
Using Memory Errors to Attack a Virtual Machine

Sudhakar Govindavajhala
Department of Computer Science

Princeton University
sudhakar@cs.princeton.edu

Andrew W. Appel
Department of Computer Science

Princeton University
appel@cs.princeton.edu

Abstract

We present an experimental study showing that soft
memory errors can lead to serious security vulnerabilities
in Java and .NET virtual machines, or in any system that
relies on type-checking of untrusted programs as a protec-
tion mechanism. Our attack works by sending to the JVM
a Java program that is designed so that almost any mem-
ory error in its address space will allow it to take control
of the JVM. All conventional Java and .NET virtual ma-
chines are vulnerable to this attack. The technique of the
attack is broadly applicable against other language-based
security schemes such as proof-carrying code.

We measured the attack on two commercial Java Vir-
tual Machines: Sun’s and IBM’s. We show that a single-
bit error in the Java program’s data space can be ex-
ploited to execute arbitrary code with a probability of
about 70%, and multiple-bit errors with a lower proba-
bility.

Our attack is particularly relevant against smart cards
or tamper-resistant computers, where the user has phys-
ical access (to the outside of the computer) and can use
various means to induce faults; we have successfully used
heat. Fortunately, there are some straightforward de-
fenses against this attack.

1 Introduction

Almost any secure computer system needs basic pro-
tection mechanisms that isolate trusted components (such
as the implementation and enforcement of security poli-
cies) from the less trusted components. In many sys-
tems, the basic protection mechanism is hardware virtual
memory managed by operating system software. In the
Java Virtual Machine (and in the similar Microsoft .NET
virtual machine), the basic protection mechanism is type

checking, done by a bytecode verifier when an untrusted
program is imported into the system.

Assuming the type system is sound (like Java, but un-
like C or C++), type-checking as a protection mechanism
allows closer coupling between trusted and untrusted pro-
grams: object-oriented shared-memory interfaces can be
used, instead of message-passing and remote procedure
call across address spaces. Thus, language-based mecha-
nisms are very attractive—if they work.

Because the untrusted programs run in the same ad-
dress space as trusted parts of the virtual machine, type
checking must provide strong protection. The Java Vir-
tual Machine Language type system has been proved
sound [8, 9], and subsets of it have even been proved
sound with machine-checked proofs [19]. Provided that
there are no bugs in the implementation of the verifier and
the just-in-time compiler, or provided that one can type-
check the output of the just-in-time compiler using an
approach such as proof-carrying code [5], type-checking
should be able to guarantee—as well as virtual memory
can—that untrusted programs cannot read or write the pri-
vate data of trusted programs.

Java can be compiled to efficient machine code, and
supports data abstraction well, because it uses link-time
type-checking instead of run-time checking. However,
this leaves Java vulnerable to a time-of-check-to-time-of-
use attack. All the proofs of soundness are premised on
the axiom that the computer faithfully executes its spec-
ified instruction set. In the presence of hardware faults,
this premise is false. If a cosmic ray comes through the
memory and flips a bit, then the program will read back a
different word than the one it wrote.

A previous study of the impact of memory errors on
security measured the likelihood that a random single-
bit error would compromise the security of an existing
program [20]. This study found (for example) that a
text-segment memory error would compromise ssh with

about 0.1% probability. Boneh et al. used random hard-
ware faults to recover secrets in cryptographic protocols
[3]. Anderson and Kuhn studied various physical attack
techniques on smartcards and other security processors
by inducing errors at specific locations at specific instants
[1, 2]. Unlike them, we use arbitrary errors to take over a
virtual machine.

We show that when the attacker is allowed to provide
the program to be executed, he can design a program such
that a single-bit error in the process address space gives
him a 70% probability of completely taking over the JVM
to execute arbitrary code.

An attacker could use this program in two ways. To
attack a computer to which he has no physical access, he
can convince it to run the program and then wait for a
cosmic ray (or other natural source) to induce a memory
error. To attack a tamper-resistant processor to which he
has physical access only to the outside of the box (such as
a Java card), he can induce it to run the program and then
induce an error using radiation or other means; we will
describe measurements of the effects of infrared radiation.

One might think that parity checking or error-
correcting codes would prevent this attack. But in the
low-profit-margin PC market, parity or ECC bits are usu-
ally not provided.

This paper highlights the importance of hardware reli-
ability in assuring the security of a program.

2 The attack program

Our attack is against a JVM that permits untrusted code
to execute after it has used its bytecode verifier to check
that the code is type-safe, and therefore respects its inter-
faces.

The goal of our attack applet1 is to obtain two pointers
of incompatible types that point to the same location. This
permits circumvention of the Java type system. Once the
type system is circumvented, it is straightforward to write
a function that reads and writes arbitrary memory loca-
tions in the program address space, and hence executes
arbitrary code [10, pp. 74–76].

The attack works by sending the Java Virtual Machine
a program (which the JVM will type-check using the byte-
code verifier) and waiting for a memory error. The pro-
gram type-checks; when it runs, it arranges the memory
so that memory errors allow it to defeat the type system.

Our attack applet is quite simple. First, it fills the heap
with many objects of class B and one object of class A.

1An applet is a program that runs with few privileges: no access to
the file system and limited access to the network.

All the fields of all the B objects are initialized to point
to the unique A object, which sits at address x. Classes
A and B are defined so that, including the object header,
their size is a power of two:
class A { class B {
A a1; A a1;
A a2; A a2;
B b; A a3;
A a4; A a4;
A a5; A a5;
int i; A a6;
A a7; A a7;

}; };

Now the applet waits patiently for a memory error.
Suppose a cosmic ray flips the ith bit of some word in
a B object:

i
i

Cosmic ray

B

B

A

2

If 2i is larger than the object size, then x⊕ 2i is likely
to point to the base of a B object (⊕ is the exclusive-or
operator):

i

B

B

A

2

Thus, there’s a field whose static type is A but which
actually points to a B object; this can be exploited, as we
will explain. On the other hand, suppose 2i is smaller than
the object size; then the mutated field points within the A
object:

2
B

A

i

Suppose there is a pointer variable p of class A, con-
taining address x. When the program dereferences the b
field of p into a pointer s of type B, as follows:

A p; B s;
s = p.b;

it is really fetching from address x+offset, where offset is
the distance from the base of the object to the beginning
of the b field:

i

x

x’

x’+offset

x+offset

2

But if the ith bit of p has flipped, then the fetch is from
address (x⊕ 2i) + offset, as shown in the diagram. The
applet dereferences p.b; it thinks it’s fetching a field of
type B, but it’s really fetching a field of type A.

Now that we explained the principle of how our attack
applet works, we will explain some details of the algo-
rithm. Figure 1 summarizes the layout of objects in mem-
ory created by the attack applet. There is one object of
class A; let us suppose it is at address x. The applet sets
all the A fields of all the objects to point to x, and it sets
the field x.b to point to some object of class B.

After creating the data structure, it repeatedly reads all
the A fields of all the objects and checks (via Java pointer
equality) whether they still contain x.

Now suppose that in one of the many B objects, one of
the bits in one of the fields has been traversed by a cosmic
ray, and flips — for example, bit 5 of field a6 of record
b384. We fetch this field into a pointer variable r of type
A:

A r; B b384; B q;
r = b384.a6;
q = r.b;

The field b384.a6 originally contained a copy of p,
as did all the A fields of all the objects. If the ith bit of
b384.a6 has been flipped, then when the program deref-
erences r.b it is fetching from address (x⊕2i)+offset into
q. Most of the program memory is filled with fields of

B header

A

A

A

A

A

A

A

B header

A

A

A

A

A

A

A

A header

int

A

B

A

A

A

A

B header

A

A

A

A

A

A

A

object of
class B

object of
class A

object of
class B

object of
class B

x

x⊕25

x⊕22
x

 +
 o
f
f
s
e
t

+
 o
f
f
s
e
t

+
 o
f
f
s
e
t

x⊕26

+
 o
f
f
s
e
t

Figure 1. Attacker memory layout

type A, each field containing x (x is the address of the ob-
ject of type A). Hence, the address (x⊕2i)+offset is very
likely to contain x.

For example, in Figure 1 if bit 2, bit 5, or bit 6 has
flipped, then memory location (x⊕2i) + offset contains a
pointer of type A.

Now we have a pointer variable q whose static type is B
but which contains a pointer of type A — a circumvention
of the type system. We also have a pointer variable p
containing the same address whose static type is A. This
can be used to write a procedure that writes arbitrary data
at arbitrary location.

3 Exploiting a type-system circumvention

Once we have equal pointers p and q of types A and B,
we can take over the virtual machine. Consider the code
fragment:

A p;
B q;
int offset = 6 * 4;
void write(int address, int value) {

p.i = address - offset ;
q.a6.i = value ;

}

The value offset is the offset of the field i from the
base of an A object. This procedure type-checks. The
fields i of type A and a6 of type B are at equal offsets
from their bases. Suppose that through our attack, p and
q contain the same address. The first statement writes
address - offset at the field q.a6. The second
statement writes value at an offset of offset from
q.a6. Thus the procedure writes value at offset + (ad-
dress - offset) = address.

For any address a and value v, the call write(a,v) will
write v at address a. The method to read arbitrary ad-
dresses is similar. This can be exploited to execute arbi-
trary code by filling an array with machine code and then
overwriting a virtual method table with the address of the
array. Once the attacker can do this, he can access any
resource that the trusted parts of the virtual machine can
access.

There are simpler (and more portable) ways to achieve
security violations than writing and executing machine
code. For example, every Java runtime system defines
an object of a class called SecurityManager that en-
forces security policies controlling such things as ac-
cess to the filesystem by untrusted applets. A pointer
to this object is available through the method Sys-
tem.getSecurityManager. Normally, the static typecheck-

ing of the Java bytecode verifier is effective at preventing
classes other than SecurityManager from writing the al-
lowFileAccess field of the security manager. But once our
exploit has a way to write to arbitrary locations, it’s easy
to alter any field of the security manager and thus circum-
vent any policy that the security manager is enforcing.

4 Analysis

We can predict the effectiveness of this attack. Let M
be the number of bytes of program data space, filled up
with one A and many B objects. Let each object contain
s words (including the object header of h words), and let
2w be the word size. Then the number of objects is N =
M/(s ·2w).

We call two objects “cousins” if their addresses differ
in a single bit. Let the “cousin number” of x be C(x), the
number of objects of type B whose address differs from x
by a single bit. Suppose the object size is a power of two,
number N of objects is a power of two, and the objects
are all contiguous in memory; then it’s obvious that C(x)
will be log2 N. If we relax these assumptions, then it’s
plausible that C(x) might still be approximated by log2 N.
Figure 2 shows the actual values of C(x) for all the ob-
jects in a particular run of IBM’s commercial JVM, and it
shows that log2 N is an excellent predictor of C(x).

Suppose the word size is 4, and the object size is 1024,
and consider a 32-bit pointer value as follows:

32 28 10 2
In any of the many A fields in the memory, we can exploit
a bit-flip in any of the C(x) bits from bit 10 to bit 27; any
one of these flips will cause the pointer to point to the base
of one of the B objects.

We can also exploit any flip in bits 2 through 9; this
will cause the pointer to point within the object (or within
an adjacent object), and when the offset is added to the
pointer we will fetch one of the many nearby A fields
within the A object (or within an adjacent B object). This
pointer won’t point at an object header, so if we attempt to
call a virtual method (or to garbage-collect), the JVM will
probably crash; but fetching a data field (instance vari-
able) does not involve the object header.

We cannot exploit flips in the extreme high-order bits
(the resulting pointer would point outside the allocated
heap) or the two low-order bits (which would create a
pointer not aligned to a word boundary).

Let K = C(x) + log2 s; K is the number of single-bit
errors we can exploit in a single word, so it is a mea-

Cousin # of objects with
number that cousin number

0 2
1 2
2 13
3 7
4 20
5 59
6 30
7 0
8 0
9 0

10 0
11 0
12 0
13 614
14 2,868
15 32
16 29,660
17 110,640
18 282,576

Mean Total log2(Total)
17.56 426,523 18.70

Figure 2. Measured cousin number distribu-
tion in the IBM JVM.

sure of the efficiency of our attack. The C(x) component
comes from exploitation of high-order bit flips; the log2 s
comes from exploitation of medium order bit flips (point-
ers within the object). Our attack is extremely efficient.
We were able to obtain a K value of 26 on a 32-bit ma-
chine.

For each pointer of type A that contains x, a bit flip
in any of K bits would result in a successful exploit. (A
bit flip in other bits may result in the pointer pointing
to garbage.) If we have N objects containing N(s− h)
pointers of type A which contain x, any single-bit flip in
KN(s− h) bits can be exploited. We can make Ns al-
most as large as the process address space, and we can
minimize the overhead of object headers by using large
objects.

We can estimate the efficiency of the attack as the frac-
tion of single-bit errors that allow the attack to succeed.
We assume the following parameters:

P bytes of physical memory on the computer,

M bytes available to the Java program in its garbage-
collected heap,

w is the log2 of the word size,

s is the number of words in an object,

h is the number of words occupied by the header of each
object.

Then the number of objects is N = M/(s · 2w), the num-
ber of exploitable pointers is N(s−h), the number of ex-
ploitable bits per pointer is K = log2 N + log2 s. Thus the
fraction of exploitable bits in the physical memory is

N(s−h)(log2(Ns))
8P

Multiple-bit errors will also allow the attack to suc-
ceed. As long as the flipped bits are all contained within
the K exploitable bits, then the memory error will allow
type-system circumvention, except for the rare case that
the corrupted value, when the offset is added to it, ends
up pointing to an object header. To minimize the likeli-
hood of pointing to a header if a few bits are flipped, we
want the Hamming distance from x + offset to the base of
the object to be high; that is offset should be an integer
with several 1 bits.

Suppose we have M bytes of memory, and some small
number d of bits flip. If the flipped bits are all in different
words, then this is essentially like several single-bit at-
tacks, provided that none of the bit-flips is in a place that
crashes the JVM or the operating system.

Suppose d different bits flip, all in the same word (uni-
form randomly distributed), with word size W bits. Then
the probability that all d are within the K bits that we can
exploit is K·(K−1)···(K−d+1)

W ·(W−1)···(W−d+1) . For K = 26 (which is the
highest value of K that we have observed), we can still
exploit a 6-bit error with about one-fourth the likelihood
of a one-bit error.

5 Experimental results

We implemented and measured our attack against two
different commercial Java Virtual Machines, both running
on RedHat Linux 7.3:

• IBM’s Java(TM) 2 Runtime Environment, Standard
Edition (build 1.3.1);

• Sun’s Java(TM) 2 Runtime Environment, Standard
Edition (build 1.3.1 02-b02).

Notwithstanding the coincidence in build numbers, these
appear to be quite different virtual machines.

We ran several sets of experiments:

1. We ran a privileged Java thread inside the JVM that
uses the Java Native Interface to a C-language func-
tion that flips a bit in the process address space. This
serves mostly to check the operation of the attack ap-
plet and confirm our closed-form analysis.

2. We ran an unmodified JVM, with a separate privi-
leged Linux process that opens /dev/mem and flips a
random bit in the computer’s physical memory. This
simulates a naturally induced memory error that re-
sults from a cosmic ray, as described in Section 6.

3. We ran an unmodified JVM, and induced memory
errors by heating the memory to 100◦C, as described
in Section 7.

In order to minimize the proportion of memory de-
voted to object headers, we used objects of approximately
1024 bytes; our A and B classes had 249 pointer fields
and (on the IBM JVM) 3 header words.

IBM’s JVM allowed the applet to allocate up to 60% of
the physical memory, but not more. The JVM reveals suf-
ficient information about the address of the object to com-
pute the cousin number for each object. We optimized the
attack to use this information. We refer the reader to the
appendix for details about the optimization.

Software-injected in-process faults:

The JVM permitted a process address space of 467
megabytes on a machine with 1 GB of memory. We
were able to allocate 422066 objects. A bit flip in
any of the bits 2 . . .27 of any pointer resulted in a
successful attack; that is, K = 26.

Thus we were able to use 422066·249·26
8·467·220 = 0.70 of the

bit flips in the program address space.

Software-injected anywhere-in-physical-memory faults:
We were able to allocate N = 57,753 objects on
a machine with 128 MB RAM. We flipped a ran-
dom memory bit in the physical memory using the
/dev/mem interface. We expect a success probability
of 57753·249·log2(57753·249)

8·128·220 = 0.32. We ran 3,032 trials
of the experiment. By comparing the pointer fetched
from the memory with a pointer to the object, we
detected that a bit flipped in 1353 trials. Of these
1353 times, we were able to take over the JVM 998
times (the remainder were in an unexploitable bit of
the word, and hence the JVM crashed). In 1679 tri-
als, the bit flip was not detected by our program; of
these trials, there were 23 where the operating sys-
tem crashed, and at most 22 trials where our JVM

crashed2. Our efficiency was 0.33, which is close to
the analytic prediction.

Sun’s JVM allowed the applet to allocate up to 60% of
the physical memory, but not more.

Software-injected anywhere-in-physical-memory faults:
We were able to allocate N = 61,181 objects on
a machine with 128 MB RAM. We flipped a ran-
dom memory bit in the physical memory using the
/dev/mem interface. We expect a success probability
of 61181·249·log2(61181·249)

8·128·220 = 0.34. We ran 292 trials
of the experiment. By comparing the pointer fetched
from the memory with a pointer to the object, we
detected that a bit flipped in 154 trials. Of these
154 times, we were able to take over the JVM 112
times (the remainder were in an unexploitable bit of
the word, and hence the JVM crashed). In 138 tri-
als, the bit flip was not detected by our program; of
these trials, there were 4 where the operating system
crashed. Our efficiency was 0.38, which is close to
the analytic prediction.

Exploiting before crashing. If errors occur frequently,
then the raw efficiency (what fraction of the errors can be
exploited) may not be as important as the likelihood of ex-
ploiting an error before the JVM or the operating system
crashes. If p is the probability that an individual memory
error leads to a successful exploit, and q is the probability
that an individual memory error crashes the JVM or the
operating system, then the probability3 that the successful
exploit occurs before the machine crashes is p/(p + q).
Our measurement shows (of the IBM JVM) a value of
p = 0.33, q = 0.12, so p/(p + q) is about 73.3%.

Safe bit flips. In our applet, almost the whole memory
is filled with pointers pointing to the single A object. The
applet repeatedly tests these pointers against the pointer
to the A object to detect a bit flip. If the bit flipped is
in the extreme high/low bits, dereferencing the flipped
pointer might crash the JVM because the pointer points
outside the address space or to an unaligned address.
How do we find out if the program can safely dereference
the flipped pointer? Suppose the word size is 4, and the
object size is 1024, and consider a 32-bit pointer value as

2In our logs, there are 22 trials where it is not clear whether the JVM
crashed. To be conservative, we assume that the JVM crashed in those
cases.

3The argument is as follows: With each error, we win with probabil-
ity p and we play again with probability (1− p−q). Thus the likelihood
of eventually winning is p ·∑∞

i=1(1− p−q)i, or p/(p + q).

follows:

32 28 10 2

If the bits flipped are in the bits 2 . . .27, then derefer-
encing the flipped pointer is safe. If the flipped bits are
in the bits 10 . . .27, the new pointer should point to one
of the B objects. Thus, we can detect if the bits flipped
are in the bits 10 . . .27 by comparing the flipped pointer
with each of the B objects. The program has no safe way
to distinguish a flip in the bits 2 . . .9 from a flip in the
bits 0 . . .1 and 28 . . .31. Thus, if we have flips in the bits
not known to be in 10 . . .27, we have to dereference the
pointer and hope it is safe to dereference.

By comparing against the B objects and detecting if
the bits flipped are in the bits 10 . . .27, and using only
these safe flipped pointers for the attack, though our ef-
ficiency is lower, we have a better win-before-lose-ratio.
In this case q, the probability that an individual memory
error crashes the JVM or the operating system drops to
45/3032 and hence the probability that the successful ex-
ploit occurs before a machine crash is p/(p+q) = 93.6%.
In this version, where we do not use the flips in the bits
2 . . .9 (corresponding to the interior offset of the fields
in the object), the optimal object size for our exploit is
smaller. Smaller object size would allow us to use flips
in more bits per word, while increasing the object header
overhead. Our analysis shows that for a JVM that uses 2
header words per object, the optimal object size is 128,
with the win-before-loss ratio for this object size being
94.6%.

6 Susceptibility of DRAM chips

To attack machines without physical access, the at-
tacker can rely on natural memory errors. Memory er-
rors are characterized as hard or soft. Hard errors are
caused by defects in the silicon or metalisation of the
DRAM package and are generally permanent (or intermit-
tent) once they manifest. Soft errors are typically caused
by charged particles or radiation and are transient. A
memory location affected by a soft error does not man-
ifest error upon writing new data.

Soft errors have been studied extensively by the avion-
ics and space research communities. They refer to soft er-
rors as “single event upset” (SEU). In the past, soft errors
were primarily caused by alpha particles emitted by the
impurities in the silicon, or in the plastic packaging ma-
terial [21]. This failure mode has been mostly eliminated
today due to strict quality control of packaging material

by DRAM vendors.
Recent generations of DRAM chips have been made

more resistant to memory errors by avoiding the use of
boron compounds, which can be stimulated by thermal
neutrons to produce alpha particles [11]. Currently the
probable primary source of soft errors in DRAM is elec-
trical disturbance caused by terrestrial cosmic rays, which
are very high-energy subatomic particles originating in
outer space.

It is hard to find good recent quantitative data on the
susceptibility of DRAM chips to radiation-induced faults.
The most informative paper we came across is from IBM,
and is for memory technologies several generations old
[14]; in 1996 one might have expected one error per
month in a typical PC.

Since then, changes in DRAM technology have re-
duced its radiation-induced fault rate. Dynamic RAMs
are implemented with one capacitor to hold the state of
each bit of memory. The susceptibility of a DRAM cell
to faults is proportional to its size (cross-section to cos-
mic rays), and inversely proportional to its capacitance.
As new capacitor geometries have implemented the same
capacitance in less chip area, the fault rate per bit has sig-
nificantly decreased [16]. Even though these technology
changes were not made with the primary intent of reduc-
ing the error rate, they cause DRAMs to be much more
reliable than a decade ago. It appears that one will have to
wait for several months on a desktop machine for an error.

DRAMs are most susceptible when the data is being
transferred in and out of the cells. An attack program
would do well to (miss the cache and) frequently access
the DRAM chips.

In the near future, we may expect errors not just from
cosmic rays but from the extremely high clock speeds
used on memory busses [15]. The faults will not occur
in the bits while they are sitting in memory, but on the
way to and from the memory.

Our attack will work regardless of the source of the
error. Once we fetch a bad value into a local variable
(typically implemented as a register in the processor), it
doesn’t matter whether the value became bad on to way
from the processor to the cache, on the way from the
cache to the memory, while sitting in main memory, on
the way main memory to cache, or from cache to pro-
cessor. All that we need is a local Java pointer variable
containing slightly bad data.

Given the rarity of memory errors, an attack based on
naturally occurring errors would have to attack many ma-
chines at once, hoping to catch a cosmic ray in one of
them. This could be done by hiding the attack in an ap-
plication program that is loaded on many machines. Be-

cause the attack requires very large amounts of memory
to operate efficiently, the application in which it’s hidden
would itself have to be a memory hog. Fortunately for the
attacker, few users are surprised these days when appli-
cations use hundreds of megabytes to accomplish trivial
tasks.

Attacks on Static RAM

New generations of SRAMs are increasingly suscepti-
ble to memory errors [17]. SRAM error rates are orders
of magnitude higher than DRAM error rates [6]. SRAMs
are used for cache memory, often on the processor chip
itself. Error detection is essential.

Our exploit should work against the data cache, al-
though we have not measured it. In this case, we still need
to allocate tens or hundreds of megabytes rather than just
the cache size. The program address space should be large
so that a flip in the maximum number of bits can be used.

7 Physical fault injection

If the attacker has physical access to the outside of the
machine, as in the case of a smart card or other tamper-
resistant computer, the attacker can induce memory er-
rors. We considered attacks on boxes in form factors rang-
ing from a credit card to a palmtop to a desktop PC.

We considered several ways in which the attacker
could induce errors.4

Alpha particles are helium nuclei that are typically
formed as a byproduct of radioactive decay of heavy
elements. Obtaining an alpha-particle source from
a scientific supply house might not be too difficult,
or one could obtain a weak source by taking apart a
smoke detector. However, alpha particles don’t pen-
etrate even a millimeter of plastic very well; histor-
ically, when alpha particles have been a significant
source of memory errors it has been when radioac-
tive sources have contaminated the chip packaging
material itself. Alpha particles might be used to at-
tack a computer in the form factor of a credit card,
but anything thicker should be resistant.

Beta rays are high-energy electrons. They interact suf-
ficiently strongly with plastic and metal packaging
material that beta rays resulting from decay of ra-
dioactive nuclei would not be useful to an attacker.

4We gratefully acknowledge a useful discussion with Dr. Eugene
Normand [12] that helped rule out several classes of attacks.

X-rays or other high-energy photons might penetrate the
packaging material, but interact weakly with DRAM
circuitry – they simply don’t have enough energy
per particle. A dentist’s X-ray or an airport baggage
scanner would be very unlikely to induce memory
errors. A “hard” (very high energy) X-ray source
might possibly do the job.

High-energy protons and neutrons, such as those pro-
duced by large particle accelerators, are similar to
those cosmic rays that penetrate the atmosphere, and
interact similarly with DRAM chips. Such accelera-
tors are often used to test the resistance of electronic
components to cosmic radiation, especially compo-
nents to be used on aircraft and spacecraft. Few
attackers — indeed, few nation-states — have ac-
cess to such accelerators. However, an Americium-
Beryllium source (such as is used in oil explo-
ration) produces neutrons that could very likely in-
duce memory errors [13]. Access to such sources is
regulated; an attacker could gain access by purchas-
ing a small oil-drilling company, or by becoming em-
ployed at such a company.

Infrared radiation produces heat, and it is well known
that electronic components become unreliable at
high temperatures.

Since we lacked the time or inclination to learn the oil-
drilling trade, we decided to use heat. We induced mem-
ory errors in a desktop PC by opening the box and shining
light on the memory chips. We used a clip-on lamp with
a flexible gooseneck, equipped with a 50-watt spotlight
bulb.

At first we varied the heat input by varying the distance
of the bulb from the chips. At about 100 degrees Celsius,
the memory chips start generating faults. We were able to
control the temperature so that errors were introduced in
at most ten words, with errors in about 10 bits per word.

As we were fine-tuning this experiment, we found that
introducing large numbers of memory errors would of-
ten cause the operating system not only to crash, but to
corrupt the disk-resident software so that reboot was im-
possible without reinstallation of the operating system. To
solve this problem, we arranged to boot Linux from a CD-
ROM, without relying on the magnetic disk at all. The
attacker would not have this luxury, of course; he would
have to flip just a few bits the very first time.

For a successful exploit we wanted finer control over
the temperature, so we controlled the lamp wattage with
a variable AC power supply, and put the spotlight about

Figure 3. Experimental setup to induce
memory errors, showing a PC built from sur-
plus components, clip-on gooseneck lamp,
50-watt spotlight bulb, and digital ther-
mometer. Not shown is the variable AC
power supply for the lamp.

2 centimeters from the memory chips. We found a grad-
ual rise in temperature in the region of 80–100◦ Celsius
would cause isolated, random, intermittent soft failures
in the memory. As section 5 explains, we expected that if
we can induce isolated errors, the probability of a success-
ful attack on the IBM JVM before the machine crashes is
73.3%.

This attack was successful. We ran one trial against
each of the IBM and Sun JVMs, and each trial allowed us
to circumvent the type system and take over the JVM. It
takes about one minute to heat the memory in a successful
exploit.

A real attacker would not have the luxury of opening
the box and focusing just on the memory; it would be
necessary to apply heat from the outside. For a palmtop
or notebook-computer form factor, it might be possible to
apply a focused light at just the place on the outside of
the box under which the memory chips sit. For a desktop
PC, this would be impossible; the attacker would have to
heat the entire box (in an oven, or by blocking the cooling
fan), and we don’t know whether the memory would be-
come unreliable before other components failed. A high-
wattage AMD or Intel P4 processor would likely fail be-
fore the memory, but a low-wattage VIA C3 would not
heat up as quickly as the memory [16].

It might also be possible for the attacker to heat specific
memory chips by exercising them; the CMOS latch and

datapath sections of the memory consume power mostly
when changing state.

8 Countermeasures

Parity checking to detect single-bit memory errors, and
more sophisticated error-correcting codes (ECC) to cor-
rect single-bit errors and detect multiple-bit errors, have
been known and deployed for decades. The cost is small:
to implement detection of 1-bit and 2-bit errors, it is suf-
ficient to use 72 bits to represent every 64-bit word of
memory, a memory overhead of 12.5%.

However, many or most mainstream desktop personal
computers are sold without memory error detection hard-
ware. One possible explanation is the price competition
and low profit margins in the commodity PC business. If
memory chips account for a quarter of the cost of a PC,
and error detection adds a 12.5% overhead to the cost of
the memory, then error detection adds a 3% overhead to
the cost of the entire box; this is likely to be larger than
the profit margin of the PC assembler/reseller.

Static RAM (SRAM) used in cache memory can also
be a source of memory errors. Fortunately, in a typical
desktop PC the cache may be on the processor chip, where
there is no means or incentive for the assembler/reseller to
omit ECC. Unfortunately, not all processors include ECC
in cache datapath.

A fairly effective and obvious defense against our at-
tack is to use a PC with ECC memory. However, a typical
ECC design is meant to protect against naturally occur-
ring faults, not against a coordinated attack. Therefore,
there are additional considerations.

Multiple-bit errors. ECC memory can detect all 1-bit
and 2-bit errors. The probability that a bit flips in the
memory should be extremely small. Otherwise, we may
have bit flips in the control space of the applet, and hence
the applet may crash. For the adversary to successfully
take over the virtual machine, the adversary should create
a multiple bit error without creating 1-bit and 2-bit er-
rors. Even, the probability of a 1-bit error is small. Thus,
if single-bit errors are rare and uniformly randomly dis-
tributed, then the likelihood of a 3-bit error without ECC
detecting any 2-bit or 1-bit errors is vanishingly small.
However, ECC itself cannot provide a complete defense.

Total datapath coverage. Our attack works regardless
of where on the datapath the error occurs. If there is a
bus between processor and memory that is not covered

by error detection, then the attacker can attempt to induce
errors in that bus. It is not sufficient to apply ECC just
within the memory subsystem. Only a few high-end x86-
compatible processors handle ECC on the processor chip
[17].

Logging. Experts have long recommended logging of
errors — even the single-bit errors that are automatically
corrected by ECC hardware — so that patterns of prob-
lems can be detected after the fact. However, many oper-
ating systems do not log errors; this has made it difficult
to diagnose problems [11].

To defend against attacks by heat or other means of in-
ducing errors, the logging system must be able to react to
a substantial increase in the number of errors. If several
errors are detected in a short period, it would be wise to
assume that the system is under attack, and to shut down
— or at least to disable untrusted software that might con-
tain implementations of our attack.

However, if a 3-bit or 4-bit error can be induced before
very many 1-bit and 2-bit errors occur, then logging will
not be successful: the attack will succeed before logging
detects it. For a strong defense, more than 2-bit errors
need to be detected, which can be done by increasing the
number of ECC (overhead) bits in the memory.

9 Conclusion

Allowing the attacker to choose the program to be
run alters many of the assumptions under which error-
protection mechanisms are designed. Virtual machines
that use static checking for protection can be vulnerable
to attacks that exploit soft memory errors. The best de-
fense is the use of hardware error-detection and correction
(ECC), with software logging of errors and appropriate
response to unusual patterns of errors.

Acknowledgments

We would like to thank Yefim Shuf, David Fisch,
Michael Schuette, Eugene Normand, Peter Creath, Perry
Cook, Brent Waters, Lujo Bauer, Gang Tan, Tom van
Vleck, Crispin Cowan, Ed Felten, Jim Roberts, and
Karthik Prasanna for their help in various stages of the
project.

References

[1] R. Anderson and M. Kuhn. Tamper Resistance - a Cau-
tionary Note. In Proceedings of the Second Usenix Work-
shop on Electronic Commerce, pages 1–11, Nov. 1996.

[2] R. Anderson and M. Kuhn. Low cost attacks on tamper
resistant devices. In IWSP: International Workshop on Se-
curity Protocols, LNCS, 1997.

[3] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the im-
portance of checking cryptographic protocols for faults.
Lecture Notes in Computer Science, 1233:37–51, 1997.

[4] S. Borman. Understanding the IBM Java garbage col-
lector. www-106.ibm.com/developerworks/ibm/library/i-
garbage2/, Aug. 2002. web page fetched October 8, 2002.

[5] C. Colby, P. Lee, G. C. Necula, F. Blau, K. Cline, and
M. Plesko. A certifying compiler for Java. In Proceedings
of the 2000 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’00), New
York, June 2000. ACM Press.

[6] A. Corporation. Neutrons from above:
Soft error rates Q&As. Technical Report
http://www.actel.com/appnotes/SER QAs.pdf, Actel
Corporation, July 2002.

[7] D. Dean, E. W. Felten, and D. S. Wallach. Java security:
From HotJava to Netscape and beyond. In Proceedings
of 1996 IEEE Symposium on Security and Privacy, May
1996.

[8] S. Drossopoulou and S. Eisenbach. Describing the se-
mantics of Java and proving type soundness. In J. Alves-
Foss, editor, Formal Syntax and Semantics of Java, LNCS.
Springer, 1998.

[9] S. Drossopoulou, T. Valkevych, and S. Eisenbach. Java
type soundness revisited. Technical report, Imperial Col-
lege London, Sept. 2000.

[10] G. McGraw and E. W. Felten. Securing Java. John Wiley
& Sons, 1999.

[11] E. Normand. Single event upset at ground level. IEEE
Transactions on Nuclear Science, 43:2742, 1996.

[12] E. Normand. Boeing Radiation Effects Laboratory, per-
sonal communication, Oct. 2002.

[13] E. Normand. Boeing Radiation Effects Laboratory, e-
mail, Oct. 2002.

[14] T. J. O’Gorman, J. M. Ross, A. H. Taber, J. F. Ziegler, H. P.
Muhlfeld, C. J. Montrose, H. W. Curtis, and J. L. Walsh.
Field testing for cosmic ray soft errors in semiconductor
memories. IBM Journal of Research and Development,
40:41–50, Jan. 1996.

[15] D. Patterson. personal communication, Oct. 2002.
[16] M. Schuette. Enhanced Memory Systems Inc., e-mail,

Nov. 2002.
[17] M. Schuette. Enhanced Memory Systems Inc., personal

communication, Sept. 2002.
[18] T. Tso. random.c – a strong random number generator,

1994. drivers/char/random.c in Linux 2.4.19 source tree.

[19] D. von Oheimb and T. Nipkow. Machine-checking the
Java specification: Proving type-safety. In J. Alves-Foss,
editor, Formal Syntax and Semantics of Java, volume
1523 of LNCS, pages 119–156. Springer, 1999.

[20] J. Xu, S. Chen, Z. Kalbarczyk, and R. K. Iyer. An exper-
imental study of security vulnerabilities caused by errors.
In Proceedings of the IEEE International Conference on
Dependable Systems and Networks (DSN-01), July 2001.

[21] J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose,
B. Chin, M. Nicewicz, C. A. Russell, W. Y. Wang, L. B.
Freeman, P. Hosier, L. E. LaFave, J. L. Walsh, J. M. Orro,
G. J. Unger, J. M. Ross, T. J. O’Gorman, B. Messina, T. D.
Sullivan, A. J. Sykes, H. Yourke, T. A. Enger, V. Tolat,
T. S. Scott, A. H. Taber, R. J. Sussman, W. A. Klein, and
C. W. Wahaus. IBM experiments in soft fails in computer
electronics (1978-1994). IBM Journal of Research and
Development, 40:3–18, Jan. 1996.

A Defeating address obfuscation in IBM’s
JVM

In our attack, it helps to have the address of an ob-
ject so that we can design an an optimal layout to trap bit
flips. If an applet can learn the address of an object, that
in itself is not bad, but it may make other attacks easier.
Dean et al. used the hashCode function to determine the
object address in their attacks [7]. To defeat such attacks,
modern JVMs try not to expose the address of an object.
IBM JVM uses a cloaked object address in its hashCode.
In this appendix, we show that IBM’s cloaking method is
ineffective.

HashCode function. Given an object, the Java specifi-
cation requires that the hashCode method on the object
return the same integer on every call. This method is pro-
vided to provide a good hash function for implementing
hash tables. To reduce the number of collisions, it is desir-
able that given two objects, their hashCodes are different.
One implementation is to return a pseudo-random num-
ber for each object and store the number in the header of
the object. Another implementation, one that saves space
in the object header, is to convert the internal object ad-
dress into an integer. This is a typical implementation,
and works if the object address is the same over its life-
time. In this implementation, if the object were to move
during its lifetime due to compaction or due to a copying
garbage collector, it is required to store the hashCode in
the object header.

A.1 Hashcode Implementation in IBM’s JVM

We used GDB to reverse engineer IBM’s hashCode
function implementation. The hashCode function in the
IBM JVM is implemented as:

A = 2 * sp + clock()
B = 2 * sp + time() - 70
hashCode (address) {

t1 = address >> 3
t2 = t1 ˆ A
t3 = (t2 << 15) | (t2 >> 17)
t4 = t3 ˆ B
t5 = t4 >> 1
return t5

}

The JVM computes two global constants A and B dur-
ing its initialisation. These constants are used in the com-
putation of hashCode. In the above code, sp refers to the
stack pointer at the entry of the function where A and B are
computed. Time is the number of seconds elapsed since
January 1, 1970; clock is the processor time used by the
JVM since the start of the current process.

Apparently, the purpose of all the shifting and XOR-
ing is to obfuscate the address of the object. Exposing the
address of an object is a bad security practice. Any bug in
the type system or in the byte-code verifier coupled with
the ready availability of the address might make the sys-
tem vulnerable to attack [7].

Even without knowing the clock and time values, we
can find if two objects’ addresses differ by examining
their hashCodes. If c is a constant, a1 and a2 differ in a bit
if and only if c⊕ a1 and c⊕ a2 differ in a bit. Similarly,
if both a1 and a2 are shifted circularly (as in the compu-
tation of t3) or shifted right to remove constant bits (as
in the computation of t1—all objects in the JVM are allo-
cated on an 8-byte boundary), then the resulting values a′1
and a′2 will differ in just one bit at a known position. This
implies that for all bits, except bit 20, the object addresses
differ in a bit if and only if the corresponding hashCodes
differ in the corresponding bit. Bit 20 is the bit that is lost
in the computation of t5.

A.2 Obtaining the layout

To maximize our success probability, we base our at-
tack on the object with the maximum number of cousins.
We now describe an algorithm to obtain a layout which
optimizes the cousin number of the object of type A.
IBM’s JVM implements a mark-and-sweep garbage col-
lector [4]. We perform the following steps :

• Allocate a large number of objects b1, b2, . . . each
of type B.

• Compute the cousin number of each object, by flip-
ping each bit in its hashCode, one at a time, and see-
ing if we have an object with the resulting hashCode.
Choose the object β with the maximum cousin num-
ber; let the address of β be x.

• Deallocate the object β. This is done by setting all
variables pointing to it to null. (Java does not have a
free function.)

• Call the garbage collector; the address x is added
to front of the free list because of mark-and-sweep
garbage collector. The garbage collector is called by
invoking the method System.GC. This JVM puts ob-
jects on the free list only if they are larger than 512
bytes (it relies on compaction to reclaim smaller ob-
jects), but our objects are large enough.

• Allocate an object α of type A. The memory man-
ager reuses the address x, especially because objects
of types A and B are of the same size.

• Set each field of type A of each object to α. Set the
field b in object α to one of the B objects.

We thus have a layout where the cousin number of the
object α (type A) is optimal. This layout maximizes our
success probability.

A.3 Completely cracking the hashCode

For our attack, we did not need to find the exact clock,
time, and sp values used in the hashCode function. But it
is possible to (almost completely) undo the obfuscation.
A Java applet may call System.currentTimeMillis() itself;
it won’t get the same value as the JVM did when initial-
izing the constants A and B, but it will get a value that is
delayed in a predictable way from the original call, espe-
cially if the JVM was invoked specifically to immediately
load and execute only this applet. The applet can’t call
clock(), but this system call (on our Linux) is measured in
increments of hundredths of a second, and the number of
CPU centiseconds to initialize the JVM has only about 11
possible values (9 to 19).

The stack-pointer value is predictable too: in Linux, it
depends only on the total sizes of the stack frames from
the entry of main to the initialization of A and B—this is a
constant that can be easily learned from reverse engineer-
ing of the JVM—and on the size of the Unix argv and

environment string. The size of the environment string is
unknown, but can be expected to be less then 10 kbytes.

Based on the limited randomness available in the
sources of A and B, and given the applet’s ability to al-
locate several objects (which will often be placed at con-
secutive addresses) and then query their hashCodes, we
can find the values A and B with high confidence, or at
least restrict them to a small set of possible values.

Even bit 20 of the address, which seems irretrievably
lost in the computation of t5, can be recovered by other
means: objects allocated early will likely be in the first
megabyte of process address space (bit 20 equals zero),
and objects allocated later will be in the second megabyte
(bit 20 equals one), and so on. The transitions can be
observed in bit 19, and then the transitions in bit 20 can
be inferred.

A.4 Conclusion

IBM’s implementation of hashCode fails to provide ef-
fective obfuscation of the object address. The implemen-
tors would have done better to use a more effective source
of randomness (such as /dev/random on Linux [18]), and
to use a transformation that is less easily reversible than
XORing with a constant. Alternatively, the JVM could
have returned a random number and stored the number in
the header.

