
Stateful applications include network telemetry systems (SketchLib [17], BeauCoup [2],
FlowRadar [14]), network functions (SilkRoad [16]), and distributed services (NetCache [12],
NetLock [26]). Unfortunately, existing tools have limited reasoning capabilities for registers
or multi-packet policies.

To begin addressing these shortcomings, we present a foundational framework for specify-
ing and reasoning about data-plane packet processing on a stateful P4 switch. Implemented
in the Coq proof assistant, our system facilitates semi-interactive verification of stateful P4
programs and is justified w.r.t. a precise operational semantics of P416.

As an example for a multi-packet policy, consider a stateful firewall that protects the
internal network from unsolicited traffic. External packets may pass through the firewall only
if they are responses to recent outgoing requests to the same IP address, modulo a small
tolerable rate of false positives. But no valid incoming responses may be blocked.

To specify the latter property more precisely, let T be the valid response time window, h

be the history of packets processed, p be the current packet, and r the action on p (forward
or drop). We want that for every integer i, we have

p.dir = in ∧ h[i].dir = out ∧ h[i].dst = p.src
∧ h[i].src = p.dst ∧ p.t − h[i].t ≤ T

=⇒ r ≠ drop (1)

To maintain the window of length T , a P4 implementation necessarily maintains state; but
existing verifiers either do not handle state at all, have specification languages that are too
weak to relate the pre-state to the post-state after processing a packet (see §7), or do not
permit reasoning about multi-packet properties.

Property 1 holds even for a firewall admits every packet, but we prove the P4 program
correct with respect to a functional model, for which properties such as 1 can be derived.

Our verifier connects P4 verification with reasoning about multi-packet policies using
assertions that are syntactically constrained but permit reference to arbitrary Coq construc-
tions. The user must equip each P4 function with a specification that asserts adherence to a
model-level counterpart, i.e. a Coq function (or proposition) describing its effect in terms of
a semantic model of packet processing. We justify the program logic in Coq by a soundness
proof w.r.t. the operational semantics.

Our operational semantics builds on Petr4 [5] but is defined as an inductive relation in
Coq rather than Petr4’s executable Ocaml program. Indeed, part of our effort consisted in
understanding aspects related to nondeterminism and partly uninitialized data structures,
that are not modeled in Petr4 and are specified partially at best in the P4 manual [3]. We
report numerous inaccuracies etc. in said manual later in the paper. We also provide our
own interpreter and prove (in Coq) that it exhibits behavior consistent with our semantics,
e.g. by resolving determinism in an appropriate manner.

Contributions
1. We present Verifiable P4, a system for verifying stateful specifications of P4 data-plane

packet processing. Our logic does not cover packet parsing and deparsing, which we leave
for future work. We provide automation support for proving that P4 code correctly im-
plements a functional model; users prove interactively that a functional model establishes
a high-level property, such as “no valid responses are blocked”.

2. We propose a hierarchical representation of states used in semantics, specification, and
verification that improves modularity; unlike some previous P4 semantics, we enforce
a phase distinction between instantiation (that populates this hierarchy) and run-time
packet processing.
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3. We formalize the operational semantics of P4 (incl. parsing and deparsing) in Coq, and
prove soundness of our verifier and of a reference interpreter. Our operational semantics
is the first formal specification to include abstract methods (a P4 feature that encodes a
P4 program in an extern object), and Verifiable P4 is the first verifier to support them.
The development of our semantics uncovered several inaccuracies, bugs, and ambiguities
in the P416 reference manual that had also escaped the Petr4 semantics and tools. We
contributed bug-fixes as pull requests to the manual and discussed them with the P416
committee.

4. We develop a model-level axiomatization of temporal windows that can serve as a
blueprint for other finite-horizon data structures over streams implemented in P4 or other
languages. We give a concise specification of a sliding window Bloom filter (SBF) and a
high-performance implementation in P4, with an application to a stateful firewall. We
show how to connect model-level firewall verification to P4 verification in Coq, and briefly
discuss other examples.

The source files associated with this submission are available at
https://github.com/verified-network-toolchain/VerifiableP4/tree/Feb2023

2 Example: A stateful firewall

The data-plane of a software-defined network (SDN) switch processes about 109 packets per
second (or 3200 Gb per second) in each “pipeline” [13]. To accomplish that, each packet
is allowed only one trip through a highly pipelined “match-action unit”. To program this
unconventional model of computation, the P4 language was designed with some inspiration
from Verilog. It combines logical with architectural aspects but is reasonably modular—one
can divide programs into reusable libraries and the client programs that make use of them.

P4 is a horrible but useful programming language

P4 was designed to support packet routing, so all of its control structures are designed around
match-action tables. One generally cannot access the same (persistent) data more than once
per packet, so things must be accomplished in a read-modify-write with user-specifiable
“modify.” Except for the parser component, P4 code does not contain loops, hence every
packet must process in n pipeline stages (so at least we can mostly use a big-step semantics!).
But P4 is useful because it gives a reasonably portable way to program high-performance
network switches from different manufacturers.

The main elements of a typical P4 program are as follows.
Parsers extract packet headers and the payload from a packet. Headers – and typical

auxiliary data structures throughout the code – are represented as structs that can be
accessed as in the C language.

Control blocks describe how headers are processed. A control block contains a list of
declarations, plus the control flow. Declarations include
extern objects, which are architecture-specific constructs such as registers, cryptographic

operations, or other domain-specific functions,
actions, which assign flags (e.g. DROP) or other values (e.g. a specific output port) to

suitable header fields,
match-action tables, which match header fields against predefined keys and trigger

actions or extern objects accordingly.

https://github.com/verified-network-toolchain/VerifiableP4/tree/Feb2023
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The control flow is specified by an imperative program (“apply function”) that governs
under which conditions or order (“pipeline”) the match-action tables are invoked on a
header.

Deparsers reasssemble the processed packet headers with the payload and emit the packet
to the network.
Modularity of P4 arises from the ability to instantiate registers, other extern objects, and

control blocks multiple times, and to define them in a style reminiscent of classes in e.g. Java,
with instantiatable parameters.

The low-level complexities of P4 make programs difficult to read and write, so code
(including our running example) is increasingly not written directly in P4 but in one of the
various front-end languages that target P4 (to synthesize our SBF/firewall we used CatQL,
a functional-style language under development by the second author). These experimental
languages don’t yet have what we would call a formal semantics or even a real reference
manual, so we verify the P4 code rather than verify the ultimate source programs.

The difficulty of writing and reading P4 programs is a strong motivation to formally verify
P4 with respect to model-level or higher-level specifications, which (even though in Coq)
will be more accessible to engineers than the source code. Our tool can verify both reusable
libraries – like the Bloom filter control block – and their clients – like the firewall, which
is a control block separate from the Bloom filter. Where the library implements nontrivial
algorithms, users may need more expertise, but verifying simple clients (even those using
sophisticated libraries) is easier.

The Sliding Window Boom Filter and its Firewall Client

We continue with our running example. The stateful firewall must remember recent IP
addresses in a data structure that can fit in the switch’s persistent registers and can be
accessed in constant time within the switch’s pipeline constraints. To implement this in a
P4 switch running entirely in the data plane, we use a succinct constant-time-access data
structure: a sliding-window Bloom filter (SBF).

A Bloom filter is a hash table, without collision detection, in which value i is hashed with
r different functions and a bit is set to 1 at those indexes f1(i), f2(i), . . . fr(i). Lookup(i)
returns 1 if all of the fj(i) are 1; the probability of a false negative is 0, and the probability
of a false positive is small (the product of the individual false-positive probabilities). On the
Tofino switch [10], one cannot make r different accesses to the same array, so we implement
the Bloom filter with r separate arrays.

A firewall that runs for a long time does not want its hash tables to fill up with stale data,
but standard Bloom filters do not (soundly) support deletion; so we use a sliding window
Bloom filter [30], as we will now explain.

A SBF has k “panes”. Each pane is a Bloom filter containing r rows with S slots each.
At any given time, k − 1 panes store the “recent outgoing packets;” we add new IP addresses
only to the most recent pane, and the extra pane is in the process of being incrementally
cleared to prepare for reuse. We use T = 60 seconds as our window, i.e. the period for which
we guarantee absence of false negatives. We rotate panes every T/(k − 2) seconds. That
is because, in the worst case of querying, the most recent pane has just started but the
remaining k − 2 panes can still guarantee that keys inserted within T seconds are present.
The client must incrementally clear the slots in the timed-out pane at least once every
T/C ≈ 100 µs, where C = (k − 2)S, so that the oldest pane will be fully cleared before reuse.

Our SBF has k = 4 and r = 3, and is lightly modular: the pane control contains r row
instances – a row being a register of width S = 218 –, the SBF control contains k pane
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Figure 1 Overview of Stateful Firewall Verification.

instances, and the SBF itself is a control that is instantiated once by the firewall client
to make decisions about which packets to drop. Our verification reflects this structure,
exploiting the phase distinction between control-instantiation and packet-processing. The
length of our program is largely independent of the number of panes in each window and the
number of rows in each pane.

In total, our example is a 600-line P4 program that you really don’t want to see, and we
will accommodate you for the most part.

2.1 Proof organization and functional model
Fig. 1 shows the specifications and proofs, concluding with the main theorem: on any “dense
flow”, the firewall satisfies the property shown as equation (1)1

The packet-level correctness property is a relation, process(s, p, s′, r), where s, s′ are the
switch’s state before and after processing the packet p and r is the result: forward or drop.
To reason about multi-packet policies, we define (purely in Coq, independent of P4) a notion
of transitive closure of process that maintains the histories of incoming and outgoing packets,
the latter list in fact operating over optional packets to model drop. Thus, all that remains
is to prove that the P4 program, on a single packet, satisfies the process relation.

Our tool’s front end generates separate abstract syntax trees (ASTs) for separate control
blocks, as indicated in Fig. 1. We use Verifiable P4 to prove semi-automatically that the SBF
code implements the SBF model and that the firewall (FW) code implements the FW model.
We prove directly in Coq that the SBF model obeys certain abstract SBF axioms (discussed
below) which in turn feeds into the proof that the FW model satisfies the process relation.

1 We model time in correspondence with the timestamp in metadata from the switch, which we assume the
switch inserts correctly. The time p.t in our flow-level specification is an unbounded mathematical integer;
the timestamp in the packet header is a 48-bit unsigned integer measured in nanoseconds, p.t mod 248.
Our proof that the program is correct does allow the timestamp to cross the 248 boundary. A dense flow
is one in which the mathematical timestamps are monotonically increasing—this is guaranteed by the
switch ingress hardware—and in which there is never a gap greater than 100µs (that is, T/C) between
packets. We need this assumption to ensure that the P4 program keeps up with its incremental clearing
obligation. We can guarantee a dense flow using the Tofino switch’s packet generator, a component just
before the P4 pipeline that can be configured to insert extra packets at the desired (100µs) intervals.
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Definition row := list bool.
Definition row_insert (r : row) (i : Z) : row := upd_Znth i r true.

Definition pane := list row.
Definition pane_insert (a:pane) (is:list Z):pane:= map2 row_insert a is.

Record SBF := mk_SBF
{ SBF_panes : list pane; SBF_clear_index : Z; SBF_timer : Z * bool; }.

Definition get_clear_pane (t : Z * bool) : Z := fst t / pane_tick_tocks.

Definition SBFinsert (f : SBF)(tick : bool)(is : list Z):SBF :=
let ’(mk_SBF panes clear_index timer) := f in
let new_clear_index := update_clear_index clear_index in
let timer := update_timer timer tick in
let c := get_clear_pane timer in
let i := get_insert_pane c in
let panes := panes[c := pane_clear panes[c] clear_index] in
let panes := panes[i := pane_insert panes[i] is] in
mk_SBF panes new_clear_index timer.

Figure 2 Functional model of an SBF, written in Coq’s functional language (excerpt).

Fig. 2 shows the data structures of the SBF functional model, and the function modeling
the insertion operation. The model mirrors the hierarchy of control blocks in the P4 code: a
row is a list of Booleans (modeling the contents of a hash table), a pane is a list of rows, and
an SBF is a list of panes, together with fields for the timer and the clearing maintenance. The
full model contains additional functions SBFquery, SBFclear, and the initial state SBFempty.

The functional model will be referred to in specifications in the following section, but the
proof of the packet-level policy only relies on certain axioms that specify these operations and
express the “no recent false negatives” property; see Fig. 3. For example, QueryInsertSame
has the premise t ≤ t′ ≤ t + T , saying that an element inserted into the table at time t

will be retrievable up to T seconds later. The three final laws express that the client must
perform an incremental-clear (or an insert) at least every T/C seconds.

▶ Theorem 1 (Coq). The functional model of the SBF (Figure 2) satisfies the axioms given
in Figure 3.

2.2 Function specifications
Our logic equips each P4 function with a function specification, as illustrated in Fig. 4 for
the SBF insertion operation. The specification components may be understood as follows:
mod: the insertion code modifies stack variables with no restriction and modifies (only)

within the external object rooted at path p (but not other objects).
with: the universally quantified abstract (logical) variables bound here (k, tstamp, f) have

scope that extends to the end of the postcondition.
pre: The precondition describes the state before executing the insertion, in three clauses—

arg: function parameter values, mem: program stack variables (e.g. headers and structs,
empty in our example), and ext: external object contents (persistent registers).

post: The postcondition describes the state after function execution, also divided into three
parts (with return-value together with out-parameter-value).
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“ok_until f t” means that the client has performed its
incremental clearing obligation at least through time t.

If state f is OK until (at least) deadline t, you insert IP address h at time t

and then look up h at time t′ no more than T seconds later, it will be present.
QueryInsertSame : ∀ f t t’ h, ok_until f t → t ≤ t’ ≤ t+T →

SBFquery (SBFinsert f (t, h)) (t’, h) = Some true.

If you could find IP address h′ in the state, and you insert (perhaps different)
IP address h, then h′ is still in there.
QueryInsertOther : ∀ f t t’ h h’, SBFquery f (t’, h’) = Some true →

ok_until f t → t ≤ t’ → SBFquery (SBFinsert f (t, h)) (t’, h’) = Some true.

Doing a clear-step won’t affect any query results.
QueryClear : ∀ f t t’ h, ok_until f t → t ≤ t’ →

SBFquery f (t’, h) = SBFquery (SBFclear f t) (t’, h).

If state f is OK until deadline t, you can extend its
deadline by up to 100 microseconds (T/C) by [insert].
OkInsert : ∀ f t t’ h, ok_until f t → t ≤ t’ ≤ t+T/C →

ok_until (SBFinsert f (t,h)) t’.

If state f is OK until deadline t, you can extend its
deadline by up to 100 microseconds (T/C) by [clear].
OkClear : ∀ f t t’, ok_until f t → t ≤ t’ ≤ t+T/C → ok_until (SBFclear f t) t’.

The initial state is OK until its preset deadline.
OkEmpty : ∀ t, ok_until (SBFempty t) t.

Figure 3 Axioms of an SBF, written in Coq

Definition INSERT_spec : func_spec :=
MOD None [p]
WITH (k : key) (tstamp : Z) (f : filter),

PRE (ARG [key_to_sval k; P4Bit 8 INSERT; P4Bit 48 tstamp; P4Bit 8 0]
(MEM [ ]
(EXT [SBF_repr p f])))

POST (ARG_RET [P4Bit 8 0] ValBaseNull
(MEM [ ]
(EXT [SBF_repr p (SBFinsert f (tstamp, k))]))).

Figure 4 Specification of SBF insertion

In this case, the precondition says, “The arguments are the key, an operation code with
constant value insert (this argument selects which SBF operation is performed), a time-
stamp tstamp, and an 8-bit value 0; there is no header or struct to take note of; and the
external registers rooted at p represent a SBF with contents f.” Similarly, the postcondition
says, “The out parameter is 8-bit value 0, and the external registers rooted at p represent an
updated SBF as described by the SBFinsert function from the functional model.”

Similar to representation predicates in separation logic [21], SBF_repr is a user-defined
predicate that relates the abstract view of an SBF to the corresponding P4 control, as laid
out in Tofino registers. The predicate’s definition again mirrors the nesting structure of
controls and is detailed in §2.3 below.
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To prove that the insertion operation of the SBF control satisfies INSERT_spec, our
tool creates a symbolic state in Coq as described by the precondition. The user then steps
through the P4 code, applying forward-mode Hoare rules from our program logic; when
reaching the end of the control block one proves that the resulting symbolic state implies the
postcondition. The proof proceeds mostly automatically, but in some places the user will
have to direct it what to do.

▶ Theorem 2 (Coq). The SBF control block of our P4 program correctly implements the
functional model (Figure 2).

This is more than a safety proof : it proves not just “this implementation won’t crash,” it
guarantees that the program really behaves like a lookup table with no false negatives.

2.3 Hierarchical State Assertions

According to the P4 language specification, each control or parser declaration is a class
definition with local variable, object, and function members. The local variables are temporary
for each call to the class, so they are considered as stack variables. Objects include tables,
external objects, and control/parser instances. Stateful external objects (e.g., registers) have
a persistent state that is preserved between packets.

In P416, controls and parsers are instantiated recursively. Each object has a global fully
qualified name, generated by appending its local name to the global name of the parent
object. Thus, instantiation forms a tree.

We exploit this hierarchy during specification and proof to make it easy to associate
abstract data types to P4 state. We encapsulate all objects instantiated inside a root object in
a single representation predicate, so that a change in the root object’s implementation does
not affect client verification. For this purpose, we define predicates along the structure of the
hierarchical state, associating each predicate with a path-prefix containing an abstraction of
the path names of all sub-objects.

The simplest assertion is of the form p 7→ r, which means the register whose global name
is p has value r. The path prefix of this assertion is {p}. A control block may have multiple
registers. For assertions P1, . . . , Pn with path prefixes S1, . . . , Sn, the path prefix of the
assertion P1 ∧ · · · ∧ Pn is

⋃
i Si. To encapsulate the state of an object rooted at p, we want to

say an assertion has path prefix at most {p}, without mentioning its contents. So we define
a “wrap” operator that wraps an assertion with a more abstract path prefix. Formally, for
assertion P whose path prefix is S1, wrap(S2, P ) is a valid assertion if S1 ⊑ S2, that is, every
mapping in S1 is also in S2. A path p “covers” all of its subtrees, for example {p.x} ⊑ {p}.

The assertions for an SBF containing k panes with r rows each are defined as:

row_repr(p, row) := wrap([p], p.reg 7→ row),
pane_repr(p, pane) := wrap([p], row_repr(p.row1, pane.rows[0]) ∧ . . . ∧

row_repr(p.rowR, pane.rows[r − 1])
SBF_repr(p, filter) := wrap([p], timer_repr(p.timer, filter .t)∧

pane_repr(p.pane1, p.panes[0]) ∧ . . . ∧
pane_repr(p.paneK, p.panes[k − 1])).

This concludes the description of our example.
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3 How the verifier works

Our verifier contains a verification-oriented P4 representation with a parser, an operational
semantics, a program logic, and automation tactics.

3.1 P4light abstract syntax, front end

When designing our intermediate language, P4light, our desiderata were to
1. include a type-annotation at every expression node;
2. fully disambiguate names, i.e. distinguish local versus global variables;
3. avoid side-effect expressions inside subexpressions;2

4. and yet, stay sufficiently close to source-level P4 so that every P4light program can be
pretty-printed as a legal and compilable P4 program.

Front end. We adapted Petr4’s front end [5] (including its type-checker) to produce
P4light ASTs from P4 source programs.

Hierarchical name space. To distinguish names in different scopes, we decorate names
with locator annotations. A name has locator glob p if it is defined in the global scope,
or locator inst p if it is defined inside a parser/control declaration. In either case, p is a
qualified name (path) such as myIngress.x, so objects are uniquely named. Qualified names
can further expand into fully qualified names in the instantiation phase (§4).

Unnesting expressions. To simplify reasoning about programs in P4light, we hoist
expressions out of function calls, adding extra local variables in the process.

Representation. Our ASTs are expressed using Coq’s inductive data types, with one
type for each syntax class of the AST grammar (expression, statement, function, etc.).

3.2 Operational semantics

We define P4 execution as a big-step operational semantics that operates over states, defined
as pairs of a stack frame and an external state. A stack frame (resp. external state) is a
partial mapping from paths (i.e. fully qualified names) to values (resp. external object values).

StackFrame := Path ⇀ Value

ExternState := Path ⇀ ExternObject

State := StackFrame × ExternState

Only the external state persists from one packet to another. Because P4 does not have
explicit pointers, we don’t need to mention memory addresses, only paths.

Let Γ be the global static environment produced in §4 below. As P4 program statements
are mostly inside controls and parsers, we need to know where a statement is in order to
execute it. We use a path p to indicate the path of the object that the program is currently
in (p is an empty path if not in any object). Let s be a state. We write our big-step semantic

2 This point simplifies the development of operational semantics and program logic, and improves the
interaction experience of our verifier. But P4 always evaluates expressions from left to right, not like C,
whose evaluation order is unspecified. So this transformation does not add restrictions to the semantics.
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judgments as

Γ, p, s ⊢ e ⇓ v (expression, 18 rules)
Γ, p, s ⊢ e ⇓ lv (l-expression, 5 rules)
Γ, p, s ⊢ stmt ⇓ (s′, sig) (statement, 16 rules)
Γ, p, s ⊢ e ⇓ (s′, sig) (call-expression, 2 rules)
Γ, p, s ⊢ f, ain ⇓ (s′, aout, sig) (function, 3 rules)

For example, the judgment Γ, p, s ⊢ e ⇓ v reads as “in global environment Γ, with object path
p, in state s, the P4light expression e evaluates to value v.” Judgment Γ, p, s ⊢ stmt ⇓ (s′, sig)
reads as “for Γ and p, from state s, the execution of the P4 statement stmt results in state
s′ and signal sig.” Signal is used to mark control flow, like return and exit statements.

As usual in operational semantics, each of these judgments is an inductive relation. If
no rule applies, the operational semantics is stuck, a technical representation of undefined
behavior. P4 is designed so that programs that type-check cannot have undefined behavior –
a formal proof that this is indeed the case is under current development.

The operational semantics of a control block is given by that of its variable initialization,
followed by that of its apply function. More details on the operational semantics presented
in the forthcoming PhD thesis of the first author [25].

We briefly discuss two differences between P4 and more traditional languages, to illustrate
the challenges we faced.

Undefined Values. According to the P4 specification, reading an uninitialized field or an
invalid header yields an undefined value. As of 2021 the official description in the P416
reference manual was ambiguous, but the P4 committee clarified that each bit of such a
field can be either 0, 1, or uninitialized. To characterize this in assertions and our tool’s
symbolic execution, we use an abstract interpretation over bits. The abstract domain for
an n-bit field is {0, 1, ⊥}n, where 0 and 1 characterize the two fully determined values
and ⊥ means the bit’s value can be arbitrary, including undefined.
P4 data structures (headers, structs, bitfields) may be partially uninitialized, but P4
expressions and subexpressions are fully defined. That means, when reading from a data
structure the semantics must choose arbitrary 0s and 1s for the undefined bits, so we use
a havoc construct at the appropriate places.3 Exactly when and how this happens was
unclear in the P416 document, but in discussions with the committee we clarified the
document and formalized these clarifications in our semantics.
Our treatment of partially defined values in our operational semantics carries over to the
logic and verification tool. Other verification tools for P4 do not treat this exactly; they
either assume that all uninitialized bits are 0 (which is unsound) or cannot reason about
uninitialized fields at all (which is incomplete).

Compiler-rejected programs. In many languages, if a program is legal then you can
expect that the compiler will compile it. In P4 that’s explicitly not the case: a legal
P4 program may violate architecture-specific pipeline and resource constraints, and be
rejected by the compiler. For this reason, our operational semantics (and verifier) does not
model architecture-specific constraints, so one should really read our soundness theorem

3 “Havoc” is a standard term in operational-semantic reasoning to indicate arbitrary behavior where it is
not necessary to know which choice a program will make.
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as, “If your compiler agrees to compile the program and you prove some correctness
property in Verifiable P4, then your program will indeed respect that property.”4

Validating the operational semantics, and debugging P4.

We validated that the operational semantics accurately captures the behavior of real compilers
and hardware (e.g., Tofino, V1model) using three approaches: correspondence to the P416
reference document; correctness of a P4 reference interpreter w.r.t. our semantics; and testing
against Tofino. We comment on the former two activities. A fourth approach, validating our
reference interpreter against existing P4 test suites, is ongoing work.

Comparing to the P416 reference manual. We claim that our formalization specifies
the same as what the official P4 standard means and what the commercial compilers do. Our
process has been to rigorously formalize what is written down informally in the specification;
when we find ambiguities, errors, or disagreements between P416 and commercial compilers,
we discuss those with the P4 committee—so the official English-language standard gets
refined, or bugs get fixed in the commercial compilers. See Table 1. By the time our process
has finished, there is real evidence that the formal semantics has meaningful utility, and
agrees with the P416 specification.

3.3 Reference Interpreter
In order to execute P4 programs and test our semantics, we wrote a reference interpreter in
Coq’s embedded functional language. We proved correctness of the interpreter with respect
to our operational semantics and used extraction to obtain an executable OCaml program.

The main task in programming the interpreter was translating inductive relations (from
the big-step semantics) to Coq functions. Many of the inductive relations are nondeterministic,
so the interpreter determinizes them uniformly. Wherever an undefined value is involved in
a computation, the interpreter initializes it using zero bits. This is sound, but means that
some behaviors exhibited by the big-step semantics cannot be observed in the interpreter.

The interpreter shares some code with the operational semantics, which uses functions
for many important (but deterministic) subroutines. For instance, instantiation (see §4) is
handled by a functional program in the operational semantics. The interpreter reuses this
program, preserving the phase distinction between instantiation and evaluation.

P4 allows “architectural extensions” such as V1model registers or Tofino’s registers (which
are different from each other). Our semantics handles those extensions as a kind of plug-in.
Our verification tool and the reference interpreter treat the extensions by directly using this
plug-in, so the reference interpreter can serve for core P4, for V1model P4, or for Tofino P4.
Our example (the stateful firewall) happens to be a Tofino P4 program.

3.4 Program Logic and Proof Automation
We have designed a program logic for P4 (except for packet parsing5), as a set of proof rules
that have been proven sound in Coq with respect to our operational semantics. As all P4
programs are terminating, the distinction between partial and total correctness vanishes, but
P4’s hardware-orientation, and the goal to not be overly specific to a concrete architectural

4 And if your compiler is correct, then your program as compiled will respect the property too; our
formalization of the operational semantics should also support the development of compiler proofs.

5 Verification of P4 parsing is the subject of a separate project [6], with which we expect to connect.
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Section Issue Git Status p4c Bug

Expr-
ession

8.5, 8.6 Types of the bit slicing index are vague. 955 Released No
8.5 Concatenation is missing from the operations on the

bit type.
956 Released No

8.5, 8.6 Concatenation is not excluded from the binary opera-
tions that require same-type operands.

956 Released No

8.9.2 Concatenation and shift are not excluded from the
binary operations that allow implicit casts.

957 Released No

8.9.2 Unclear where implicit casts of serializable enum are
allowed.

958 Released Yes

8.7 Right operand types of integer shifts are vague. 959 Released No
8.10-12
8.14-15

Allowed comparisons between lists, tuples, structs,
and headers are unexplained.

960 Pending Yes

8.11,
8.12

Implicit casts between lists, tuples, structs, and head-
ers are unexplained.

953 Pending No

8.10 Explicit casts between non-base types are unexplained. 961 Released No
8.7 Slicing integers is not allowed. 1015 Pending No
8.22 Reading uninitialized values is confusing and vaguely

defined during argument passing.
988 Pending Maybe

8.13 Types of set operations are vague. 969 Pending Maybe

Function
10.3.1 Abstract extern methods open multiple back doors,

e.g., allowing recursion and invoking parsers in con-
trols.

973,
976,
979

Pending Maybe

App. F Parameter restrictions for extern functions are missing. 972 Released No
6.7.2 Optional parameters are not allowed in parser and

control types.
977 Released Maybe

Instan-
tiation

11.3,A.H Instantiation should not be a statement. 975 Released Yes
17.2 The concept of instantiation-time known constants is

missing.
932 Pending Maybe

12.10,
13.4

The difference between stateful and stateless instanti-
ations in parsers and controls is poorly explained.

926 Pending No

Table 13.2 Default action is not set as NoAction when undefined. 933 Released No
13.1 The possible sources of action data are defined in a

misleading way.
914 Released No

Name
17.3 Value sets are not included in control plane objects. 962 Released No
6.8 Name duplication and name shadowing is undefined. 974 Pending Maybe
6.4 Inconsistent name style for built-in methods & fields. 1004 Pending Yes

Table 1 Specification issues clarified during our operational-semantic formalization.

Section refers to section numbers in the P416 manual [3]. Git refers to our issue reports in the repo
for that manual, https://github.com/p4lang/p4-spec. Status “pending” means under discussion with
the steering committee; “released” means that a published version of the manual incorporates our
merged pull-request. As indicated, some of these issues also reflect bugs in the p4c compiler, some
of which have now been corrected.
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model make the logic challenging to design. Concrete challenges arose in the treatment of
headers, from the fact that the category of values includes structs, and from the combination
of hierarchical path names and instantiation. We do not show the proof rules in this paper,
and also omit a detailed discussion of automation support that uses Coq’s tactic language
Ltac. As explained in the previous section for the firewall example, the typical user must
provide data representation predicates (how the abstract values of interest are represented in
the data structures of P4 programs), function specification (preconditions, postconditions),
specifications of control blocks (i.e., pre/postconditions of apply functions), and specifications
of registers or other architecture-specific externals.

Our logic is modular in the sense that for any control block definition in the code we can
write a single proof script that can be adapted to multiple instantiations. Thus, a library
module such as our SBF can be proven to satisfy its specification (set-membership check
with no false negatives) quite independently of the correctness proof of its client.

▶ Theorem 3 (Coq). (Soundness) The proof rules of our program logics are sound w.r.t. the
operational judgments in §3.2.

Soundness of our verifier then follows, as the verifier’s tactics build a machine-checked
proof using the logic’s inference rules.

4 Instantiation

In accordance with Sec. 18 of the P4 specification [3], we divide evaluation into two phases:
instantiation and execution. In the instantiation phase, constructor calls are evaluated to
produce a static environment of objects (instances of control blocks, tables, parsers, packages,
and external objects). This instantiation phase determines all relationships between objects
and thus avoids any kind of dynamic allocation or closure passing. Indeed, instantiation
more closely resembles creation of statically allocated objects/structs in C-like languages
and instantiation of Verilog modules than dynamic object allocation.

The instantiation phase assigns a distinct fully qualified name to each object. For tables
and external objects, it is convenient that this name is the same as the control plane name
described in the P416 reference manual, which can be used by the control plane to access the
objects, e.g. updating table entries and reading registers. Then for each object, its name is
bound to its record of code and references to generate the static environment. The static
environment is passed later into the execution phase, where it is read from but never modified.
This is only possible because P4 is designed to avoid dynamic allocation.

In contrast, Petr4 [5] combines the two phases, using closures and dynamic allocation in
the evaluation semantics. As a consequence, Petr4 requires a more complex state model with
stores (mapping locations to values) and environments (mapping names to locations).

The (simplified) pseudocode of the instantiation phase is in Fig. 5. Function instantiate_prog
iterates over all declarations in the program. For control and parser declarations, it puts
them in decl_env to look them up when encountering their instances. For instantiation
declarations, it calls instantiate with the empty path ϵ, which indicates to instantiate at
the top level. instantiate takes a path p and an instance declaration decl to instantiate
decl that appears in p. Let inst_name be the local name of the instance of decl. Then its
fully qualified name is p.inst_name. instantiate allocates the object at p.inst_name, and then
allocates its inner declarations recursively.

This procedure allocates the fully qualified names and constructs the global static
environment at the same time. Inner declarations are allocated under the path p and they
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global ge := . . .

global decl_env := . . .

procedure instantiate(p, decl) :=
inst_name := instance name of decl
class_name := class name of decl
body := decl_env[class_name]
ge := ge[p.inst_name 7→ record of the instance]
for each decl in body

if decl is an instantiation then instantiate(p.inst_name, decl)

procedure instantiate_prog(prog) :=
for each decl in prog

if decl is an instantiable declaration then
decl_env := decl_env[(name of decl) 7→ decl]

else if decl is an instantiation then instantiate(ϵ, decl)

Figure 5 Pseudocode of instantiation

have distinct local names, so their global fully qualified names are distinct and different from
names from other parts of the program. It also provides a local view under path p.

We have implemented the instantiation phase as a function in Coq. Users can just use
Coq’s computation mechanism to evaluate P4 programs.

4.1 Abstract Methods

Suppose you want to increment a (persistent) register on a Tofino P4 switch. You might read
the register into a local variable, add one, and write back to the register. But that violates a
Tofino pipeline constraint: accessing the same register in two different pipeline stages.

The P416 spec permits architectural extensions including stateful objects on which the P4
program may invoke so-called abstract methods. Tofino’s registers are such extern objects, and
provide a read-modify-write abstract method: the user specifies what modify to perform (like
incrementing a value, as in our SBF insertion), but not the surrounding register read/write
operations – these are implicitly performed by Tofino’s invocation mechanism. Without
abstract methods, Tofino registers are not much use, but their ‘almost-object-oriented’
realization is arguably even more complex than function pointers in C or virtual or abstract
methods in C++ or Java.

Our operational semantics is the first formal specification of P4 to include abstract
methods, and Verifiable P4 is the first verifier to support them.

5 Proof statistics

Our verification of the sliding-window Bloom filter (SBF) is summarized in Table 2. The
P4 proof of “Filter” is so large in part because the P4 program has many branches about
which we need to reason. The high-level “Filter” proof is large for a different reason: in part
because the correctness argument for sliding-window Bloom filters is not trivial; and because
we use two intermediate models to facilitate reasoning, which may not have been the best
way to organize that proof.
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P4 code Func. Model Funcspecs P4 proof High-level proof
Row 53 85 165 140 106
Pane 22 62 235 140 87
Filter 341 333 858 1579 1068
Total 416 480 1258 1859 1261

Table 2 Lines of P4 code, specifications, Coq proofs. For each module of the P4 program we have
(in the order shown), a functional model, Verifiable P4 function-specifications with preconditions
and postconditions, a Coq proof script showing that the P4 code implements the model, and a proof
that the model satisfies the high-level specification.

6 Count-min-sketch

We also verify count-min-sketch (CMS) [4] to illustrate that the existing proof script can be
easily adapted to verify similar data structures. A CMS is essentially the same as a counting
Bloom filter, which counts the frequency of the different types of events in the stream.

Most parameters of a simple CMS data structure are the same as a simple Bloom filter,
such as r rows and S slots. The difference is that each slot now indicates how many times an
event occurred rather than whether it occurred at all. The insert operation thus increments
the relevant slots, saturating at Int<k>.max if each slot is k bits wide. The query operation
returns the minimum value of the matching slots in all rows.

Our CMS implementation employs the same sliding window mechanism as the SBF, and
similarly for the functional model. The axiomatization employs the same predicate ok_until
and reuses most axioms, except for the two axioms shown in Figure 6. From these axioms
one can derive the analogue of the Bloom filter’s “no false negatives”, that CMSquery returns
a number not less than the true count. In the function specification (not shown here but
analagous to Figure 4) one can see that the value returned is the minimum of this count and
the saturation value Int<k>.max.

QueryInsertSame : ∀ f t t’ h k, ok_until f t → t ≤ t’ ≤ t+T →
CMSquery f (t’, h) = Some k →
CMSquery (CMSinsert f (t, h)) (t’, h) = Some (k + 1).

QueryInsertOther : ∀ f t t’ h h’ k, ok_until f t → t ≤ t’ →
CMSquery f (t’, h’) = Some k →
CMSquery (CMSinsert f (t, h)) (t’, h’) = Some k ∨
CMSquery (CMSinsert f (t, h)) (t’, h’) = Some (k + 1).

Figure 6 Axioms of Count-Min-Sketch (excerpt)

7 Discussion

Related work. Vera [23], p4v [15], and ASSERT-P4 [18] are automatic P4 verifiers for
simple properties—including safety properties, architectural constraints, and simple stateless
application properties. They translate the P4 program into a guarded command language
(p4v), into a network verification language called SEFL (Vera), or into C (ASSERT-P4).
ASSERT-P4 does not claim to support stateful objects. Vera [23] uses an extremely expensive
encoding that is proportional to the size of registers (impractical when the register contains
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an entire hash table). Although p4v supports stateful objects, we cannot find any evidence
that p4v can relate initial and final states.

Aquila [24] supports a more convenient assertion language, multi-pipeline control, more
time-efficient verification, and bug localization when the verification claims a bug. But
Aquila oversimplifies registers into fields without indexes, so it could not verify programs
such as the stateful firewall. Aquila also reduces the risk of bugs in the verifier by translation
validation—checking whether its intermediate representation is equivalent to the counterpart
generated by Gauntlet [22] (which is a tool for finding bugs in P4 compilers). But that does
not address other software bugs, e.g. the bugs in manipulating assertions, especially when we
need a rich and modular assertion language.

Π4 [8] is a dependent refinement type system for a language similar to a subset of P4.
Although described as a type system, it includes assertions in types and requires an SMT
solver to check the types, so it is very similar to a verifier with assertions in middle of
programs. Of all these verifiers, it is the only one that supports modular specification and
verification function-by-function—its dependent function type is equivalent to a function
contract. But Π4 expands the instantiation hierarchy before verifying, but does not exploit
the similarity of the resulting instances. Π4 does not support stateful objects.

There are some other tools that focus on particular properties. bf4 [7] is a tool that
automatically infers constraints of tables to make a P4 program safe. Leapfrog [6] is a parser
equivalence checker for P4.

Petr4 [5] is a study of P4’s formal semantics, which gives us an important reference. But
Petr4’s semantics does not have a machine-checkable formalization, and mixes instantiation
and execution, which means it “instantiates at runtime” and has to define each control
instance as a closure. This makes the semantics less straightforward and makes it much more
challenging to prove the program logic and the type system sound. We improve this with a
phase distinction between instantiation and execution (§4). We also identify and fix some
bugs in Petr4 during the formalization in Coq.

The approach taken by Vigor [28, 20, 27] is conceptually similar to our envisioned
separation into verification of reusable data structures and more abstract packet- or flow-level
network functionality. Vigor is a verifier for C programs on top of DPDK; it employs
Verifast [11] for the reusable data structures and the Klee symbolic execution engine [1] for
the C code that is a client of these data structures. Vigor has been applied to a number of
data structures and network functions, with more automation than our framework currently
supports. We expect that as top-level policies get more complex, the expressivity of a general-
purpose proof assistant (that we use) will prove beneficial. The use of ADT operations as
the interface between the two parts of a Vigor proof is conceptually similar to our use of
functional or axiomatic models, but—unlike in our approach—there is no machine-checkable
proof that connects these layers together. Continuing this line of work, KLINT [19] applies
to binary code, with a focus on the code that implements network functions on top of a small
fixed set of map-like data structures whose implementations are assumed correct.

Gravel [29] verifies C++ implementations of Click-style middlebox functions against
functional specifications (represented as Python programs), using symbolic execution on
LLVM and an SMT solver backend. Like Vigor and KLINT, Gravel achieves a higher degree
of automation than our work but has a larger trusted code base, does not support expressive
reasoning about specifications, and does not apply to line-rate processing on a P4 switch.

Gopinathan and Sergey [9] show how to prove in Coq that a Bloom filter (functional
model) has not only a zero false-negative rate but also a small false-positive rate. Our system
could accommodate that style of proof: use Verifiable P4 to prove (as we do) that the Bloom
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filter exactly implements its functional model; then prove (as we did not) that this functional
model has a small false-positive rate, using the method that they demonstrate.

Future work. We currently achieve modular verification by writing a proof script for
one instance of a control block (such as pane or row) that can be re-used unchanged for all
the other instances. In future work, we expect to make this more formal, to guarantee that
each control needs only one proof of correctness.

To support switches with multiple pipelines (each with its own persistent register state),
we may either modify the program logic, or treat the independent pipelines as separate
switches and account for concurrency at the model level, when proving the relation between
the single-packet correctness property and the flow-level property.

Some stateful applications mentioned in Section 1 involve packet recirculation, but we
have not explored this in detail, especially the issue of buffering synthesized packets.

Finally, a long-term goal may be to augment tools that synthesize P4 code with mechanisms
to generate Verifiable P4 specifications, or even proofs. For example, we use CatQL to
synthesize our bloom filter programs but have no tools to derive specifications or proofs for
the synthesized P4 code from CatQL directly.

Our formalization assumes that each P4 packet is handled atomically, which is a justifi-
able assumption for single Tofino-like pipelines.6 But Tofino (and other P4-programmable
switches) may have multiple parallel pipelines with independent register sets, and multiple
sequential pipelines (i.e., ingress and egress pipelines) with nontrivial scheduling between
them. Reasoning about packet management outside of P4 is future work—though it may not
require any changes to our P4 semantics itself.

Conclusion. P4-programmable switches enable a new generation of applications that
use sophisticated data structures, modular software engineering, and persistent state. The
constraints of P4-capable hardware often mean that those programs are written in a somewhat
contorted way that makes them difficult to reason about. Therefore, verification tools are
even more useful for P4 than they are for conventional languages.

We have built a verifier for P4 and demonstrated it on a sophisticated application. Our
verifier is the first one that can handle rich specifications or nontrivial uses of persistent state.
It is the first to be proved sound with respect to a formal semantics of P4. And our formal
semantics is the first one that attempts to be complete with respect to the English-language
P416 reference manual.
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