
-

Profiling in the Presence of Optimization and Garbage Collection

Andrew W. Appel*
Bruce F. Duba†

David B. MacQueen†
Andrew P. Tolmach??

November 1988

ABSTRACT

Profiling the execution of programs can be a great help in tuning their performance, and programs
written in functional languages are no exception. The standard techniques of call-counting and sta-
tistical (interrupt-driven) execution time measurement work well, but with some modification. In
particular, the program counter is not the best indicator of ‘‘current function.’’ Our profiler inserts
explicit increment and assignment statements into the abstract syntax tree representation, and is
therefore very simple to implement and completely independent of the intermediate code translator
and the code-generator.

* Supported in part by NSF Grant CCR-8806121 and by a Digital Equipment Corp. Faculty Incentive Grant.

† AT&T Bell Laboratories, Murray Hill, NJ.



- 2 -

1. Execution profiling

A large program usually consists of many small functions. When such a program is to be tuned for

efficiency, it is necessary to identify which of those functions are taking the bulk of the execution time.

Then the commonly-used functions can be made more efficient, or called less often, or both. By using a

theoretical analysis of the algorithms used in a program, such functions can be identified; but a complete

theoretical analysis is complex and impractical for large programs.

An execution profiler provides an empirical measurement of the time spent in each function. A widely-

used Unix tool, prof [Unix], provides a count of how many times each function is called, and how many

seconds were spent in each function. This information is very useful in identifying which functions are in

need of improvement, after which a theoretical analysis of just those functions might be carried out, a much

less forbidding endeavor than analyzing the whole program.

Prof gathers call-count information by having the compiler insert at the beginning of each function an

instruction that increments a call-count variable associated with the function. An approximation to the

amount of total time spent in the function is gathered by the use of a timer interrupt: every 1/60th of a

second, the operating system notes in a ‘‘histogram’’ array the value of the program counter. (This is an

ancient technique [Johnston70].) Then, at the end of program execution, prof estimates the amount of time

spent in each function by summing the values in the histogram array corresponding to program counter

samples between the beginning and end of the machine code for that function. The interrupt-driven sam-

pling method has a much lower overhead than querying a clock on each entry to and exit from a function.

A more elaborate profiling tool, gprof [Graham82], provides even more information. When one primitive

function (e.g. a table-lookup routine) is used in many places, it is useful to know, not only the total time for

the execution of the primitive, but also, how much time to ‘‘charge’’ the calling functions. With gprof this

is approximated by keeping a count of the number of times each call-site is used, and on that basis appor-

tioning the average execution time of the called function to the functions that call it.

These approaches to execution-time measurement and apportionment pose certain problems for optimizing

compilers and for functional languages:

1. The machine-code for a function is not necessarily all contiguous. A function may be turned into

several pieces of code, with portions of the code for other functions interspersed. This problem

could certainly be solved by elaborate bookkeeping in the optimizer and code generator, but we

wanted to avoid that complexity.

2. An optimizer can expand functions in-line in other functions. The program-counter method will

charge the calling function instead of the called function, even though it might be desirable for in-

line expansion to be made semantically invisible.

3. The histogram array in prof must be proportional in size to the address range spanned by pieces of

code for executable functions. Our runtime system intersperses code and data throughout memory;

even worse, it periodically garbage collects, moving code and data from place to place. This



- 3 -

problem could have been solved by elaborate bookkeeping in the runtime system, which we also

wanted to avoid.

We had to deal with these problems in the course of implementing a profiler for an optimizing compiler for

the functional language Standard ML [Appel87]. The approach we used is described in the next section.

2. Insertion of call-counting and current-function

For execution-time estimation we use a timer interrupt, as does prof, to increment a histogram entry. How-

ever, we don’t use the program counter to calculate which histogram entry to increment. Instead, we main-

tain a ‘‘pointer-to-current-function-entry’’ in a global variable called current that is accessible to the

timer-interrupt handler. Each function has associated with it two auxiliary variables: a call-count and an

interrupt-count. On entry to a function, it increments the call-count and assigns the address of the

interrupt-count variable into the global current variable. Then, when a timer interrupt occurs, the interrupt

handler just increments the variable that current points to.

When a function returns — either normally or via an exception — current must be set back to the

interrupt-count variable of the function that it is returning to. This resetting could be done either by the cal-

ling function (after the called function has returned), or by the called function before exit. For several rea-

sons, it is better done by the calling function. If the called function does the reset, a stack of current-

function pointers is required; this is expensive to maintain. A stack of current-pointers would also greatly

complicate the treatment of exception-handlers; with the caller-reset method, the exception-handler justs

sets the current to point at the appropriate counter variable on entry. On recursive calls, current need not

be reset (as the calling and called function are the same), but only the calling function knows which calls

are recursive. And finally, tail-calls can be optimized if the caller resets current.

A tail-call is one that is not followed by any executable code before the function returns. After a tail-call,

the function will immediately return and therefore current will immediately be reset. Therefore, it is not

necessary for the calling function to reset current after a tail-call. This is a useful optimization, and it is

particularly important when used with a compiler that optimizes tail-calls into jumps; if the current pointer

had to be reset after the tail-call, it would no longer be a tail-call and performance would suffer dramati-

cally. Fortunately, it is easy to identify tail-calls statically as the profiling instructions are being inserted.

Functional programming languages introduce another problem for the design of profilers: what to do with

anonymous, first-class functions. The simplest choice is to do nothing; collect no call-counts and let the

time be charged to the caller of the unnamed function. The main disadvantage of this solution, besides not

having the call-counts, is that there is no convenient way to find the code that contributes to the cost of a

profiled function that calls anonymous functions.

Probably the most general solution is to make up names for the unnamed functions (for example, an

unnamed function statically enclosed in function f might be called f.anon). If anonymous functions are

given names they can be treated just as any other function; call counts and execution time will be reported.

Of course, the user will need to associate the new names with the correct function, but in practice this is



- 4 -

rarely a problem.

We insert the profiling instructions as ordinary assignment statements in the abstract syntax tree representa-

tion of the program text. When profiling is enabled, the compiler makes an extra pass over the abstract syn-

tax, producing a modified syntax tree containing the necessary profiling instructions. This method of instru-

menting the code was very easy to implement, and makes profiling completely independent of later stages

in the compilation.

An earlier version of the profiler inserted these assignment statements into the intermediate representation

(a form of lambda calculus) instead. The insertion was performed during the translation from abstract syn-

tax into the intermediate representation. While this version was also easy to implement, and required very

few lines of additional code, it made the translation function significantly more complicated and difficult to

understand. The present version is cleaner and better preserves the modularity of the compiler.

3. An example

To illustrate the technique, we present a simple example (figure 1). The ML function subset takes a

predicate function as an argument, and returns a function that maps lists to lists; the output list will be that

sublist of the input list containing just those elements that satisfy the predicate. The user’s program is

displayed in typewriter font; the compiler puts some scaffolding around it (indicated in italics) to make a

record containing all the functions declared by the user.

let fun subset pred =

let fun f nil = nil

| f (a::r) = if pred a then a::f(r) else f(r)

in f

end

fun isPrime x =

let fun test i = i>=x orelse (x mod i <> 0 andalso test(i+1))

in test 2

end

val primes = subset isPrime

in (subset, isPrime, primes)

end

Figure 1.

If this code is compiled with profiling enabled, the compiler inserts the call-counting and current-function

instructions into the abstract syntax tree representation. Here, we display the effects as if the source

language text had been modified directly (figure 2).



- 5 -

let val subset.CC = ref 0 and subset.IC = ref 0

and subset.f.CC = ref 0 and subset.f.IC = ref 0

and isPrime.CC = ref 0 and isPrime.IC = ref 0

and isPrime.test.CC = ref 0 and isPrime.test.IC = ref 0

fun subset pred =

(subset.CC := !subset.CC + 1;

current := subset.IC;

let fun f x =

(subset.f.CC := !subset.f.CC + 1;

current := subset.f.IC;

case x of

nil => nil

| a::r => let val pa = pred a

in current := subset.f.IC;

if pa then a :: f(r) else f(r)

end

in f

end

fun isPrime x = (isPrime.CC := !isPrime.CC + 1;

current := isPrime.IC;

. . . )

val primes = subset isPrime

in ((subset, isPrime, primes),

((subset.CC, subset.IC, "subset"),

(subset.f.CC, subset.f.IC, "subset.f"),

(isPrime.test.CC, isPrime.test.IC, "isPrime.test"),

(isPrime.CC, isPrime.IC, "isPrime")))

end

Figure 2.

For each function, two variables are introduced: a call-count and an interrupt-count. On entry to a func-

tion, the call-count is incremented, and the global variable current is set to point to the interrupt-count. On

re-entry to a function after a subroutine call, current is reset to the function’s interrupt-count variable.

However, this is not necessary after recursive calls and tail calls, e.g. the calls to f, nor after ‘‘calls’’ to

in-line primitive operators, e.g., the arithmetic comparisons, that do not set current.



- 6 -

The initial let-bindings create all the count variables, and the last four lines produce, instead of just a record

containing the user’s declared objects, a pair of records: the user’s declared objects, and a list of records

containing profiling variables, each with an identifying string constant. These string constants will be

embedded in the executable code for this module, and will enable the call-count variables to be self-

identifying. Our runtime system maintains a global list of these 3-element records; when it is time to print

an execution profile, they are sorted in decreasing order of interrupt-count.

Our output looks like the output of prof:

%time cumsecs #call ms/call name

90.4 3.52 78189 .045 isPrime.test

8.4 3.85 1000 .330 isPrime

.7 3.88 0 (unprofiled)

.2 3.89 1001 .009 subset.f

.0 3.89 1001 .000 natlist

.0 3.89 1 .000 subset

Now, armed with this information, a programmer might decide that it is worthwhile re-writing the

isPrime function to make it as efficient as possible. But at a certain point the programmer will want to

know what functions are calling isPrime so he can make them call it less often. By re-compiling with

isPrime unprofiled, any time spent in isPrime will now be charged to the function that called it. This

is because isPrime will not change the current variable, so that the timer-interrupt will increment the

count for the function that last set current — and this will be the one that called isPrime. The profiling

system won’t do this automatically, but by comparing two different execution profiles, one with isPrime

compiled with profile instructions and one with isPrime unprofiled, an accurate estimate can be made of

who is calling it.

4. Advantages of our current-function method

Since we implement profiling using ordinary abstract syntax, the translator, optimizer and code-generator

‘‘believe’’ that profiling operations are part of the program. Since an optimizer must not modify the

semantics of the program, the semantics of profiling will not be modified either. Therefore, if one function

is copied and inserted in-line into another, the call-count and current-function instructions will be copied

and inserted at the right place. Other optimizations that break functions into several disjoint pieces of code

will leave the profiling instructions in the appropriate places.

Furthermore, the result is that the implementation of the profiler is completely independent of the code gen-

erator. We have four different code generators for our compiler (two different algorithms each for the Vax

and the Motorola 68020), and not a line of any of them was modified for the installation of the profiler.

Because our method avoids reverse-engineering from the generated code, it may be attractive for profiling

more conventional languages as well. It may also be useful for other tasks which involve instrumenting



- 7 -

source code, such as program animation or debugging.

By compiling some functions unprofiled, as described in the previous section, we can find out what callers

are responsible for most of their execution time. This kind of trick serves much the same purpose that the

more elaborate program gprof does; and it’s a trick that wouldn’t work with a program-counter histogram.

Furthermore, our method is more accurate than gprof. Suppose functions f and g both call a function

isPrime, but f consistently makes expensive calls (that take a long time) while g makes cheap ones. Gprof

allocates the total time spent in isPrime on the basis of call counts from f and g; this will miss the fact that f

is responsible for most of the cost. In this example, when profiling for isPrime is turned off, f and g will be

charged for the actual time spent in isPrime on their behalf. (On the other hand, Gprof will give an accu-

rate breakdown of call-site counts that our method does not provide.)

If a profiled function calls an unprofiled function, then during the execution of the called function, all timer

interrupts will be charged to the caller (since current still points to the caller’s variable). This is often

desirable, as described above. But if an unprofiled function calls a profiled function, then upon return to

the unprofiled function the current pointer won’t be reset, and interrupts will continue to be charged to the

called function after it has returned. This is undesirable, and should be prevented by the compiler. In a

language with first-class functions, it is difficult to prevent profiled functions from being passed as argu-

ments to unprofiled functions that might then call them. In practice, this has not proved to be a problem,

probably because unprofiled functionals are typically simple primitives like app and map, which do little

intrinsic computation.

5. Overhead measurements

We ran the same program several times with various of our profiling features enabled; this gives a reason-

ably accurate measurement of profiling overhead:

��������������������������������������������

Time %Overhead
��������������������������������������������

User code 2801 sec
��������������������������������������������

Call counts 568 20.3%

Setting current function 286 10.2

Interrupts 47 1.7
��������������������������������������������

Total Overhead 901 32.2%
���������������������������������������������
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

The total overhead of 32% is not prohibitively expensive. Our code generator takes three instructions to

increment a call-count (fetch, add, store); a better instruction-selector could probably reduce this overhead

to 8%, and the total overhead to 20%.



- 8 -

There is also an implementation overhead; it turned out to be fairly simple to get this profiler running.

Insertion of profiling instructions 177 lines

Interrupt handling 32

Global database 16

Report generation 72
�������������������������������������

Total 297 lines

In contrast, this paper is about 500 lines long.

6. Conclusion

Traditional approaches to profiling run into problems when we attempt to apply them to functional

languages where code may be moved around by garbage collection, and the task is further complicated

when an optimizing compiler freely rearranges the code. The basic difficulty is that the mapping between

the current pc and the currently executing function is difficult to maintain.

We have found a simple way around this difficulty, which consists of maintaining a global variable that

always points to the interrupt count for the current function, and which is to be charged whenever there is a

timer interrupt. Because we manipulate this variable using the abstract syntax of the source language itself,

our method is very easy to implement and has no nasty interactions with translation, code generation, or

garbage collection algorithms (which already preserve language semantics). We believe this method may

prove useful for other problems involving code instrumentation, even in more traditional languages.

Our profiling method has acceptable overhead and accuracy. Furthermore, by judiciously mixing profiled

and unprofiled functions, one can extract information on inherited costs as well as the direct costs of calling

particular functions. This information is similar to that provided by sophisticated profilers like gprof, but is

more accurate.

References

[Appel87] Appel, Andrew W. and MacQueen, David B. ‘‘A Standard ML compiler,’’ in Functional

Programming Languages and Computer Architecture, LNCS 274, G. Kahn, ed., pp 301-

324, 1987

[Graham82] Graham, Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. ‘‘gprof: a call

graph execution profiler’’" in Proc. SIGPLAN ’82 Symp. on Compiler Construction, SIG-

PLAN Notices 17(4), pp. 120-126, 1982.

[Johnston70] Johnston, T. Y., and Johnson, R. H., Program Performance Measurement, SLAC User

Note 33, Rev. 1, Stanford University, California, 1970.

[Unix] Unix Programmer’s Manual, ‘‘prof command,’’ section 1, Bell Laboratories, Murray

Hill, NJ, 1979.


