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ABSTRACT

Dynamic programming allows locally optimal instruction selection for expression
trees. More importantly, the algorithm allows concise and elegant specification of code
generators. Aho, Ganapathi, and Tjiang have built the Twig code-generator-generator,
which produces dynamic-programming code-generators from grammar-like
specifications.

Encoding a complex architecture as a grammar for a dynamic-programming code-
generator-generator shows the expressive power of the technique. Each instruction,
addressing mode, register and class can be expressed individually in the grammar. The
grammar can be factored much more readily than with the Graham-Glanville LR(1) algo-
rithm, so it can be much more concise. Twig specifications for the VAX and MC68020
are described, and the corresponding code generators select very good (and under the
right assumptions, optimal) instruction sequences.

Limitations and possible improvements to the specification language are discussed.

1. Introduction

One of the last phases of a typical compiler is the translation of an intermediate representation of a
compiled program into target-machine instructions. This instruction selection phase has been the subject of
much research, with two primary goals: to find algorithms for selecting optimally efficient instruction
sequences, and to find ways to automatically generate instruction selection programs from concise
specifications of the target machine’s operations.

This paper describes techniques for using Aho, Ganapathi, and Tjiang’s Twig[1], a code-generator genera-
tor that uses tree matching and dynamic programming. The instruction sets of the DEC VAX and Motorola
68020 are used as a illustrative examples. The VAX architecture can be described with only 112 rules; the
68020 is somewhat more complicated.

Some of the problems of using Twig are described, and solutions to these problems are proposed.

1.1. Optimal instruction selection

An intermediate representation can be considered as a directed graph, in which edges point from
uses of values to sources of values. Most of the work in optimal instruction selection has considered only
trees -- graphs in which each source of a value has only one use. (The ‘‘trivial’’ sources, such as constants
and the addresses of program variables, may have several uses; each use will be a leaf of the tree.) For
more general graphs, optimal instruction selection becomes NP-complete[2, 3].

For trees, it is possible to find optimal solutions (with appropriate restrictions on the scope of the problem).
For example, the problem of optimal register allocation[4, 5] can be solved using a simple bottom-up label-
ling algorithm. Optimal instruction selection for machines with one class of general registers is solved
using a bottom-up dynamic programming algorithm[6] (the algorithm uses dynamic programming in that
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the optimal solution for each node is determined from the optimal solutions of its descendants). For
machines with complicated addressing modes, this algorithm becomes unwieldy, with hundreds of cases.
Dynamic programming can be extended to machines with several classes of registers[7] by an algorithm
analogous to the CYK algorithm[8, 9] for parsing by dynamic programming.

While these algorithms are powerful and useful, it is important to note that they select optimal code
sequences only for the particular trees they are given; and those trees are not necessarily optimal versions
of the programs they represent.

1.2. Formal description of instruction sets

The automatic generation of instruction selectors from a specification of the target machine requires
a formal specification language for target-machine semantics. The ISP language for specifying machine
instruction-sets[10] has been used to automatically generate instruction selectors for intermediate represen-
tations based on trees[11] and peephole optimizers for more general graphs[12, 13]. These target-code
generators rely on heuristics to match patterns (derived from the semantics of target-machine instructions)
to portions of the intermediate representation tree (or graph).

The heuristic used on trees leads to a sequence of pattern-matches identical to that made by an LR parser;
this led to the formalization of target-machine semantics as LR(1) grammars[14]. Instruction selection is
thus reduced to LR(1) parsing, which is efficient and well-understood. Unfortunately, the LR(1) grammars
tend to be very large: typical descriptions of the VAX instruction set use hundreds of productions [15, 16].

Context-free grammars have difficulty in efficiently describing certain features of real instruction sets, par-
ticularly those involving operand size constraints. For this purpose, attribute grammars are convenient[17].
An attribute grammar describing a given machine can be much shorter than the equivalent context-free
grammar.

1.3. Optimal instruction selection from formal instruction set descriptions

Combining grammar-based machine descriptions with dynamic programming, as in the Twig sys-
tem[1], leads to concise and powerful instruction selection specifications.

Dynamic programming, as a parsing technique, has three significant advantages over LR(1) parsing: it
allows highly ambiguous (but much more concise) grammars, it allows attribute information to be used
with no extra trouble, and it produces optimal instruction selection. (It has the disadvantage that it tends to
use more time and space.)

Because there are often several different instruction sequences that accomplish the same thing, ambiguous
grammars occur naturally in the description of code generators. An LR(1) grammar cannot be ambiguous,
so the ambiguities must be removed at compiler-generation time. This has the effect of deciding in
advance which kind of instruction sequence to use for a given class of operations — even though the best
choice might depend on attributes of the specific instance. The dynamic programming algorithm allows an
ambiguous grammar, with the ambiguity resolved only when the instance is parsed. This allows the best
instruction sequence to be chosen for each instance.

Many natural instruction-set grammars have too much factoring to be LR(1)[15]. Consider the following
fragment of a grammar:
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displ → PLUS CONST reg displacement addressing mode
binop → PLUS binary addition operator
binop → XOR binary exclusive-or operator
operand → CONST immediate-constant operand
operand → reg register-direct operand
reg → displ move-address instruction
reg → binop operand operand three-address instruction

An LR(1) parser cannot know, after it has seen PLUS (with CONST as a lookahead symbol) whether to
shift, or to reduce the PLUS as a binop. This shift-reduce conflict can be solved by removing the rule

binop → PLUS

and adding rules like

reg → PLUS operand operand

for each context in which binop appears.

Unfortunately, the grammars tend to get very large when this — and other similar necessary changes — are
made. Large grammars are inefficient to process, but — more important — they are hard to get right. Gra-
ham, Henry, and Schulman state, ‘‘Most of the outstanding bugs in our code generator are caused by
remaining instances of overfactoring.’’[15].

Twig handles highly factored grammars with no difficulty. For the (human) specifier of an instruction set,
the ability to write concise but ambigous grammars, rather than large but unambiguous ones, is an invalu-
able advantage of the dynamic programming algorithm.

Another example of the limitations of LR(1) grammars for machine description is shown graphically
below. There are two machine instructions that can cover different, but overlapping parts of an intermedi-
ate representation tree:

MOVE

MEM

CONST

MEM

CONST

The instructions that cover the (overlapping) circled areas correspond to the register transfers:

M[constant] ← register
and

M[register] ← M[constant]

Either instruction can be used to cover the root (and some immediate descendants) of the tree. (The
uncovered nodes must then be covered by other instructions.) The LR(1) parser will find a shift-reduce
conflict here; if (as is typical) it resolves this by shifting, then it will always choose the first of these two
instructions, even if the second might be less costly. A dynamic-programming parser, on the other hand,
can evaluate the cost of both instruction sequences and choose the better one.

This paper demonstrates the concise and powerful nature of code generators based on dynamic-
programming parsers by using the VAX and MC68020 instruction sets as illustrative examples.

2. Overview of Twig

Aho, Ganapathi, and Tjiang’s code-generator generator, Twig, is described in[1] and[18]. This section
provides just a brief overview of the system.
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The Twig system takes a specification in the form of an annotated grammar and produces a code generator.
The input to the code generator is a tree, which is (presumably) a machine-independent representation of a
program being compiled. The code generator translates the tree into object code (assembly language, for
example) by finding tree-patterns from the grammar that match portions of the tree.

Typically, the internal nodes of the tree are operators like MEM or PLUS and the leaves are constants
(often address constants). Each node in the tree is labelled by some such symbol, so that the entire tree can
be represented in a functional notation. Here is an example representing the addition of 5 to the contents of
address 44, and the storing of the result at address 36:

MOVE

MEM

CONST36

PLUS

MEM

CONST44

CONST5

MOVE(MEM(CONST36),PLUS(MEM(CONST44),CONST5))

The Twig specification is a grammar for trees that are written in this functional notation. The code genera-
tor attempts to parse its input (a tree) according to this grammar. Since the grammars are often highly
ambiguous, many parses may be legal. In this case, the code generator picks the parse with the lowest cost.
The cost of a parse is (typically) the sum of the costs of the reductions in the parse. The cost of a reduction
is given as an annotation to the corresponding grammar rule in the specification.

Finding the lowest-cost parse can be done fairly efficiently by dynamic programming. Working from the
bottom up, the cost of matching each node to each nonterminal symbol is computed. The cost of matching
higher nodes in the tree can be computed just from the costs of their immediate descendents. For a fixed
grammar, this takes time and space linear in the size of the input tree.

2.1. An example

To illustrate the use of instruction-set grammars, consider a simple computer with only five instructions:

Name Cost Effect
ADD 2 ri←rj+rk

ADDI 3 ri←rj+C
ADDM 4 ri←rj+M[C+rk]
STORE 4 M[C+ri]←rj

MOVE 4 M[ri]←M[rj]

We will assume that r 0 always contains 0.

These instructions can be expressed as tree-patterns, using the operators + for addition, M for memory
reference (fetch or store), C for constants, r for registers, and ← for assignment. The ADDM instruction
would be expressed as
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+

r M

+

C r

However, because addition is commutative, and because either register could be $r sub 0$, 12 patterns are
needed express all the possible effects of ADDM, of which some are shown here:

+

r M

+

C r

+

rM

+

C r

M

+

C r

M

+

Cr

M

C

M

r

A code generator is given trees representing source-language statements, and it can use these patterns to
‘‘tile’’ the tree with instructions. For example, the tree

←

M

C38

M

C42

can be tiled with the patterns

←

M

r

M

r

C C

corresponding to the MOVE, ADDI, and ADDI instructions. The r leaves are just place-holders for sub-
trees, which in this case are single-node C trees. The instruction sequence corresponding to this tiling is:

ADDI r 1←r 0+38
ADDI r 2←r 0+42
MOVE M[r 1]←M[r 2]

This tiling has a cost of 10 (two ADDI instructions and a MOVE). There is a cheaper way of generating
instructions to cover this tree, using an ADDM and a STORE for a cost of 8. In general, the number of
possible tilings can be exponential in the size of the tree.

By dynamic programming, the best tiling can be found in linear time. Using a postorder traversal of the
tree, each subtree is marked with the lowest cost to tile it. At each node, all the patterns are tried, and a
simple cost computation is done for any that match (an r leaf matches the root of some other pattern).

For example, in the traversal of the tree for M[38]←M[42], the leaf C node is matched only by an ADDI
pattern, for a cost of 3. Either M node is matched by an ADDM pattern for a cost of 4. This leaves the tree
marked as follows:



- 6 -

←

M4

C3

M4

C3

Now the root can be matched by a MOVE pattern; the cost is calculated by adding the 4 for the MOVE
instruction to the costs of getting the r-leaves into registers. But these costs have already been calculated
as the costs of the C nodes; the total is therefore 10. Or, the root can be matched by a STORE pattern, with
one r-node that corresponds to the right-hand M node, for a total cost of 8.

When several different ways of matching the same node are found, only the cheapest is remembered; the
running time, therefore, is proportional to the number of patterns (a constant) times the size of the tree.

In essence, this is the Aho-Johnson algorithm[6] for instruction selection. The problem with this algorithm
is that a tree-pattern must represent an entire instruction; as illustrated above, some instructions require
many patterns to describe all the different ways they can be used. One a machine with many addressing
modes (like the VAX), a single instruction like mov requires thousands of patterns. It is this problem
which motivated the Graham-Glanville approach[14], which uses context-free grammars to describe
instruction sets.

In our example instruction set, the sum of a register and a constant (either of which can be zero) is used in
several instructions; this could be abstracted as a displacement. This leads to a grammar with two nonter-
minal symbols, reg and disp:

disp → reg
disp → CONST
disp → +(CONST,reg)
disp → +(reg,CONST)
reg → +(reg,reg)
reg → disp
reg → +(reg, M(disp))
reg → +(M(disp),reg)
reg → M(disp)
reg → MOVE(M(disp),reg)
reg → MOVE(M(reg),M(reg))

This ‘‘factored’’ grammar is much more concise than the grammar with just the reg nonterminal could be
(with its dozen rules for ADDM alone). The Graham-Glanville uses LR(1) parsing to do pattern-matching
on such grammars. But these grammars are not naturally LR(1), which leads to parsing problems; and the
instruction costs are not accounted for, which leads to suboptimal matches.

The dynamic programming algorithm can be generalized to grammars with several nonterminal symbols.
The tree is traversed bottom up, as in the Aho-Johnson algorithm, but the minimum cost is kept for each
nonterminal symbol. Then, when a pattern like reg → MOVE(M(disp),reg) is matched, the reg nontermi-
nal of the root node is updated with a cost that is calculated from the disp cost of the left child’s child, and
the reg cost of the right child.

Twig implements this dynamic programming algorithm, given a grammar annotated with cost and
instruction-emission information. Twig also uses a clever pattern-matching algorithm[19] to avoid com-
paring every pattern to every node in the tree, but a description of that is beyond the scope of this paper.
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2.2. Format

A Twig specification has several parts. Twig treats the tree structure as an abstract data type, so the func-
tions that implement tree-operations (find n th child, etc.) must be provided as part of the specification. The
terminal symbols of the input grammar are listed in a node declaration; the nonterminal symbols are listed
in a label declaration. Then, each grammar rule is presented with its annotations, which are written in the
C language. The first annotation is the cost phrase, which consists of statements that compute the cost of
applying this rule in a given situation. The second annotation is the action phrase, which (typically) emits
the object code for a parse reduction when this rule is used.

The cost phrase of a rule will be evaluated many more times than the action phrase: the code generator
must determine the costs of applying all relevant rules before it finds the minimum-cost parse. After that
parse is found, all of the action rules of the constituent reductions are applied (usually) in bottom-up order.

Here is a specification of a simple instruction set that contains just three instructions: add, load, and store.

node MEM MOVE PLUS CONST;

label reg;

reg: MEM(CONST)
{cost=2;}
={$$->reg = getreg();
emit("load r%d,%d", $$->reg, $1$->value);
}

reg: PLUS(reg,reg)
{cost+=1;}
={givereg($2$); $$->reg=$1$->reg;
emit("add r%d,r%d", $1$->reg, $2$->reg);
}

reg: MOVE(MEM(CONST),reg)
{cost+=2;}
={$$->reg=$2$->reg;
emit("store %d,r%d", $1$->value, $2$->reg);
}

In this specification, the initial part (giving the C-language interface to the concrete representation of trees)
has been omitted.

The terminal symbols of the grammar — those to be found labelling the tree nodes in the input to the code
generator — are listed in the first line. The nonterminals — specifying the different ‘‘modes’’ in which a
subtree may be matched — are listed on the second. The remaining lines are the three productions of the
grammar.

The cost phrases specify that an add instruction costs one unit, while load and store cost two units each.
In particular, the cost of evaluating a subtree whose root matches an add pattern is 1 plus the cost of fetch-
ing the arguments of the add into registers. Thus, the cost phrase for this pattern is {cost+=1;} where
the variable cost is initially equal to the sum of the costs of the two reg nodes that are the leaves of this
pattern.

The action phrases for a specification consist of arbitrary C code, which usually accesses the matched sub-
tree and possibly the cost structure. Register-allocation and code generation are not part of Twig, but are
entirely up to the user of Twig. This specification’s action phrases include statements to allocate and
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deallocate registers, and to emit assembly-language instructions.

In the cost and action phrases, $$ represents the root of the subtree matched by the instruction, and $1$,
$2$, etc. represent the children. Other descendants are represented by giving the paths to them; so $2.1$ is
the first child of the second child of the root.

The costs of the subtrees are accessed in a different manner, although there are no cases of this in the
example above. In general, $%n$→cost is the cost of the n th leaf of the match. Leaf nodes of a match
always correspond to nonterminal symbols in the grammar rule. Thus, if the third rule (in the example
above) wants to refer to the cost of the reg child, then it uses the notation $%1$→cost.

3. Intermediate Representation Trees

The choice of an intermediate representation (IR) to serve as an interface between the parser and code-
generator of a compiler has a profound effect on the simplicity and robustness of both of these components.
Twig may be used with any set of terminal symbols, and does not place many constraints on the IR except
that it be a tree language (i.e., not a register-transfer or DAG language).

This section describes the abstract syntax of, and interface to, a carefully chosen intermediate-
representation-tree language for compilers of Algol-like languages. This tree representation is designed to
have a clear (though informal) operational semantics; and, of course, to be compatible with Twig. The
instruction-selection algorithm takes trees in this language and translates them into machine instructions.

Each node in a tree has an operator specifying what kind of node it is, and zero to three children; each child
is another tree. In addition, each node has several attributes.

The trees are represented (concretely) in memory as records and pointers. They are represented
(abstractly) in a functional notation, e.g. OP(PLUS,FETCH(NAME),CONST). They are built (by the front
end of the compiler) using a specified set of tree-building interface routines.

3.1. Syntax

Figure 1 gives the syntax of IR trees.

It is tempting to confuse IR trees and parse trees. The grammar given in figure 1 will lead to parse trees,
but these are not the same as IR trees. One should think of Figure 1 as a grammar for expressions written
in the functional notation; these expressions correspond to IR trees.

3.2. Attributes

Each node may have one or more attributes, depending on which terminal or nonterminal symbol it
corresponds to.

Symbol Attributes possessed by nodes of this symbol.

body proclabel [the assembly-language name of the procedure]

LABEL label [the assembly-language label of this point in the program]

exp size [the number of bytes* needed to hold the expression-value]

TEMP temp [a descriptor of the register or temporary location]

NAME label [the assembly-language label referred to]

CONST ivalue [the integer value of this node]

CONSTF fvalue [the floating-point value of this node]

Note that some nodes have more than one attribute. For example, a CONST node is also an ‘‘exp’’, so that
is has both an ivalue and a size.
������������������
* The description here assumes a byte-addressable machine, but the model can easily be made more general.
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body: PROC(exp,stm)

stm: SEQ(stm, stm)
stm: LABEL
stm: JUMP(exp)
stm: CJUMP(test, exp)
stm: exp

exp: OP(binop, exp, exp)
exp: UNOP(unop, exp)
exp: UNOP(cvtop, exp)
exp: MEM(exp)
exp: MOVE(MEM(exp), exp)
exp: MOVE(TEMP, exp)
exp: ESEQ(stm, exp)
exp: BOOL(test)
exp: NAME
exp: CONST
exp: CONSTF
exp: ALLOC(TEMP, exp)
exp: TEMP
exp: CALL(args, exp)

test: CAND(test, test)
test: NOT(test)
test: OP(relop, exp, exp)

args: ARG(exp, args)
args: NOARGS

binop: FPLUS FMINUS FMUL FDIV
binop: PLUS MINUS MUL DIV MOD AND OR LSHIFT RSHIFT XOR

relop: EQ NEQ LT LEQ GT GEQ
relop: ULT ULEQ UGT UGEQ
relop: FEQ FNEQ FLT FLEQ FGT FGEQ

unop: NEG COMP FNEG
cvtop: CVTSU CVTSS CVTSF CVTUU CVTUS CVTFS CVTFF

Figure 1. Syntax of IR trees

3.3. Semantics of the nodes

Each production in the grammar derives nodes with particular meanings. The semantics of each kind of
node are given here.

body: PROC(exp,stm)

The ‘‘localsize’’ of a procedure is an expression (‘‘exp’’) denoting the number of bytes of local-variable
space that must be allocated for each invocation of the procedure. A procedure ‘‘body’’ is simply a state-
ment (‘‘stm’’) as the second child of a PROC node. The ‘‘proclabel’’ attribute specifies the label by which
the assembly-language program can call the procedure.
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stm: SEQ(stm,stm)

A statement can be a sequence of statements, with the meaning that the first is to be executed, then the
second (unless of course, the first statement executes JUMP to somewhere else).

stm: LABEL

A statement may be a LABEL. This statement does nothing at execution time; it serves as the target of
JUMP instructions, etc.

stm: JUMP(exp)

A statement may JUMP to any address. The address may be computed as an expression. The simple case
of jumping to a fixed label is a special case: JUMP(NAME).

stm: CJUMP(test,exp)

A statement may be a conditional jump to any address. If the test evaluates to ‘‘true’’ at run-time, then the
jump will be made to the location indicated by the expression exp.

stm: exp

A statement may be an expression. At run-time, the expression will be evaluated (for possible side-
effects), and the result will be thrown away.

exp: OP(binop, exp, exp)

An expression may be the sum of two expressions, etc. The ‘‘binop’’ specifies which binary operator is to
be used. Thus, OP(PLUS,exp1,exp2) represents the sum of the two expressions exp1 and exp2.

The size attribute of the OP-expression must be the same as the size of the children. Explicit coercions
(see below) can be put in the tree to overcome this.

exp: UNOP(unop, exp)

Unary operators are just like binary operators, except that there is only one expression-child. Thus, nega-
tive 3 is UNOP(NEG,CONST3). Of course, this particular tree could be rewritten as simply CONST−3.

exp: UNOP(cvtop, exp)

Type-conversions serve two purposes: to convert from one machine data type (signed-integer, unsigned-
integer, floating) to another, and to convert from one precision (size) to another. These are unusual opera-
tors in that the children may differ in ‘‘size’’ from the parent.

The distinction between long-integer, short-integer, and character is not a difference of machine data type,
but simply of size. The same holds for single- and double-precision floating-point.

exp: MEM(exp)

An expression may be the result of fetching from an address of memory. The child represents the address
from which to fetch, and must have a size equal to addressSize. The size of the MEM node indicates the
amount of data to be fetched, starting at that address of memory. The size may be any number represent-
able as an address.

exp: MOVE(MEM(exp),exp)

exp: MOVE(TEMP,exp)

An expression may be stored at an address in memory, or moved into a temporary location (e.g. a register).
MOVE(e1,e2) is an expression whose value is that of e2, and which has the side effect of putting that value
into the destination e1. The destination may be a MEM(e3) node (for a store into memory at address e3),
or a TEMPi for a move into temporary variable i (typically a register). The number of bytes stored is the
size of the MOVE node (which is equal to the size of the nodes e1 and e2).



- 11 -

The size may be any number representable as an address. Note, however, that one can’t do much with
expressions of large size other than fetch them and store them. Thus, the following represents a block
move:

MOVE(MEM1000(NAMEdest),MEM1000(NAMEsource))

This tree moves 1000 bytes from label ‘‘source’’ to label ‘‘dest,’’ and is an example of an expression
whose size is larger than will fit in a register or a register pair. The subscripts indicate attributes of nodes
in the expression tree; for clarity in this description, most attributes are not shown.

exp: ESEQ(stm, exp)

The statement ‘‘stm’’ is evaluated, then the expression ‘‘exp’’ is evaluated. The result and size of the
ESEQ are that of the expression.

exp: BOOL(test)

The test is converted into an n-byte integer, where n is ‘‘size.’’ If the test evaluates to true, the integer 1 is
the result; else 0.

exp: NAME

This kind of expression yields the value associated with the label. Such a value is typically an address, so
the size is usually ‘‘addressSize.’’ However, many assemblers and loaders are capable of treating 1-, 2-, or
4-byte quantities as labels.

exp: CONST

An integer constant. The size is the number of bytes used to hold the value (typically 1, 2, or 4). The value
is the result of the expression.

exp: CONSTF

A floating constant. The size depends on the desired representation; 4 or 8 is typical.

exp: ALLOC(TEMP,exp)

A temporary variable ‘‘temp’’ is allocated; the ‘‘exp’’ is evaluated and its value is saved; then the tem-
porary variable is discarded. The result of the ALLOC-expression is the result of exp. There should be no
references to ‘‘tmp’’ outsize of ‘‘exp’’.

exp: TEMP

The value of a temporary variable is used. The size of the expression is the size associated with the tem-
porary variable. The temporary variable may have been allocated with ALLOC, or may have been allo-
cated in some other way.

A TEMP node represents a register that the front end of the compiler is using as an explicit temporary.
Whereas an intermediate result of a tree calculation may be used only once (in the calculation of its
parent), a TEMP register may be used in several calculations.

TEMP nodes can be used to represent specific machine registers like stack pointers and frame pointers. In
this case the generation of the intermediate tree is somewhat dependent on the stack-frame layout being
used. This slight machine-dependency can easily be made transparent to the front end of the compiler.

exp: CALLsize(args,exp)

A function is called with arguments. The argument list ‘‘args’’ is evaluated; these are passed to the func-
tion, whose address is given by ‘‘exp.’’ The function returns a result of size ‘‘size,’’ and this result is the
value of the CALL-expression. The arguments may be evaluated left-to-right, or right-to-left, or in some
other order. All arguments are call-by-value.
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test: CAND(test, test)

The CAND (condition-and) operator first evaluates the test e1. If this is false, the result of the CAND is
false. Otherwise, e2 is evaluated; if both e1 and e2 are true, the result is true; else false.

This is one of the few operators to guarantee the order of evaluation of the subtrees.

test: NOT(test)

The boolean value of a test is complemented. Note that tests are not expressions, and do not have sizes.

test: REL(relop,exp,exp)

A boolean test-value is created from the comparison of two equal-sized expressions. The ‘‘op’’ is a rela-
tional operator: equality, inequality, greater-than, etc.

args: ARG(exp, args)

One element of an argument-list, with two fields: ‘‘This element’’ (exp), and ‘‘rest-of-list’’ (args). Note
that an ‘‘args’’ node has a size field, which is computed as the sum of the sizes of the two fields.

args: NOARGS

This is an empty argument list, or it is the ‘‘end’’ of an argument list. The size is zero.

binop: FPLUS FMINUS FMUL FDIV

These are the floating point arithmetic operators, in single- or double-precision.

binop: PLUS MINUS MUL DIV MOD AND OR LSHIFT RSHIFT XOR

These are the integer arithmetic operators, which work on 1-, 2-, or 4-byte integers.

relop: EQ NEQ LT LEQ GT GEQ

These are the signed-integer comparison operators, which work on 1-, 2-, or 4-byte integers.

relop: ULT ULEQ UGT UGEQ

These are the unsigned-integer comparison operators. Equality and inequality of unsigned integers are
tested with EQ and NEQ, just as for signed integers.

relop: FEQ FNEQ FLT FLEQ FGT FGEQ

These are the floating-point comparison operators, which work on single- or double-precision numbers.
(Both arguments must be of the same precision, of course.)

unop: NEG COMP FNEG

These are the unary operators. They specify the integer-negation, integer-complement, and floating-
negation, respectively.

unop: CVTSU CVTSS CVTSF CVTUU CVTUS CVTFS CVTFF

These are the type-conversion operators. They convert between the three types ‘‘Signed-integer’’,
‘‘Unsigned-integer’’, and ‘‘Floating-point.’’ Thus, CVTSU converts from signed to unsigned integers.

These are among the only operators that take arguments whose size is different from their result. Thus, one
may use CVTSU to convert from a 1-byte signed integer to a 4-byte unsigned integer, or from a 2-byte
unsigned integer to a 1-byte signed integer, etc.



- 13 -

3.4. Layout of the nodes in storage

The concrete representation of the nodes in the computer is done with structs (in the C language) pointing
to other structs. Here is the declaration of the type Tree:

typedef struct tree *Tree;

struct tree {char op; char reg, kind;
union {int size;

Label proclabel;
. . . other fields

} x;
union {Tree child[3];

Label label;
int ivalue;
double fvalue;
struct temp *temp;
. . . other fields

} u;
};

The fields named x.size, x.proclabel, u.label, u.ivalue, u.fvalue, and u.temp correspond to the similarly
named attributes described in a previous section. The u.child vector points at the zero, one, two, or three
children of a node. Any child-bearing node with fewer than three children will have NULL’s in the
higher-numbered entries of the child vector. To know whether a node is child-bearing it is necessary to
look at the op field, which specifies the kind of node this is.

The reg and kind fields are used by the code generation algorithm to annotate the tree, and are left
blank when the trees are created by the front end of the compiler.

3.5. Constant folding

The code generators to be described in this paper are really just optimal instruction selectors, not general
optimizers. To simplify the instruction selection, it is useful to do some machine-independent partial
evaluation of intermediate representation trees.

Twig has a feature that is intended for this purpose (REWRITE rules), but it is difficult to use. Further-
more, the constant folding is machine-independent, and the Twig grammar describes the machine-
dependent instruction selection phase. And if the constant-folding is done early, then Twig won’t waste
time doing cost-evaluations on trees that are to be re-written.

Therefore, it is best to do the constant-folding as the trees are constructed. For example, there is an inter-
face function that builds an OP node given a size and pointers to its children:

Tree buildOP(size, operator, left, right)
int size; Tree operator, left, right;

All tree nodes are built using calls to such functions. When the buildOP function is called upon to build
the tree corresponding to the sum of two CONST nodes, it may return a new CONST node whose value is
the sum (instead of an OP node which formally represents the sum).

The identities listed in Figure 2 are used to simplify the structure of the trees. In general, they try to fold
CONST nodes together, and to this end they try to move CONST nodes to the right in expressions. They
also perform some specific rearrangements of PLUS and MUL that are useful in simplifying expressions
found in array indexing. Finally, they attempt to bring NAME and CONST nodes close to each other so
that the back end may take advantage of this if it is so equipped.
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name: NAME
name: OP(PLUS,name,CONST)
commute: PLUS MUL XOR OR AND
assoc: PLUS MUL XOR OR AND
id0: PLUS MINUS XOR OR
id1: MUL DIV
rel: EQ NEQ GT GEQ etc.

OP(commute, CONST, exp) → OP(commute, exp, CONST)
OP(commute, name, exp) → OP(commute, exp, name)
OP(op, CONST, CONST) → CONST
OP(id0, exp, zero) → exp
OP(id1, exp, one) → exp
OP(MUL, OP(PLUS,exp, CONST), CONST) → OP(PLUS, OP(MUL, exp, CONST), CONST)
OP(MINUS, exp, CONST) → OP(PLUS, exp, CONST)
OP(assoc, OP(assoc, exp, CONST), CONST) → OP(assoc, exp, CONST)
OP(PLUS, exp, OP(PLUS, exp’, exp’’) → OP(PLUS, OP(PLUS, exp, exp’), exp’’)
OP(PLUS, OP(PLUS, exp, name), CONST) → OP(PLUS, exp, OP(PLUS, name, CONST))
OP(PLUS, OP(PLUS, exp, name), exp’) → OP(PLUS, OP(PLUS, exp, exp’), name)
UNOP(op, CONST) → CONST
OP(NEQ, BOOL(test), zero) → test
OP(rel, CONST, exp) → OP(rel’, exp, CONST)

These rules are summarized here in a semi-formal notation, but some of the details have been elided. In
particular, some of combinations of rules appear to have the potential to loop indefinitely, but in practice
their application is restricted so that this will not happen. For example, the rule

OP(commute, CONST, exp) → OP(commute, exp, CONST)

is not applicable if exp is a constant. Similar restrictions on the other rules prevent looping.

These constant-folding operations are worthwhile because the code generator can be much simpler if it can
assume that the CONST is always on the right of an addition: normally, commutative operators like PLUS
lead to much duplication of tree-patterns, but now any pattern with CONST as the left operand is unneces-
sary.

4. The VAX instruction set

The VAX has a rather complex, though mostly consistent, instruction set[20]. The operands of VAX
instructions may have several forms, known as ‘‘addressing modes.’’ The instructions themselves may be
three-address (operating on two operands and placing the result in a third) or two-address (placing the
result in the second source operand). There are several instructions that are just cheaper special cases of
other instructions (like the increment instruction).

For example, the instruction

addl3 r1,8(r2),*(r3)+[r4]

adds the values of the first two operands — r1 and 8(r2) — and stores the result in the third — *(r3)+[r4].

The word ‘‘add’’ specifies that the result is the sum of the first two operands. The letter ‘‘l’’ indicates that
the operands are to be considered as longwords (4-byte integers). The 3 appended to the opcode specifies
that this is a three-address instruction (rather than a two-address instruction).

The first operand is a simple register-mode operand: the value of the operand is just the contents of register
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1. The second operand is a displacement-mode operand: the sum of 8 and the contents of register 2 give
the address of the memory cell in which the value is to be found.

The third operand is an autoincrement-deferred-indexed-mode operand, and more complicated. First, the
contents of register 3 are used as an address from which to fetch a value x. Then, register 4 is multiplied by
4 (because this is a longword instruction) and added to x. Then x is used as the address in which to store
the result of the addl3 instruction. Register 3 is then incremented (by 4).

Because the autoincrement and autodecrement modes cause side-effects as well as yield values, they are
difficult, though not impossible, to use in code generation. The code-generator specification described here
does not use these addressing modes. However, it uses all the other addressing modes, including the
indexed modes.

4.1. Nonterminals for the VAX

The terminal symbols for the VAX’s Twig specification must, of course, be exactly those of the IR
trees. These were described in the previous chapter. The nonterminal symbols are free to be different, as
long as the resulting grammar describes the same language of trees.

The nonterminal symbols will be:

body the start symbol of the grammar: an entire procedure

stm statement; i.e. code executed for side-effects only

reg a VAX register

operand a VAX addressing mode

location an address in memory specifiable as an addressing mode

ioperand a VAX indexed addressing mode

destination an operand that denotes a storable memory location

computation roughly, all but the last operand of a machine instruction. (This will be explained in
greater detail.)

test boolean condition: code that will branch if true

ntest negated boolean condition: code that will branch if false

flag an expression that will set condition codes

bigval an expression too large to fit in registers (like an array or record)

binop binary operator symbol (PLUS, MINUS, etc.)

unop unary operator symbol (NEGATE etc.)

relop relational operator (EQ, NEQ, etc.)

cvtop a conversion operator

cvtopu an unsigned conversion operator

name a constant or a label

args a list of actual parameters to a procedure

zero a constant with value 0 (integer or floating).

4.2. Cost definitions

Each match of a nonterminal to a tree-node is associated with a given cost. These costs have several
components:
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space The number of bytes occupied by the instruction

time the amount of time taken by the instruction (measured in tenths of microseconds on a
VAX-11/780). Because of pipelining variations, cache misses, etc., this must be an
approximation. Newer implementations of the VAX architecture have significantly dif-
ferent costs; in particular, access to memory is cheaper relative to register access.

setFlags whether the instruction sets the condition codes appropriately (e.g. to reflect the sign of
the result)

sideEffect whether the tree rooted at this node has side effects (like a jump or a store)

dontDestroy whether the register holding the value of this node must be saved for later use

hold the number of registers needed to hold the value of this node (in the specific way it was
matched)

maxregs the number of registers needed to compute the children of this match

These cost values will be discussed in more detail in the next section.

The COSTLESS rule, to determine which of two costs is the lesser, simply compares the sum of space and
time:

#define COSTLESS(x,y) ( x.space+x.time < y.space+y.time )

By adjusting this formula, it is possible to ‘‘tune’’ the code generator to optimize for code space or for exe-
cution time, but it is not clear whether any significantly different code sequences will emerge.

The DEFAULT_COST for each node is (roughly) the sum of the costs of the children. That is, the space
values of the children are summed, the time values are summed, and the sideEffect values are unioned.

In addition, a variant[21] of the Sethi-Ullman algorithm[5] for minimizing register-usage is used. This will
require reordering the computation of the children of expression-nodes (as long as there are no side-effects
among the reordered children). The cost of the optimal ordering is computed in DEFAULT_COST, yield-
ing the cost value maxregs. The register allocator also takes care of register spilling, although the cost of a
spill is not calculated as part of the cost of a pattern-match, which could lead to a suboptimal instruction
sequence.

All other fields of the DEFAULT_COST are set to zero.

4.3. Grammar rules for the VAX

Now the production rules of the grammar will be explained. With each rule will be the cost evalua-
tion and the code-generating action. This is the entire code generator specification, except for the prolog
and epilog which contain the following components: The C language interface to the tree representation,
the computation of default costs, the Sethi-Ullman reordering, and the listing of terminal and nonterminal
symbols of the grammar.

4.3.1. The top-level rule

To match an entire procedure or function, the start symbol body is the left-hand-side:
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body: PROC(operand,stm)
{ TOPDOWN; }
={Label masklabel = newLabel();
emit(".align\t1\n.globl\t%s\n",$$->x.proclabel->s);
emit("%s:\n.word\t%s\n",$$->x.proclabel->s,masklabel->s);
tDO($%1$);
emit("subl2\t"); emitoperand($1$); emit(",sp\n");
tDO($%2$);
emit("ret\n.set\t%s,0%o\n",masklabel->s,regmask&07774);
};

The word TOPDOWN in the cost fragment specifies that the children of the PROC node should not be
emitted until explicitly called for (by tDO ). The implementation of the TOPDOWN macro is part of the
standard Twig runtime system; it just sets a flag for the action driver.

The emit procedure works just like the printf procedure in the C language. This rule specifies that the
assembly code for a procedure abc follows this pattern:

.align 1

.globl abc
abc:
.word L23

computation to determine size of local-variable space
subl2 local-variable-size, sp

body of procedure
ret
.set L23, register-mask

4.3.2. Rules for statements

The next few rules give the specification of code generation for the nonterminal symbol stm.

stm: SEQ(stm,stm);

A statement may be a sequence of two statements. The cost is simply the sum of the two subcosts, and the
emitted code is simply the concatenation of the two children. These are the default rules, so no extra
specification is necessary.

stm: LABEL
={emit("%s:\n",$$->u.label->s);};

A statement may be a label definition. The cost is zero (the default), and the assembly language to emit is
simply the label name followed by a colon.

stm: JUMP(name)
{ cost.space=3; cost.time+=8; cost.sideEffect=1;}
={emit("jbr\t"); emitname($1$); emit("\n");};

A statement may be an unconditional jump to a fixed address. Depending on the distance between the
jump and its destination, the instruction (and its cost) will vary. Jump size resolution can’t be handled
easily by a one-pass algorithm, so we make an approximation for the cost and let the assembler resolve the
instruction.

This instruction has a side effect, which must be noted in the cost phrase by setting the sideEffect
field of the cost.
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stm: JUMP(location)
{ cost.space+=1; cost.time+=8; cost.sideEffect=1; }
={emit("jmp\t"); emitlocation($1$); emit("\n");};

Unconditional jumps to variable addresses cannot use the ‘‘branch’’ instruction; they must use the slightly
more expensive ‘‘jmp’’ instruction. The space cost is 1-byte (for the opcode) plus the space taken by the
addressing mode location. The initial value of the cost variable on entry to the cost phrase is the sum of
the costs of the leaves of the pattern. This pattern has only one leaf — location — so the initial value of
cost is that of the space, time, etc. taken by the location. It thus suffices to execute
{cost.space+=1;} to add 1 to the cost of the location. The time cost is about 0.8 microseconds (on a
VAX-11/780) plus the cost of evaluating the location.

stm: CJUMP(test,NAME)
{ cost.sideEffect=1; TOPDOWN; }
={$1$->x.truebranch=$2$->u.label;
EVAL;
};

A conditional jump to a fixed address may be accomplished by evaluating a test, which branches if true to
the label specified in its truebranch attribute. This attribute must be set before the test is emitted, so the
match is TOPDOWN. Finally, EVAL calls for the evaluation of the all the subtrees (in this case, there is
only one subtree, so tDO($%1$) would be equivalent).

stm: CJUMP(ntest,location)
{ cost.space+=1; cost.time+=4; cost.sideEffect=1; TOPDOWN;}
={$1$->x.truebranch=newLabel();
tDO($%1$);
tDO($%2$);
emit("jmp\t"); emitlocation($2$);
emit("\n%s:\n",$1$->x.truebranch->s);
};

The VAX can execute conditional jumps only to fixed addresses. Therefore, there must be a conditional
jump over an unconditional jump. The conditional jump must, of course, test the negated condition, so
ntest is called for. As usual, the cost is computed as the sum of the childrens’ costs plus the number of
extra bytes and microseconds called for here. In this case, there is one extra byte (the opcode of the ‘‘jmp’’
instruction). When the jump is taken, the time will be 0.8 microseconds; we assume that the jump is taken
half the time, for an average cost of 0.4 microseconds. The cost of the ntest includes the cost of the condi-
tional jump contained within it.

stm: operand
={emit("# throw away "); emitoperand($$); emit("\n");};

A statement may be an expression which is evaluated solely for side effects. The most general kind of
expression that will fit here is an operand. It is necessary to call ‘‘emitoperand’’ to free the registers (as
will be explained later), so an assembly-language comment is emitted.

stm: bigval
={emit("# throw away r%d\n",$$->reg); givereg($$);};

Since operand doesn’t match any expression whose value won’t fit into a register (or register-pair), this
rule is added.

There are also several rules for MOVE statements. These will be explained later.

4.3.3. Calculating values into registers

The reg nonterminal represents subtrees that calculate some value (possibly with side-effects) that
ends up in a register.
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The nonterminal computation represents three-address operations, unary operations, and move
instructions (two-address operations are represented by a different nonterminal). Computations will be
described in detail in their own subsection, but here are some examples:

movl 8(r2),

addl3 r5,16(r4)[r2],

mnegl varA,

Note that in each case the last operand — the destination — is missing. A computation specifies every-
thing about an arithmetic operation except the destination.

reg: computation
{cost.space+=1; cost.setFlags=1; HOLD1;}
={emitcomputation($$);
getreg($$);
emit("r%d\n",$$->reg);

};

To generate code to evaluate a computation into a register, there are two steps. First, the instructions to
compute the values of the subtrees of the computations must be emitted. Then, the instruction that com-
putes the root of the computation from the subtrees is emitted. This final instruction will vary according to
what kind of computation has been matched. It might be a (two-address) move instruction, a (three-
address) subtract instruction, or a (two-address) negate instruction (et cetera).

The instructions to evaluate the subtrees are emitted by the action codes of matches that are children
of the root node. (This is the default order in which Twig actions are evaluated.) The instruction at the
root node — all but the last operand — is emitted by the procedure emitcomputation. This procedure also
frees the registers that had been associated with the computation (to hold the values of its operands).

Then a register (or register-pair) is allocated to hold the result of the computation (by the call to
getreg ), and the destination operand is emitted.

The cost calculation is simple. Computations are marked with the amount of time they take, and the
number of bytes required by all but the last operand. On the VAX, a simple register-mode operand takes
only 1 byte, so cost.space is incremented by 1. The match is marked as one that sets the condition codes.
Finally, cost.hold is set to 1 (or 2 if the size attribute of the node indicates that a register-pair will be
required); this is done by the macro HOLD1.

reg: ALLOC(TEMP,reg)
{cost.setFlags=$%2$->cost.setFlags;
cost.dontDestroy=$%2$->cost.dontDestroy;
HOLD1; cost.maxregs+=($1$->x.size/4); TOPDOWN;
}
={getreg($1$); $1$->u.temp->number=$1$->reg;
EVAL;
givereg($1$);
$$->reg=$2$->reg; getagain($$); givereg($2$);
};

An ALLOC node provides a register to use as a TEMP node during the computation of a subtree. When
control leaves the subtree, the register will be de-allocated.

The action phrase of this rule must be evaluated before the action phrase of the reg subtree. This is
in contrast to most rules, in which the actions of the children emit assembly code, followed by the action
phrase of the root of the rule. To avoid the automatic execution of the child subtree’s action phrases, the
rule is marked TOPDOWN, and the word EVAL is used at precisely the point where it is desired the
children’s actions be executed.
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Afterwards, there come calls to the register allocator to indicate that the result of the ALLOC node is
in the same register as the result of the second operand. The cost phrase indicates that the cost attributes
are those of the second operand.

stm: ALLOC(TEMP,stm)
{cost.maxregs+=($1$->x.size/4); TOPDOWN;}
={getreg($1$); $1$->u.temp->number=$1$->reg;
EVAL;
givereg($1$);
};

This pattern is similar to the previous one, with some simplifications.

reg: MOVE(TEMP,computation)
{cost.space+=1; cost.setFlags=cost.sideEffect=cost.dontDestroy=1;}

/* hold 0 */
={emitcomputation($2$);
$$->reg=$1$->u.temp->number;
getagain($$);
emit("r%d\n",$1$->u.temp->number);
};

To assign a value into a TEMP register, the MOVE operation is used. The result of the assignment, as
with the MOVE operation, is the value assigned.

The dontDestroy field of the cost is marked, indicating that this match can’t be used in any context
that requires overwriting of the register allocated to the MOVE node — since this would also overwrite the
TEMP register, which must be saved for possible further use.

The number of registers required to hold the result is zero; this is because an ALLOC operator has
(presumably) reserved the TEMP register, and no additional temporaries are needed. Because zero is the
default, no HOLD specification is required.

The call to getagain indicates that there is one more use of the TEMP register, which needs to be
held until givereg is called with the MOVE node as an argument.

reg: TEMP
{cost.dontDestroy=1; /* hold 0 */;}
={$$->reg=$$->u.temp->number;
getagain($$);
};

This pattern indicates that a TEMP can be used in an expression as well as assigned to. Many of the
remarks made in describing MOVE — about cost calculation and register allocation — apply here.

Certain other reg patterns will be described later.

4.3.4. Locations in memory

The addressing modes of the VAX can be classified into those corresponding to locations in memory
and those that are constant or registers. The nonterminal location will be used to represent the former.

The twig rules for the different location modes are all similar. The space costs are computed
straightforwardly as the number of bytes required to specify the operand. The time costs are computed as
the amount of time that each kind of operand adds to the cost of the instruction of which it is a part.

The hold field of the cost must be the sum of the hold fields of all the children of the location. This
is because the location match does not in itself combine its children into a value in one register; this is only
done later when the instruction is executed. For example, in the instruction

addl3 4(r1)[r2],6(r3),r4

both r1 and r2 (of the first operand) must be held until the addl3 instruction is executed. (If the Sethi-
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Ullman register-allocation scheme is not used, then the hold calculations are not necessary.)

Here are the patterns to match locations:

location: reg
{cost.space+=1; HOLDALL;}
={$$->kind=1;};

location: OP(PLUS,name,reg)
{cost.space+=1; HOLDALL;}
={$$->kind=2;};

location: OP(PLUS,reg,name)
{cost.space+=1; HOLDALL;}
={$$->kind=3;};

location: MEM(OP(PLUS,name,reg))
{cost.space+=1; cost.time+=4; HOLDALL;}
={$$->kind=4;};

location: MEM(OP(PLUS,reg,name))
{cost.space+=1; cost.time+=4; HOLDALL;}
={$$->kind=5;};

location: name
{cost.space+=1;}
={$$->kind=6;};

There are two separate parts to the action of an operand or location. The first part must emit instructions
that bring the appropriate values into registers. The second part must emit the assembler specification of
the operand. These two parts are not contiguous. Consider this program:

movl abc,r1
subl3 $4,ghi,r3
addl3 (r1),8(r3),r5

The first operand of the last instruction was generated from the tree MEM(MEM(NAMEabc)). When the
action phrase of the first operand was invoked by Twig, two things were done: the child of that operand
was emitted (i.e. movl abc,r1); and the kind of match was recorded (i.e. $$→kind=1). Then the same was
done for the second operand of the last instruction.

When the computation corresponding to the last instruction was emitted by emitcomputation, the
function emitlocation was called for each operand. This function examines the kind of its argument, and
emits the appropriate assembly-language phrase:
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emitlocation(t) Tree t;
{
switch(t->kind)

{case 1: /* reg */
emit("(r%d)",t->reg); givereg(t); break;

case 4: /* MEM(OP(PLUS,name,reg)) */
emit("*"); t=t->u.child[0]; /* fall through */

case 2: /* OP(PLUS,name,reg) */
emitname(t->u.child[1]);
emit("(r%d)",t->u.child[2]->reg);
givereg(t->u.child[2]->reg); break;

case 5: /* MEM(OP(PLUS,reg,name)) */
emit("*"); t=t->u.child[0]; /* fall through */

case 3: /* OP(PLUS,reg,name) */
emitname(t->u.child[2]);
emit("(r%d)",t->u.child[1]->reg);
givereg(t->u.child[1]->reg); break;

case 6: /* name */
emitname(t); break;

}
}

4.3.5. Index mode

Many of the VAX addressing modes can be augmented by an ‘‘index,’’ which is a register multiplied
by a constant (1, 2, 4, or 8, depending on the operation code). This is somewhat tricky, as the size of the
multiplier is specified not in the address itself, but in the instruction of which the address is a part. The
solution is to match any constant, but to remember (in a field of the cost variable) what the constant is.
Then any other pattern that contains an indexed operand (ioperand) must check that the constant is correct.

ioperand: OP(PLUS,location,OP(MUL,reg,CONST))
{cost.isize=$3.3$->u.ivalue;
cost.space+=1; cost.time+=6; HOLDALL;}
={$$->kind=11;};

ioperand: OP(PLUS,location,reg)
{cost.isize=1;
cost.space+=1; cost.time+=6; HOLDALL;}
={$$->kind=12;};

ioperand: OP(PLUS,OP(MUL,reg,CONST),location)
{cost.isize=$2.3$->u.ivalue;
cost.space+=1; cost.time+=6; HOLDALL;}
={$$->kind=13;};

ioperand: OP(PLUS,reg,location)
{cost.isize=1;
cost.space+=1; cost.time+=6; HOLDALL;}
={$$->kind=14;};

We assume that intermediate trees are always generated with CONST nodes on the right-hand-side of com-
mutative operators. However, we still need four versions of ioperands, because the front end cannot know
whether to put location or OP(MUL,reg,CONST) first. In addition, when the CONST is 1, the pattern
may be simpler.

The isize field of the cost is set to the size of the multiplier; all rules that use ioperand check that
field.



- 23 -

4.3.6. Destinations

The nonterminal destination represents VAX addressing modes that denote storable locations.
These are of the form MEM(x), where x is an address.

destination: MEM(location)
{cost.time+=4; HOLDALL;}
={$$->kind=24;};

destination: MEM(ioperand)
{if ($$->x.size != $%1$->cost.isize) ABORT;
cost.time+=4; HOLDALL;}
={$$->kind=25;};

The fact that all nodes include a specification of their representation size makes it possible to handle
the checking of isize in index-mode operands very simply.

4.3.7. R-value operands

The nonterminal operand represents r-expressions: those that may be used as subexpressions, but
that do not necessarily represent memory locations. Operands may be registers ( reg ), constants ( name
or CONSTF ), or destinations.

operand: reg
{cost.space+=1; HOLDALL;
cost.setFlags = $%1$->cost.setFlags;}
={$$->kind=21;};

operand: name
{cost.space+=1;}
={$$->kind=22;};

operand: CONST
{if (!($$->u.ivalue >= 0 && $$->u.ivalue < 64)) ABORT;
cost.space=1;}
={$$->kind=22;};

operand: CONSTF
{cost.space = 1+$$->x.size; }
={$$->kind=23;};

operand: destination
{HOLDALL;}

The nonterminal name stands for integer constants, labels, and sums of constants and labels. Any such
constant recognized as a name will have an appropriate space cost calculated. The rule for using a name
as an operand requires one extra byte to specify the addressing mode, in addition to the space taken by the
name.

The VAX has a ‘‘short constant’’ addressing mode that fits in just one byte. Such short constants
will be recognized by both the name and the CONST rules, above; but the latter will have the lower cost.
This is a simple example of the utility of ambiguous grammars.

As with locations, the evaluation pass emits subtrees and records the kind of the match; the operand
specifier is emitted (later) by a call to the procedure emitoperand:
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emitoperand(t) Tree t;
{switch(t->kind)

{case 21: /* reg */
emit("r%d",t->reg); givereg(t); break;

case 22: /* name */
emit("$"); emitname(t); break;

case 23: /* CONSTF */
emit("$%f", t->u.fvalue); break;

case 24: /* MEM(location) */
emitlocation(t->u.child[0]); break;

case 25: /* MEM(ioperand) */
emitioperand(t->u.child[0]); break;

}
}

4.3.8. Computations

There are a variety of instructions that do some calculation (involving one or two operands) and
move the result into a register or other destination. These will be called computations. The VAX assembly
language for a computation looks like an arithmetic instruction (three-address), a unary arithmetic instruc-
tion (two address), or a move instruction; but with the last (destination) operand not specified. As with
operands, computations must be emitted in two phases; the first phase emits the instructions that calculated
values needed by the various operands of the instrution; the second phase (invoked by a call to emitcompu-
tation ) emits the appropriate assembler instruction (without the last operand).

computation: operand
{if ($$->x.size>8 || sizecode[$$->x.size]==’.’) ABORT;
cost.setFlags = $%1$->cost.setFlags;
cost.time += 4; cost.space+=1; HOLDALL;};

computation: OP(binop,operand,operand)
{cost.space+=1; HOLDALL;}

={$$->kind=31;};
computation: UNOP(unop,operand)

{cost.space+=1; HOLDALL;}
={$$->kind=32;};

computation: UNOP(cvtop,operand)
{cost.space+=1; HOLDALL;}
={$$->kind=33;};

computation: location
{cost.time+=4; cost.space+=1; HOLDALL;};

computation: ioperand
{if ($%1$->cost.isize > 8 || sizecode[$%1$->cost.isize]==’.’) ABORT;
cost.time+=4; cost.space+=1; HOLDALL;};

There are several kinds of computations here. A computation can be simply an operand, in which case a
move instruction is generated. In this case the kind field of the node will have been set by an operand
tree-pattern, and it is left unchanged by the computation pattern.

A computation can be an arithmetic operator applied to two operands, in which case an arithmetic
instruction (like add or div is generated. In this case, the binop itself contains the time component of the
cost, since different operators take different amounts of time. A computation can be the application of a
conversion operator to an operand, in which case a conversion instruction is emitted. Finally, a computa-
tion may correspond to the VAX move address instruction, for which the source operand is any location
(possibly indexed).

As with locations and operands, computations can’t be emitted until an entire instruction is built, so a
separate procedure traverses the tree looking at the kind fields of the nodes:
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emitcomputation(t) Tree t;
{switch(t->kind)

{case 31: /* OP(binop, operand, operand) */
{emit("%s%c3\t",vaxop[t->u.child[0]->op],

t->u.child[0]->u.op.sizecode[t->x.size]);
emitoperand(t->u.child[2]); emit(",");
emitoperand(t->u.child[1]); emit(",");
} break;
case 32: /* UNOP(unop,operand) */
{emit("%s%c\t",vaxop[t->u.child[0]->op],sizecode[t->x.size]);
emitoperand(t->u.child[1]); emit(",");
} break;
case 33: /* UNOP(cvtop,operand) */
{emit("cvt%c%c\t",

t->u.child[0]->u.cvt.sizecodefrom[t->u.child[1]->x.size],
t->u.child[0]->u.cvt.sizecodeto[t->x.size]);

emitoperand(t->u.child[1]); emit(",");
} break;
case 34: /* UNOP(cvtopu,computation) */
emitcomputation(t->u.child[1]);
break;

case 35: /* OP(LSHIFT,operand,operand) */
emit("ashl\t");
emitoperand(t->u.child[2]); emit(",");
emitoperand(t->u.child[1]); emit(",");
break;

case 36: /* OP(RSHIFT,reg,reg) */
{struct tree q;
getreg(&q);
emit("subl3\tr%d,$32,r%d\nextzv\tr%d,r%d,r%d," ,

t->u.child[2]->reg,q.reg,t->u.child[2]->reg,q.reg,
t->u.child[1]->reg);

givereg(&q); givereg(t->u.child[1]); givereg(t->u.child[2]);
} break;
case 37: /* OP(RSHIFT,reg,CONST) */
emit("extzv\t$%d,$%d,r%d,",

t->u.child[2]->u.ivalue,
32-t->u.child[2]->u.ivalue,
t->u.child[1]->reg);

givereg(t->u.child[1]);
break;

case 1: case 2: case 3: case 4: case 5: case 6: case 7: case 8:
/* location */

emit("movab\t"); emitlocation(t); emit(",");
break;

case 11: case 12: case 13: case 14: case 15:
/* ioperand */

emit("mova%c\t",sizecode[sizeioperand(t)]);
emitioperand(t); emit(",");
break;

case 21: case 22: case 23: case 24: case 25: case 26: case 27:
/* operand */

{emit("mov%c\t",sizecode[t->x.size]);
emitoperand(t); emit(",");
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} break;
default: emit("# Strange kind of computation into ");

}
}

4.3.9. Boolean conditions

Many computers, including the VAX, evaluate boolean tests in two phases. The first phase, carried
out by a compare (or arithmetic) instruction, sets the condition flags depending on whether the result is
zero/nonzero, negative/nonnegative, et cetera. The second phase performs a conditional jump depending
on the values of the condition flags.

That breakdown into phases turns out to be convenient to recognize in the design of a code genera-
tor. The nonterminal flag will match a comparison or arithmetic instruction, and will emit an instruction
that sets the condition flags of the machine. The nonterminal test will match a boolean expression built
from one or more flags using the operators NOT (boolean negation) and CAND (conditional-and, in which
the second argument is evaluated only if the first argument is true). The conditional-or can be built from
NOT and CAND using DeMorgan’s law.

A test corresponds to a block of instructions that will branch to a given address if a given condition
(built from CAND, NOT, and flags) is true; otherwise control will fall through to the next block of instruc-
tions. The nonterminal ntest (for negated test) stands for a block of instructions that will branch if a given
condition is false.

The action phrases of tests and ntests must be evaluated TOPDOWN to set the truebranch attribute
of the children of the test (or ntest) before the children’s instructions — which will contain jumps to the
truebranch label — are emitted.
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test: CAND(ntest,test)
{TOPDOWN;}
={Label l=newLabel();
$1$->x.truebranch=l;
$2$->x.truebranch=$$->x.truebranch;
EVAL;
emit("%s:\n",l->s);

};
ntest: CAND(ntest,ntest)

{TOPDOWN;}
={$1$->x.truebranch=$$->x.truebranch;
$2$->x.truebranch=$$->x.truebranch;
EVAL;

};
test: NOT(ntest)

{TOPDOWN;}
={$1$->x.truebranch=$$->x.truebranch;
EVAL;
};

ntest: NOT(test)
{TOPDOWN;}
={$1$->x.truebranch=$$->x.truebranch;
EVAL;
};

ntest: flag
{cost.space += 4; cost.time += 8;}
={emit("j%s\t%s\n",vaxop[negate($$->kind)],$$->x.truebranch->s);};

test: flag
{cost.space += 4; cost.time += 8;}
={emit("j%s\t%s\n",vaxop[$$->kind],$$->x.truebranch->s);};

The productions above show how to build tests subtrees from flag primitives, which represent the condi-
tion code settings of the VAX. There are three ways to set the condition codes: by a cmp (compare)
instruction, which subtracts one operand from the other and sets the condition codes according to the result;
by a tst (test) instruction, which is like a compare against zero; or by using the condition code generated
from the previous instruction. The latter is only appropriate if the previous instruction generates a useful
condition code; the setFlags field of the cost is maintained to provide this information.

The kind field node carries the information about which condition is to be tested in the jump instruc-
tion. The rules for flag set this field, and the rules for test and ntest read the field.
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flag: OP(relop,operand,operand)
{cost.space += 1; cost.time += 4;}

={emit("cmp%c\t",$1$->u.op.sizecode[$2$->x.size]);
emitoperand($2$); emit(","); emitoperand($3$); emit("\n");
$$->kind=$1$->op;
};

flag: OP(relop,operand,zero)
{cost.space += 1; cost.time += 4;}
={emit("tst%c\t",$1$->u.op.sizecode[$2$->x.size]);
emitoperand($2$); emit("\n");
$$->kind=$1$->op;
};

flag: OP(relop,stm,zero)
{if (!$%2$->cost.setFlags) ABORT;}
={$$->kind=$1$->op;};

Finally, a test may be turned back into a number (0 or 1) by the BOOL operator. One could imagine
a machine with a convenient ‘‘move condition code to register’’ instruction; but the VAX does not have
one, so a conditional jump is used:

reg: BOOL(test)
{cost.space+=9; cost.time+=12; cost.setFlags=1; HOLD1; TOPDOWN;}
={Label merge=newLabel();
$1$->x.truebranch=newLabel();
EVAL;
getreg($$);
emit("clrl\tr%d\njbr\t%s\n%s:\nmovl\t$1,r%d\n%s:\n",

$$->reg,merge->s,$1$->x.truebranch->s,$$->reg,merge->s);
};

4.3.10. Expressions too large to fit in registers

In languages where entire records or arrays may be assigned or passed by value, it is necessary to
match patterns like

MOVE(MEM(location),MEM(location))

where the size attribute of the MEM nodes (equivalently, of the MOVE node) are arbitrarily large. The
patterns previously shown all assume that fetched values will fit in registers (or register-pairs). However,
when the data-value is too large, we may match the entire pattern as a block-move.

Some languages allow multiple assignments:

a := b := c := d;

where a, b, c, and d are all record variables. Thus the patterns to be matched are slightly more general than
the one shown above:
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bigval: MEM(reg)
={$$->reg=$1$->reg; getagain($$); givereg($1$);};

bigval: MOVE(MEM(location),bigval)
{if ($$->x.size>65535) ABORT;
cost.space+=2; cost.time+= 56+ 37*$$->x.size/10; cost.sideEffect=1;
}
={int i;
for(i=0;i<=5;i++) makeAvail(i,07700);
emit("movc3\t$%d,(r%d),",$$->x.size,$2$->reg);
emitlocation($1.1$); emit("\n");
$$->reg=$2$->reg; getagain($$); givereg($2$);
};

A register is associated with each bigval; this register holds the address (not the value) of the appropriate
record value. The register allocator must be told (via makeAvail to make register 0 through 5 available
for this instruction to use.

4.3.11. Operators

The operator classes, which match tokens like PLUS and NEG, are recognized as the nonterminals
binop (binary operator), unop (unary operator), cvtop (conversion operator), and cvtopu (unsigned
conversion operator) by a set of trivial rules. For each operator, the cost of execution time is recorded, as
well as the size code vector (to indicate operand sizes in integer format — b,w,l — or floating point format
— f,d — as appropriate).
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unop: FNEG {cost.time = 8;} ={$$->u.op.sizecode=sizecodef;};
unop: NEG {cost.time = 4;}={$$->u.op.sizecode=sizecodei;};
unop: COMP {cost.time = 4;} ={$$->u.op.sizecode=sizecodei;};

binop: FPLUS {cost.time = 8;} ={$$->u.op.sizecode=sizecodef;};
binop: FMINUS {cost.time = 8;} ={$$->u.op.sizecode=sizecodef;};
binop: FMUL {cost.time = 12;} ={$$->u.op.sizecode=sizecodef;};
binop: FDIV {cost.time = 40;} ={$$->u.op.sizecode=sizecodef;};

binop: PLUS {cost.time = 4;} ={$$->u.op.sizecode=sizecodei;};
binop: MINUS {cost.time = 4;} ={$$->u.op.sizecode=sizecodei;};
binop: MUL {cost.time = 16;} ={$$->u.op.sizecode=sizecodei;};
binop: DIV {cost.time = 100;} ={$$->u.op.sizecode=sizecodei;};
binop: OR {cost.time = 4;} ={$$->u.op.sizecode=sizecodei;};
binop: XOR {cost.time = 4;} ={$$->u.op.sizecode=sizecodei;};
binop: ANDNOT {cost.time = 4;} ={$$->u.op.sizecode=sizecodei;};

relop: EQ ={$$->u.op.sizecode=sizecodei;};
relop: NEQ ={$$->u.op.sizecode=sizecodei;};
relop: LT ={$$->u.op.sizecode=sizecodei;};
relop: LEQ ={$$->u.op.sizecode=sizecodei;};
relop: ULT ={$$->u.op.sizecode=sizecodei;};
relop: ULEQ ={$$->u.op.sizecode=sizecodei;};
relop: GT ={$$->u.op.sizecode=sizecodei;};
relop: GEQ ={$$->u.op.sizecode=sizecodei;};
relop: UGT ={$$->u.op.sizecode=sizecodei;};
relop: UGEQ ={$$->u.op.sizecode=sizecodei;};

relop: FEQ ={$$->u.op.sizecode=sizecodef;};
relop: FNEQ ={$$->u.op.sizecode=sizecodef;};
relop: FLT ={$$->u.op.sizecode=sizecodef;};
relop: FLEQ ={$$->u.op.sizecode=sizecodef;};
relop: FGT ={$$->u.op.sizecode=sizecodef;};
relop: FGEQ ={$$->u.op.sizecode=sizecodef;};

cvtop: CVTSS {cost.time=4;}
={$$->u.cvt.sizecodefrom=sizecodei;
$$->u.cvt.sizecodeto=sizecodei;
};

cvtop: CVTSF {cost.time=8;}
={$$->u.cvt.sizecodefrom=sizecodei;
$$->u.cvt.sizecodeto=sizecodef;
};

cvtop: CVTFS {cost.time=8;}
={$$->u.cvt.sizecodefrom=sizecodef;
$$->u.cvt.sizecodeto=sizecodei;
};

cvtop: CVTFF {cost.time=8;}
={$$->u.cvt.sizecodefrom=sizecodef;
$$->u.cvt.sizecodeto=sizecodef;
};

cvtopu: CVTSU;
cvtopu: CVTUU;
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cvtopu: CVTUS;

4.3.12. Constants and labels

Literal constants and labels are interchangeable in some contexts and not in others. When either will
do, the symbol name is used:

name: CONST
{int i=$$->u.ivalue;
cost.space= i>=0 ? i>32767 ? 4 : i>127 ? 2 : 1

: i<-32768? 4 : i<-128? 2 : 1 ;
};

name: NAME
{cost.space=4;};

name: OP(PLUS,NAME,CONST)
{cost.space=4;};

Note that the amount of space occupied by a constant depends on the size (byte, word, or longword) of the
constant. The same is true for labels, but it’s harder to determine the actual space requirements before
assembly, so a conservative estimate is used.

4.3.13. Storing into memory

There are two different ways to store values into memory. If a value is in a register, then it may be
moved into memory; the value remains in the register and may be re-used directly. Thus, a MOVE of a
register value may be matched as a register.

If, on the other hand, a value is computed and stored in the same instruction, so that it is never expli-
citly put into a register, then the resulting computation may not be matched as a register; it must be
matched as a statement.

reg: MOVE(destination,reg)
{cost .time+= 12; cost.space+=2; cost.setFlags=1; cost.sideEffect=1;
HOLD1;}
={$$->reg=$2$->reg;
getagain($$); givereg($2$);
emit("mov%c\tr%d,",sizecode[$$->x.size],$2$->reg);
emitoperand($1$);
emit("\n");
};

The MOVE operator stores its right operand into memory at the address specified by its left operand; it
also yields the right operand as its result. Thus, a register may match a MOVE node if the right operand
matches as a register; the register will be moved into memory and will remain unchanged as the result of
the MOVE.

The left operand may be any destination. The time required is 1.2 microseconds over and above the
time required to compute the destination and the reg. The space required is the space for the destination
plus 2 bytes: one for the ‘‘mov’’ opcode and one for the register-mode operand. This instruction sets the
condition codes appropriately, has a side effect, and requires 1 register (or register-pair) to hold its
‘‘result.’’ These facts are indicated in the cost phrase (HOLD1 looks at the size of the node to determine
how many registers are required).

Instead of allocating a new register for the MOVE node, the result will be kept in the same register
as was used for the right operand. The register-number must be copied from the reg attribute field of the
right child into the reg field of the root. The calls to getagain and givereg tell the register-allocator that
this has been done. Then a move instruction is generated; emitoperand emits the destination l-operand.
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The VAX actually has several different move instructions:

movb to move a byte

movw to move a word (two bytes)

movl to move a longword (four bytes)

movq to move a quadword (eight bytes)

The array sizecode is indexed by the size of the MOVE node (1, 2, 4, or 8) and has as its elements the
appropriate ASCII characters for the different sizes:

char sizecode[] = ".bw.l...q";

Thus, this MOVE pattern takes care of storing all sizes for which the VAX has a move instruction.

If the value to be stored is never in a register, then the result of the computation is not available for
computations in the parent node of the tree. That is, such a MOVE can be matched as a statement, but not
as a register:

stm: MOVE(destination,computation)
{cost.time += 8; cost.setFlags=1; cost.sideEffect=1;}
={emitcomputation($2$);
emitoperand($1$);
emit("\n");
};

There are some cases where an operand in memory is to be destructively changed by a two-address
instruction. When one of the source operands is the same as the destination, this kind of pattern can be
matched:

stm: MOVE(destination,OP(binop,operand,operand))
{if (cost.sideEffect || !equal($1$,$2.2$)) ABORT;
cost.time -= $%3$->cost.time; cost.space -= $%3$->cost.space;
cost.space += 1; cost.time += 8; cost.setFlags=1; cost.sideEffect=1;
TOPDOWN;
}
={$%3$->cost.dontEval=1; EVAL;
emit("%s%c2\t",vaxop[$2.1$->op],$2.1$->u.op.sizecode[$$->x.size]);
emitoperand($2.3$); emit(","); emitoperand($1$); emit("\n");
};

stm: MOVE(destination,OP(binop,operand,operand))
{if (!(nodeops[$2.1$->op].attributes&PROPcommute)) ABORT;
if (cost.sideEffect || !equal($1$,$2.3$)) ABORT;
cost.time -= $%4$->cost.time; cost.space -= $%4$->cost.space;
cost.space += 1; cost.time += 8; cost.setFlags=1; cost.sideEffect=1;
TOPDOWN;
}
={$%4$->cost.dontEval=1; EVAL;
emit("%s%c2\t",vaxop[$2.1$->op],$2.1$->u.op.sizecode[$$->x.size]);
emitoperand($2.2$); emit(","); emitoperand($1$); emit("\n");
};

If the destination is the same as the second operand (such a test is made by the equal function), and if the
operand does not cause any side effects, then the two-address form of the instruction can be used. The
operand will not be emitted. In this case, its cost must be subtracted from the node’s cost, as it has been
prematurely added in the DEFAULT_COST. Furthermore, not be emitted; this fact is communicated by set-
ting dontEval for that leaf of the pattern.
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The second version of this pattern works only for commutative operators, and does the same optimi-
zation for the first operand.

Finally, there are patterns corresponding to the VAX increment, decrement, and clear instructions.

stm: MOVE(destination,OP(PLUS,operand,CONST))
{if (!(equal($1$,$2.2$) &&

($2.3$->u.ivalue == 1 || $2.3$->u.ivalue == -1))) ABORT;
cost.time -= $%2$->cost.time; cost.space -= $%2$->cost.space;
cost.time += 8; cost.space+= 1;
cost.setFlags=1; cost.sideEffect=1;
TOPDOWN;
}
={$%2$->cost.dontEval=1; EVAL;
emit("%s%c\t", $2.3$->u.ivalue>0 ? "inc":"dec",

sizecode[$1$->x.size]);
emitoperand($1$);
emit("\n");
};

stm: MOVE(destination,zero)
{cost.time += 4; cost.space += 1; cost.setFlags=cost.sideEffect=1;}
={emit("clr%c\t",sizecode[$1$->x.size]);
emitoperand($1$);
emit("\n");
};

4.3.14. Destructive register operations

The two-address arithmetic instructions put newly computed values into the register containing the
second operand. These can be matched as registers only if the dontDestroy field of the given register is not
set. (It would be set if the register’s value was used in several places; in this case it would have been
specified as a TEMP.)

The patterns below produce VAX instructions that destroy one of their operands:
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reg: OP(binop,reg,operand)
{cost.space += 2; cost.setFlags=1; HOLD1;
if ($%2$->cost.dontDestroy) ABORT;
}
={emit("%s%c2\t",vaxop[$1$->op],$1$->u.op.sizecode[$$->x.size]);
emitoperand($3$);
emit(",r%d\n",$2$->reg);
$$->reg=$2$->reg;
getagain($$); givereg($2$);
};

reg: OP(binop,operand,reg)
{cost.space += 2; cost.setFlags=1; HOLD1;
if ($%3$->cost.dontDestroy) ABORT;
if (!(nodeops[$1$->op].attributes&PROPcommute)) ABORT;
}
={emit("%s%c2\t",vaxop[$1$->op],$1$->u.op.sizecode[$$->x.size]);
emitoperand($2$);
emit(",r%d\n",$3$->reg);
$$->reg=$3$->reg;
getagain($$); givereg($3$);
};

reg: OP(PLUS,reg,CONST)
{if (!($3$->u.ivalue == 1 || $3$->u.ivalue == -1)) ABORT;
if ($%1$->cost.dontDestroy) ABORT;
cost.time += 4; cost.space += 2; cost.setFlags=1; HOLD1;
}
={$$->reg=$2$->reg; getagain($$); givereg($2$);
emit("%s%c\tr%d\n", $3$->u.ivalue>0 ? "inc":"dec",

sizecode[$$->x.size], $$->reg);
};

4.3.15. Exceptional instructions

Some VAX instructions do not fit conveniently into any pattern. These include the shift, modulo,
and unsigned conversion operations. Individual patterns are provided for these instructions.
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computation: OP(RSHIFT,reg,reg)
{if ($$->x.size != 4 || $2$->x.size != 4 || $3$->x.size != 1) REWRITE;
cost.time += 24; cost.space+=8; HOLDALL;}
={if ($$->x.size != 4 || $2$->x.size != 4 || $3$->x.size != 1)

{SUBSTITUTE(tCONVERT($$->x.size,OPcvtuu,
tOP(4,OPrshift,
tCONVERT(4,OPcvtuu,$2$),
tCONVERT(1,OPcvtuu,$3$))));}

else $$->kind=36;
};

computation: OP(RSHIFT,reg,CONST)
{if ($$->x.size != 4 || $2$->x.size != 4) ABORT;
cost.time += 20; cost.space += 4; HOLDALL;}
={$$->kind=37;};

computation: OP(LSHIFT,operand,operand)
{if ($$->x.size != 4 || $2$->x.size != 4 || $3$->x.size != 1) REWRITE;
cost.time+=20; cost.space+=1; HOLDALL;}
={if ($$->x.size != 4 || $2$->x.size != 4 || $3$->x.size != 1)

{SUBSTITUTE(tCONVERT($$->x.size,OPcvtuu,
tOP(4,OPlshift,
tCONVERT(4,OPcvtuu,$2$),
tCONVERT(1,OPcvtuu,$3$))));}

else $$->kind=35;
};

reg: OP(MOD,computation,reg) /* true modulo, not remainder */
{cost.space+=17; cost.time+=142; cost.setFlags=1; HOLD1;}
={Tree t=tCONST(8,0); Label lab=newLabel();
emitcomputation($2$);
getreg(t);
emit("r%d\n",t->reg+1);
if ($2$->x.size!=4)

emit("cvt%cl\tr%d,r%d\n",
sizecode[$2$->x.size],t->reg+1,t->reg+1);

emit("ashq\t$-32,r%d,r%d\n",t->reg,t->reg);
emit("ediv\tr%d,r%d,r%d,r%d\n",$3$->reg,t->reg,t->reg+1,t->reg);
emit("tstl\tr%d\njgeq\t%s\naddl2\tr%d,r%d\n%s:\n",

t->reg,lab->s,$3$->reg,t->reg,lab->s);
$$->reg=t->reg;
getagain($$); givereg(t); givereg($3$); TreeFree(t);
};

reg: UNOP(cvtopu,reg)
{if ($$->x.size > $2$->x.size) ABORT;}
={$$->reg=$2$->reg;
getagain($$); givereg($2$);
};

reg: UNOP(CVTSU,reg)
{if ($$->x.size > $2$->x.size) REWRITE; else ABORT;}
={mtSetNodes($$,2,tUNOP($$->x.size,OPcvtss,$2$));};
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reg: UNOP(CVTUS,reg)
{if ($$->x.size > $2$->x.size) REWRITE; else ABORT;}
={mtSetNodes($$,2,tUNOP($$->x.size,OPcvtuu,$2$));};

reg: UNOP(CVTUU,computation)
{cost.time+=4; cost.space+=3;}
={getreg($$);
emit("clrl r$d0,$$->reg);
emitcomputation($2$);
emit("r%d0,$$->reg);
};

reg: OP(AND,reg,reg)
{REWRITE;}
={mtSetNodes($$,3,tUNOP($$->x.size,OPcomp,$3$));
$1$->op=OPandnot;
};

4.3.16. Procedure calls and parameters

A CALL node has two children: an argument list, and a procedure address. Each argument in the
list is pushed onto the stack by the evaluation of an ARG node, and then a calls instruction is emitted.

The forms of ARG nodes are similar to the forms of MOVE nodes. That is, the argument may be a
computation, an operand, or a bigval. In any case, the proper instruction is emitted to copy the argument
onto the stack. The NOARGS node is used to terminate an argument list.

4.3.17. Constants with value zero

zero: CONST {if ($$->u.ivalue != 0) ABORT;};
zero: CONSTF {if ($$->u.fvalue != 0.0) ABORT;};

4.3.18. Miscellany

The ESEQ operator has a statement as its left child, and an expression as its right. The statement is
to be evaluated, and the resulting value is that of the expression.

reg: ESEQ(stm,reg)
{cost.setFlags=$%2$->cost.setFlags; HOLD1;
cost.dontDestroy=$%2$->cost.dontDestroy;}
={$$->reg=$2$->reg; getagain($$); givereg($2$);};

This is not as general as it could be; one could imagine that these patterns would also be valid:

location: ESEQ(stm,location)
operand: ESEQ(stm,operand)
computation: ESEQ(stm,computation)
bigval: ESEQ(stm,bigval)

As an example of a suboptimal instruction sequence that results from the absence of these four rules, con-
sider how this tree

MEM(ESEQ(MOVE(TEMPr0 ,CONST0),NAMEA))

may be matched as a register. Without the rule location: ESEQ(stm,location) the node NAMEA must be
matched as a register, resulting in the instructions:
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clrl r0
moval A,r1
movl(r1),r1

But with the extra rule, NAMEA may be matched as a location, which does not generate an extra instruc-
tion:

clrl r0
movl A,r1

5. The MC68020 instruction set

The Motorola MC68020 has a large, complex, and somewhat unorthogonal instruction set[22].
There are many addressing modes, each instruction takes only a particular subset of these modes, and there
are several different forms of many instructions. (In particular, the MC68020 has several new addressing
modes not found on its predecessor, the MC68010.)

5.1. Nonterminal symbols for the MC68020

The Twig specification of the MC68020 has 35 nonterminal symbols (and 141 grammar rules, not includ-
ing floating point operations), while the specification for the VAX has only 20 symbols (and 112 rules).
This is for several reasons: The addressing modes are more difficult to specify; there are two kinds of regis-
ters; and temporary values must be treated more generally.

The full specification will not be given here, as it is in many respects similar to the specification of
the VAX. However, some of the differences will be summarized.

5.1.1. Registers

The MC68020 has eight ‘‘address registers’’ a0–a7 and eight ‘‘data registers’’ d0–d7. At least one of the
operands of an arithmetic instruction must be a data register, and the addressing modes rely more heavily
on address registers (though these rules are often broken). This means that there must be two nonterminals
representing registers, not just one. We will call them areg and dreg here.

Furthermore, it is necessary to distinguish between registers holding temporary values that are used
just once, and registers holding local variables used many times. The former may be the destinations of
two-address arithmetic instructions, and the latter may not. That is, if the value d 3+5 is to be computed,
and there is an instruction that computes d 3←d 3+5, then this instruction may be used only if there is no
need to use the original value d 3 in other places. We will let dregx stand for a data register whose value is
needed only once, and aregx for an address register whose value is needed only once. These nonterminals
represent registers whose contents may be overwritten as new values are computed from them.

Of course, any register that is overwritable may be used in an instruction that doesn’t happen to
overwrite it. This is expressed by the rules:

dreg: dregx
areg: aregx

which have no cost and which emit no instructions.

In the specification for the VAX, non-overwritability was expressed using an element of the cost
vector: dontDestroy. This is less accurate than having two nonterminal symbols. When there are two non-
terminals (like dreg and dregx ) then the dynamic programming will compute the cheapest way of evaluat-
ing a given tree node into a use-once register, and the cheapest way of evaluating into a must-save register.
When one nonterminal is used, only the single cheapest way to compute the node is found; then the
dontDestroy field is looked at as an afterthought. This could lead to a more expensive match overall. On
the VAX, whenever a two-address instruction pattern rejects a match because dontDestroy is set, there is
always a corresponding three-address pattern available at only a slightly higher cost. But the MC68020 has
only two-address instructions, so the one-nonterminal approximation would not work nearly as well.
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Finally, there are contexts where either an address register or a data register is permitted, so the non-
terminal reg stands for either kind of register. Thus, where the VAX specification has one nonterminal to
stand for a register, the MC68020 specification requires five.

5.1.2. Addressing modes

The addressing modes of the MC68020 are not much more complicated than those of the VAX, but it is
more complicated to represent them in a context-free grammar. This is because a typical addressing mode
has several components, any of which are optional, which are added together to form the address. Because
addition is commutative and associative, the grammar must represent any permutation of any subset of
these components.

By factoring the grammar for addressing modes heavily, the number of rules is brought down sub-
stantially from n factorial — at the cost of introducing several nonterminal symbols. In fact, 15 symbols
are used to express the MC68020 addressing modes, where 4 symbols are used for the VAX addressing
modes.

5.2. Duplication of rules

Because there are several symbols that represent registers, some of the instructions (and pseudo-
instructions like ALLOC) that can operate on any kind of register must be replicated for each class. For
example, the VAX specification has a rule:

reg: MOVE(destination,reg)

This means that a register may be stored into memory, and then re-used as a value. Since the M68020 has
four nonterminals for registers, there must be four copies of this rule:

dreg: MOVE(destination,dreg)
dregx: MOVE(destination,dregx)
areg: MOVE(destination,areg)
aregx: MOVE(destination,aregx)

That is, a many-use data register may be stored into memory, but remains a many-use data register, etc.
This replication of rules occurs in many places throughout the specification.

5.3. Cost computations

In a highly pipelined computer like the MC68020, it is difficult to calculate the time required to execute a
particular instruction, as the instructions overlap each other in time. Similarly, it is difficult to impute costs
to the various components of an addressing mode. On the other hand, the dynamic programming algorithm
requires that the costs of subtrees must be independent of each other.

In this situation, an approximation must be made. The cost of each instruction and each addressing-
mode component must be estimated independently of context. Motorola has published detailed timing
charts which give the timings of the different classes of instructions in the various addressing modes, and
by comparing different entries in these tables, costs can be approximated for each rule in the specification.

(This problem is less noticeable with the VAX, but only because detailed instruction timing data is
not available from the manufacturer!)

6. Performance

Three are three aspects to consider when evaluating a code-generator generator: the conciseness of the
specification, the efficiency of code generation, and the efficiency of the generated code.

6.1. Conciseness

The specification described in this paper for the VAX architecture takes 112 rules. (About 40 of these are
trivial — for example, the rule that names XOR as a binary operator.) These rules cover about 121 dif-
ferent instructions and about 12 different addressing modes. (The bit-field, loop-control, and character
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string instructions are not specified.)

Each rule requires a few lines to write down. It is quite possible that a special-purpose language for
the action (instead of the C programming language) would reduce the size of each rule’s specification.

The specification described here may be compared with other work in the literature (see Table 1).
The number of rules in a specification — quoted in the table — is interesting; but perhaps more important
is the flexibility of the specification language, and the interactions between rules. The dynamic-
programming algorithm is very forgiving, in that special-case rules don’t prevent general-case rules from
working; and in general each rule may be specified without considering how it will impinge on other rules.

No claim is made that this is the ‘‘optimally concise’’ specification of a machine architecture.
Indeed, section 7 summarizes the redundancies, along with some possible improvements.
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Table 1. Specifications of the VAX.

6.2. Generated code

The object code produced by the dynamic-programming algorithm is quite good. A backtracking program
that solves the 8-queens problem is used here as an example. (Actually, 18 queens are used on an 18 by 18
board.) The program is shown in Appendix 1, along with its compilations into assembly code for both the
VAX and the MC68020. The generated code appears quite good; the only way of improving it seems to be
to keep local variables in registers, which is beyond the scope of an instruction-selection algorithm.

The compiler is organized in three phases: the front end translates the input language into machine-
independent intermediate representation trees; then there is some machine-independent constant-folding in
the trees; then the Twig code generator translates the trees into assembly language. The constant-folding
improves the trees considerably.

6.3. Time and space for code generator

The code generators produced by Twig can be expected to run in O (c 1dN) time and O (c 2kN) space,
where d is the number of nonterminals in the grammar, N is the size of the input tree, and ci are constants
depending on the implementation. The value of k is an (approximately linear) function of the number of
rules in the description (and their sizes). Because (for any given Twig specification) d and k are constant,
this means that the code generators will run in linear time and linear space. In practice, because d is as
much as 20 or 40, the efficiency is not as great as that of some of the other linear-time and linear-space
algorithms in the literature.
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The following benchmarks were performed on a VAX 8700. Generating assembly code for the MC68020,
from a 283-node tree (for the 18-queens backtracking procedure shown in appendix 1), used about 256000
bytes and 1.23 seconds. For the VAX, the same intermediate tree used 196000 bytes and 0.48 seconds.
The better performance for the VAX is undoubtedly attributable to the fact that the VAX’s description has
fewer nonterminal symbols, especially for its addressing modes.

These values for space and time include all overhead: the time required to format the assembly-language
output, and the costly overhead (several bytes and many microseconds per record) of the malloc memory-
allocator. The Twig program, and the author’s cost and evaluation fragments, could undoubtedly be tuned
to improve the performance significantly.

The space requirements can easily be reduced. Though the dynamic programming algorithm requires
space linear in the size of the tree, there is no reason to make a tree as large as an entire procedure.
Instead, only one statement at a time should be generated. This will work as long as there is no nontrivial
tree-pattern in the specification that crosses a statement boundary. In both descriptions, there is only a rule
of the form

stm: SEQ(stm, stm)

which is a ‘‘trivial’’ rule. By doing a top-down tree traversal of SEQ nodes, the ‘‘top-level’’ statements
could be easily found, and the code generator could be called on each one. This would save no time, but
now the space required would be proportional to the size of the largest statement generated, rather than to
the size of the largest procedure.

7. Problems and Improvements

The goal of this research has been to find concise specifications for the instruction sets of complicated
machines. One way of making a specification concise is to use a macro preprocessor or other data
compression algorithm, so that a short but semantically opaque specification can be expanded automati-
cally into a long but usable specification. This method is unattractive because there is no guarantee that the
structure of the specification will match the structure of the architecture, and it is difficult to provide
axioms for the manipulation of macros.

Instead, we seek to find a specification that simultaneously is concise and has a structure matching that of
the architecture it specifies. The Twig specifications given in this paper are reasonably concise, but they do
contain patterns of repetition, where certain features of the instruction set must be specified several times in
different contexts.

This problem could be solved if Twig were somewhat less general. The Twig system is not so much a
code-generator-generator as it is a general tree-pattern matcher. By making the Twig system aware of cer-
tain identities, the size of specifications could be reduced.

The next section will describe some of the redundancies in current specifications, and some ideas that could
eliminate them.

7.1. Commutative operators

One general class of problems appears in the specification of the MC68020 addressing modes. Some parts
of these addressing modes take the form:

d + An + Xm
.S

where each of the three terms is optional. (The meaning of each term is not important in this discussion.)
Because the plus operator is commutative and associative, any of the following patterns describes this
addressing mode:

Xm
.S + An + d

Xm
.S + d + An

An + Xm
.S + d

An + d + Xm
.S

d + Xm
.S + An

d + An + Xm
.S

An + d
d + An

Xm
.S + d

d + Xm
.S

Xm
.S + An

An + Xm
.S

0
Xm

.S
An

d
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The constant-folder always arranges PLUS-trees to associate to the left; otherwise, there would be even
more patterns! These 16 patterns can be reduced to 10 (in ‘‘standard’’ Twig) by the introduction of an
additional nonterminal symbol, and perhaps to 9 if we omit the last one (if perhaps d itself matches 0).
This is still a large number of patterns, however, especially considering that they represent only one com-
ponent of one addressing mode.

Perhaps a good solution would be to introduce a permutation operator, so that OP(PLUS,[a,b]) — using
square brackets to denote the permutable children — would behave like either of the two patterns
OP(PLUS,a,b) or OP(PLUS,b,a). Unfortunately, the patterns for the addition of three terms would still be
repetitive:

OP(PLUS,[OP(PLUS,[a,b]),c])
OP(PLUS,[OP(PLUS,[c,a]),b])

because the first of these rules by itself could not match OP(PLUS,OP(PLUS,a,c),b).

7.2. Different treatments of the same registers

Another case of duplication occurs when instructions that move values into registers must be represented in
two different ways: once to produce intermediate values for tree nodes, and once to explicitly move values
into temporary registers. For example, a (hypothetical) add instruction:

reg: OP(PLUS,reg,reg)
reg: MOVE(TEMP,OP(PLUS,reg,reg))

Since these two rules describe the same instruction, the costs will be the same, as will the emitted code.

There’s no obvious solution here. This problem may just be a symptom of the inconsistent treatment of
temporary variables in a tree-based intermediate form: those that are used just once are internal nodes of
the tree, while those used more than once must be handled differently.

7.3. Pseudo-operations

The third kind of duplication occurs when there are classes of rules that work on any of several nontermi-
nal symbols, but that require the same nonterminal throughout. Consider the ALLOC pseudo-operation.
The tree ALLOC(TEMP,exp) means that a new temporary register TEMP should be allocated, then the
subtree exp should be generated, then the temporary should be released. This is a way of providing local
scope for compiler-introduced temporaries. The symbol exp in this pattern is just a label of convenience,
however; it appears in the abstract description of the intermediate language, but it is not a nonterminal of
any particular machine-description. One way of introducing ALLOC into a machine description is to
replace exp by reg as follows:

reg: ALLOC(TEMP,reg)

But this artificially forces the subexpression to be computed into a register, when it may not be natural to
do so. For optimal results, it is necessary to have all these rules (for the VAX; even more are necessary for
the MC68020!):
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reg: ALLOC(TEMP,reg)
stm: ALLOC(TEMP,stm)
reg: ALLOC(TEMP,reg)
bigval: ALLOC(TEMP,bigval)
operand: ALLOC(TEMP,operand)
location: ALLOC(TEMP,location)
ioperand: ALLOC(TEMP,ioperand)
name: ALLOC(TEMP,name)
computation: ALLOC(TEMP,computation)
flags: ALLOC(TEMP,flags)
zero: ALLOC(TEMP,zero)

There is one rule here for each nonterminal that can represent exp. In the specification given in section 4,
only a small subset of these are used, for the sake of sanity and readability. The ESEQ pseudo-operation
(similar to the ‘‘comma’’ operator in C) behaves analogously.

This problem could be handled by making the left-hand-side nonterminal decidable by the cost function,
rather than having it be fixed (as in the current system). Then, a new nonterminal exp could be made, with
rules of the form

exp: reg {cost.nonterminal = REG;}
exp: operand {cost.nonterminal = OPERAND;}
. . .

for each nonterminal that represents an expression. These rules would store in their cost field the particular
nonterminal that was matched. Finally a rule of the form

?: ALLOC(TEMP,exp) {leftHandSide := $%1$->cost.nonterminal;}

would describe all ‘‘versions’’ of ALLOC.

7.4. Parameterized nonterminals

Some nonterminals can match in more than one mode. For example, the Twig specification for the
MC68020 has two different nonterminals representing a D-register; dregx stands for a register whose value
is used only once, by the immediate parent of that node in the tree, while dreg stands for a register that
may have more than one use. The distinction has implications for the permissibility of two-address instruc-
tions that overwrite the register as they calculate new values.

In the specification given here for the VAX, only one nonterminal for register is used, and the infor-
mation about overwriteability is kept in the cost vector. In general, this scheme will not perform as well as
the more general two-nonterminal scheme, because the decision about whether to compute the value with
or without overwriteability is made before it is known whether overwriteability is needed. However, the
VAX instruction set is rich enough in three-address instructions that the approximation produces adequate
results.

A similar approximation is made (in both specifications) to designate instructions that do or do not
set the condition code flags of the machine. (This is the setFlags field of the cost vector.) The more gen-
eral scheme would be to have two nonterminals: one for calculations that set the condition codes, and one
for all calculations (that may or may not set the condition codes). Actually, each nonterminal that can
stand for an expression would have to be replicated.

To cope with this large but consistent set of nonterminal symbols, perhaps a way of specifying vec-
tors of nonterminals would be appropriate. The Aho-Johnson register-allocation algorithm[6] operates on
such vectors, but without the generality of context-free grammars.

This would produce specifications just as concise as the ones in this paper, but they would more
accurately select optimal instruction sequences. On the other hand, the number of true nonterminals used
in the dynamic programming algorithm would grow enormously, with its concomitant space and time costs.
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Another possible use of parameterized nonterminals is for machines with a small set of dissimilar registers;
for example, the Z80 or 80x86 family. To achieve optimality in register use, a nonterminal can be associ-
ated with each subset of registers used in a subtree.

7.5. Multi-phase actions

In the specifications presented here, the rules for operands (addressing modes) could not emit assembly
code immediately, but only when the parent instruction was ready. On the other hand, it is necessary for
the descendants of the addressing modes to emit assembly code, since they correspond to entire instruc-
tions. This problem was solved by having actions that just record the kind of match, and then traversing
the tree later with procedures like emitoperand.

It might be nice to have more than one phase of action-code execution in Twig to handle situations
like this. In particular, it should not be necessary to explicitly store the kind of the match, because Twig
has already computed and stored the kind — it is just the number of the matching grammar rule.

7.6. Directed acyclic graphs

Twig is designed to operate on a tree representation. Often, a directed acyclic graph is a more natural
intermediate representation. Unfortunately, Twig’s dynamic programming algorithm doesn’t work on
graphs, so it is impractical to find the optimal match.

However, one reasonable solution is to factor the directed graph into trees. Each shared node (one with
several in-edges) is made into an explicit temporary (perhaps using the ALLOC and TEMP nodes
described in this paper). This tree is then matched using Twig; the match may be suboptimal, but at least a
solution is generated. This technique has been used successfully[25] in a Twig-based compiler for
standard-cell VLSI circuits.

8. Conclusion

Dynamic programming is a robust and efficient technique for generating machine code from expression
trees. Code generator specifications written for the Twig system correspond closely and elegantly to the
instruction sets and addressing modes of complex-instruction-set computers. The use of many nonterminal
symbols to describe the different classes of instructions and operands eliminates redundancy from the
specification without causing the blocking problems commonly found in LR(1) specifications.

Appendix 1. Generated code for a sample program

This appendix contains the benchmark program mentioned in section 6. It is an implementation of a back-
tracking solution to the 18-queens problem (as the 8-queens program runs too quickly to accurately bench-
mark). The program is expressed in a Pascal-like language that was chosen to produce a larger variety of
intermediate trees than Pascal or C would.
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var diag1 : array[2..36] of boolean;
diag2 : array[-17..17] of boolean;
row : array[1..18] of integer;
col : array[1..18] of boolean;

procedure try(n : integer);
var i : integer;
begin if n>18

then _exit(0)
else for i := 1 to 18
do if not (col[i]<>0

or else diag1[i+n]
or else diag2[i-n])

then begin col[i]:=1;
diag1[i+n]:=1;
diag2[i-n]:=1;
row[n]:=i;
try(n+1);
col[i]:=0;
diag1[i+n]:=0;
diag2[i-n]:=0;

end
end;

A1.1 Code generated for the MC68020

The code generator built from the MC68020 specification produced the translation below. The left-hand
column is the exact code generator output; the right-hand column is the source program, as a form of anno-
tation. The assembly-language uses the Motorola notation, rather than the Berkeley Unix notation, for the
addressing modes.

_try: procedure try(n : integer);
link a6,-#L6 var i : integer;
moveml #L5,-(sp)
cmpil 18,(a6,8) begin if n>18
jle L3
movel #0,-(sp) then _exit(0)
jsr __exit
# throw away d0
jmp L4
L3:
movel #1,(a6,-4) else for i := 1 to 18
L2:
tstb ([a6,-4],_col-1) do if not (col[i]<>0
jne L1
movel (a6,-4),d7 or else diag1[i+n]
moveal a6,a5
addql #8,a5
tstb ([a5],d7,_diag1-2)
jne L1
movel (a6,-4),d7 or else diag2[i-n])
subl (a6,8),d7
lea _diag2,a5
tstb (d7,a5,17)
jne L1
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moveb #1,([a6,-4],_col-1) then begin col[i]:=1;
movel (a6,-4),d7 diag1[i+n]:=1;
moveal a6,a5
addql #8,a5
moveb #1,([a5],d7,_diag1-2)
movel (a6,-4),d7 diag2[i-n]:=1;
subl (a6,8),d7
lea _diag2,a5
moveb #1,(d7,a5,17)
movel (a6,8),d7 row[n]:=i;
lea _row,a5
movel (a6,-4),(d7:l*4,a5,-4)
moveal (a6,8),a5 try(n+1);
addql #1,a5
movel a5,-(sp)
jsr _try
# throw away d0
clrb ([a6,-4],_col-1) col[i]:=0;
movel (a6,-4),d7 diag1[i+n]:=0;
moveal a6,a5
addql #8,a5
clrb ([a5],d7,_diag1-2)
movel (a6,-4),d7 diag2[i-n]:=0;
subl (a6,8),d7
lea _diag2,a5
clrb (d7,a5,17)
L1: end
movel (a6,-4),d7
addql #1,d7
movel d7,(a6,-4)
cmpil 18,d0
jle L2
L4: end;
moveml (a6,-16),#L5
unlk a6
rts
L5=0x6080

A1.2 Code generated for the VAX

Here is the output of the Twig code generator built from the VAX specification described in this paper,
when applied the the 18-queens program.

_try: procedure try(n : integer);
subl2 $4,sp var i : integer;
cmpl 4(r12),$18 begin if n>18
jleq L3
pushl $0 then _exit(0)
calls $1,__exit
# throw away r0
jmp L4
L3: else for i := 1 to 18
movl $1,-4(r13)
L2:
movab *-4(r13),r11 do if not (col[i]<>0
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tstb _col+-1(r11)
jneq L1
addl3 4(r12),-4(r13),r11 or else diag1[i+n]
tstb _diag1+-2(r11)
jneq L1
subl3 4(r12),-4(r13),r11 or else diag2[i-n])
tstb _diag2+17(r11)
jneq L1
movab *-4(r13),r11 then begin col[i]:=1;
movb $1,_col+-1(r11)
addl3 4(r12),-4(r13),r11
movb $1,_diag1+-2(r11) diag1[i+n]:=1;
subl3 4(r12),-4(r13),r11
movb $1,_diag2+17(r11) diag2[i-n]:=1;
movab *4(r12),r11
movab *-4(r13),_row+-4[r11] row[n]:=i;
addl3 $1,4(r12),-(sp) try(n+1);
calls $1,_try
# throw away r0
movab *-4(r13),r11 col[i]:=0;
clrb _col+-1(r11)
addl3 4(r12),-4(r13),r11 diag1[i+n]:=0;
clrb _diag1+-2(r11)
subl3 4(r12),-4(r13),r11 diag2[i-n]:=0;
clrb _diag2+17(r11) end
L1:
addl3 $1,-4(r13),r11
movl r11,-4(r13)
cmpl r11,$18
jleq L2
L4: end;
ret

The code generator has discovered that the two instructions

movab *-4(r13),r11
movl -4(r13),r11

are of equal cost. Since the code generator doesn’t know that the latter instruction is the one convention-
ally used by humans, it blithely uses the first one that comes to hand. This non-problem could be ‘‘solved’’
by adding an ‘‘ugliness’’ field to the cost structure.

This example demonstrates that the dynamic-programming code generator makes good use of com-
plex addressing modes. The program above could be significantly improved by holding the variables i and
n in register rather than in stack-frame locations, but this is beyond the scope of the instruction-selection
algorithm.
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