
Unifying Exceptions with Constructors in

Standard ML

Andrew Appel� David MacQueen� Robin Milner� Mads Tofte

May ��� ����

� Introduction

The Standard ML Core Language� as described in ���� was modi�ed by several
changes detailed in ���� It was declared in ��� that� with one exception� all later
changes to the language will be upwards compatible 	 i�e� any program written
in the language de�ned by ��� and amended by ��� will be always be valid� The
exception in fact concerns a simpli�cation of the exception facility� It was de

clared there that this simpli�cation would be adopted� provided that the design
group agreed and that careful semantic analysis raised no di�culties� Both these
conditions have been met� and the change will now be adopted�

�The Semantics of Standard ML� Version � ��� applies to the language of ���
modi�ed by ���� but does not incorporate this new change �though it mentions it
as under consideration�� Version � of ��� will incorporate it�

Existing programs will be syntactically incorrect in the changed language� but
it is easy to convert them mechanically to the new syntax so that they will run
exactly as before� Present implementations can usefully provide this translation
facility� at least for a limited period�

In Section � below we describe the new change informally� In Section � we
describe precisely the changes to syntax and to predeclared objects �i�e� the initial
basis��

� Informal description of the change

It was always understood that the semantics of matching exceptions is very much
like the semantics of matching ordinary constructors� but when the current design
of Standard ML was established we could not see how to unify the two concepts�
We therefore accepted two parallel but similar constructs� requiring special syntax
for exception matching with the additional keywords �� and �� Besides requiring
extra syntax� this approach also leaves a serious gap in functionality� it does not

�

allow a handler to re
raise an exception �without knowing its name� having failed
to match it�

In the light of further design experience and thorough semantic analysis it
appears that the uni�cation of exceptions and data constructors causes no se

mantic di�culty and little inconvenience� Furthermore it yields greater simplicity
of design and considerable gain in expressive power� Nor are there any imple

mentation problems� the new scheme has been successfully used for the internal
representation and processing of exceptions in the Bell compiler of MacQueen and
Appel�

One corollary of this change is that exception names� being now data con

structors� can no longer be distinguished from variables by syntactic context� We
therefore abandon the �homonym convention whereby an exception may bear
the same name as the function which raises it �e�g� the standard exception hd is
raised by the standard function hd�� Instead� for standard exceptions� we adopt
a convention that exception constructors begin with a capital letter� so that hd
will now raise Hd when applied to the empty list� Users may� but need not� choose
to maintain the convention� For exceptions raised by standard functions with
symbolic identi�er names� like ��� we adopt names like Sum�

We now give a simple example of the modi�cation required to programs� Con

sider the following ML program� in the unmodi�ed language�

exception found � string

exception disaster

� � �

val j � � � � � � handle found with 	money	 �
 ��

� 	old boots	 �
 ��

� �
 ��

�� disaster �
 ���

�� iofailure �
 ���

�� hd �
 ���

�� � �
 �

The new version will be as follows�

exception found of string

exception disaster

� � �

val j � � � � � � handle found 	money	 �
 ��

� found 	old boots	 �
 ��

� found�� �
 ��

� disaster �
 ���

� Io�� �
 ���

� Hd �
 ���

� �� �
 �

Note a few points�

�

� In the old system the clause �iofailure �
 ��� is an abbreviation for
�iofailure with �� �
 ���� but there is no corresponding abbrevi

ation in the new scheme �it would violate the normal treatment of patterns��

� It seems more elegant to adopt Io instead of iofailure as the exception
constructor for I�O failures�

� The declaration �exception disaster is not treated the same as the dec

laration �exception disaster of unit �in contrast with the old scheme��
With the latter de�nition� as for constructors in general� the correct clause
in the match following handle would be �disaster�� �
 ����

Under the new scheme� an exception name like found represents a particular kind
of data constructor� and what follows handle	 previously a handler 	 is just an
ordinary match� The new scheme requires the existence of pre
declared �standard�
datatype exn� and the declaration

exception found of string

declares a new constructor whose type is string�
exn� The new datatype exn is
special in just two ways�

� New constructors may be declared for it� as above�

� Values of type exn �and no other� may be raised by raise and handled by
handle�

In all other respects exn is an ordinary datatype� its values are �rst
class objects
and may be manipulated just like any other values� In particular� they may be
constructed outside the context of a raise expression� and matched outside of a
handle expression� Continuing the above example�

val e � found 	money	

fun myhandler�found 	money	� � false

� myhandler�f� � raise f

�if a�b then raise e else true�

handle ex �
 myhandler ex

The next example shows the added bene�t of re
raising exceptions�

�increment x� f��� decrement x�

handle e �
 �decrement x� raise e�

�

The expression above is an �unwind
protect �in the language of LISP�� it ensures
that if an exception is raised from f��� then the variable x will be restored to its
original value� and the exception will be propagated upwards�

The new type exn� together with the ability to de�ne any number of construct

ors which �wrap up values of any type as exceptions� and the ability to �unwrap
these values by ordinary pattern
matching� provides in e�ect a truly general type
in ML �in the sense used by Strachey�� This is totally independent of the facility
which allows us to raise and handle these wrapped
up objects or packets� Users
will therefore sometimes use the type in itsgeneral capacity only� and will in that
case �nd the terminology exception and exn �for keyword and type respectively�
a little misleading� We have nevertheless decided to keep this terminology� since
the situation can be improved in the future by one of two changes� each of which
will be upwards compatible�

� We may allow the user to declare many types all of which admit extension
by adding new constructors� Then the type exn will be just one such type
which is standard� the exception declaration form will be a derived form of
the general form of �new constructor declaration�

� Or we may conclude that only one such type is needed� In that case we can
call it �say� general� we can have exn as an alias for it� and we can intro

duce a less colourful keyword like newcons for introducing new constructors�
allowing exception as a synonym for use at the user�s discretion�

Any change to terminology now could preempt this choice�

� Details of the change

��� Identi�er classes

The identi�er class of exception names �exn� will now be called exception con

structors �excon�� An identi�er is an exception constructor if it is within the scope
of a declaration which introduced it as such� As for ordinary value
constructors�
no value declaration can make a �hole in this scope� since any occurrence of
either kind of constructor in a pattern is interpreted as that constructor� not as
the binding occurrence of a new variable�

��� Reserved words

The reserved words �� and � are abolished� The keyword with remains for use
with abstype� but loses its role in handlers�

�

��� Syntax classes

The syntax classes handler and hrule are abolished� The classes eb �exception
bindings�� aexp �atomic expressions�� exp �expressions�� apat �atomic patterns�
and pat �patterns� are changed as follows� using the conventions of ���� Table ��
p���

ADDED REMOVED

eb ��� excon �� of ty �� exn ��� ty ����� exn� ��

excon � excon�

aexp ��� �� op �� excon

exp ��� raise exp raise exn �� with exp ��

exp handle match exp handle handler

apat ��� excon

pat ��� �� op �� excon apat

pat excon pat

The typing rules are�

� The type in an exception binding may contain no type variables� �Note� this
may be relaxed at the same time as polymorphic references are introduced��

� The type of the exp following raise must be exn�

� The type of the match following handle must be of the form ty�
exn�

The following notes will give an understanding of the semantics� a formal de�nition
will appear in Version � of ����

�� At each evaluation of the exception binding excon of ty� a new constructor
of type ty�
exn is generated and bound to excon� This agrees with the old
scheme� It is necessary to ensure that accidental coincidence of names does
not cause unintentional handling of an exception which has been propagated
by raise outside the scope of the constructor which built it� The typeless
exception binding excon similarly declares a new constant of type exn� The
binding excon � excon� declares a new identi�er for the constructor �bound
to� excon��

�� The match following handle treats unmatched patterns di�erently from or

dinary matches� Instead of an implied rule �� �
 raise Match after the
match� there is an implied rule e �
 raise e� so that unmatched exceptions
are not handled by this handler� but are propagated upwards�

�

�� The two declarations exception e of unit and exception e are not the
same� even though the corresponding declarations in the old scheme were the
same� Just as with ordinary constructors� carrying a value of type unit is
not the same as carrying no value� See the example of disaster in Section �
above�

��� Standard type constructors

There is a new standard type constant �nullary constructor� exn� the type of
exceptions� It does not admit equality�

��� Standard exception constructors

Standard constants of type exn are introduced as follows�

Match Bind Interrupt Ord Chr

Div Mod Floor Sqrt Exp Ln

in place of the existing corresponding standard exception names� The existing
exception names � � � � �at present homonymous with the functions which raise
them� become standard constants of type exn as follows�

Prod Quot Sum Diff

Finally� there is an exception constructor

Io

of type string�
exn� in place of the exception name iofailure�

References

�� R�Harper� D�MacQueen and R� Milner� Standard ML� Report ECS
LFCS

��
�� Laboratory for Foundations of Computer Science� CS Department�
Edinburgh University� �����

�� R�Milner� Changes to the Standard ML Core Language� Report ECS
LFCS

��
��� Laboratory for Foundations of Computer Science� CS Department�
Edinburgh University� �����

�� R�Harper� R�Milner and M�Tofte� The Semantics of Standard ML� Version ��
Report ECS
LFCS
��
��� Laboratory for Foundations of Computer Science�
CS Department� Edinburgh University� �����

�

