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These slides help explain Color.v, the graph-coloring 
chapter of Verified Functional Algorithms,             
a volume in the Software Foundations  series. 
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These slides are best viewed in your PDF viewer in  
whole-page (page-at-a-time) mode, not scrolling mode. 



Alfred B. Kempe, 1849-1922 

In 1879, tried to prove the 4-color theorem: 
every planar graph can be colored using at  
most 4 colors. 

 

 

That is, any nodes  

connected by an edge  

must have different 

 colors. 
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Alfred B. Kempe, 1849-1922 

In 1879, tried to prove the 4-color theorem: 
every planar graph can be colored using at  
most 4 colors. 

 

Failed: his proof had a bug.   

 

But in the process, proved the 5-color theorem: 
every planar graph can be colored using at most 
5 colors.  For use in this proof, he invented an 
algorithm for graph coloring that is still relevant 
today, for use in many applications such as 
register allocation in compilers. 
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Alfred B. Kempe, 1849-1922 

In 1879, tried to prove the 4-color theorem: 
every planar graph can be colored using at  
most 4 colors. 

 

Failed: his proof had a bug.   

 

Some other guys fixed up Kempe’s buggy 

proof in 1976, using computers: they 

proved the 4-color theorem.  But their 

proof doesn’t have applications to compilers, 

as far as I know.   
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Kempe’s graph-coloring algorithm 

To 6-color a planar graph: 

 

1. Every planar graph has at least one vertex of 
degree ≤ 5. 

2. Remove this vertex. 

3. Color the rest of the graph with a recursive 
call to Kempe’s algorithm. 

4. Put the vertex back.  It is adjacent to at most 
5 vertices, which use up at most 5 colors from 
your “palette.”  Use the 6th color for this vertex. 
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From 6-coloring to 5-coloring 

That was Kempe’s simplest algorithm, to 6-color 
a planar graph; or in general, to K-color a graph 
in class C, such that (1) every graph in class C has 
a node of degree <K, and (2) removing a node 
from a graph in class C gives you another graph 
in class C. 

 

Kempe had two more algorithms:   

5-color a planar graph 

4-color a planar graph (but this algorithm had a bug) 
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Kempe’s 5-coloring algorithm 

To 5-color a planar graph: 

 

1. Every planar graph has at least one vertex of 
degree ≤ 5. 

2. Remove this vertex. 

3. Color the rest of the graph with a recursive 
call to Kempe’s algorithm. 

4. Put the vertex back.  It is adjacent to at most 
5 vertices.  How many different colors are used 
in these 5 vertices? 

 Four or less:  use the fifth color for this vertex. 

 Five:  use the method of “Kempe chains”, which is 
beyond the scope of this discussion. 7 



Kempe’s 5-coloring algorithm 

To 5-color a planar graph: 

 

1. Every planar graph has at least one vertex of 
degree ≤ 5. 

2. Remove this vertex. 

3. Color the rest of the graph with a recursive 
call to Kempe’s algorithm. 

4. Put the vertex back.  It is adjacent to at most 
5 vertices.  How many different colors are used 
in these 5 vertices? 

 Four or less:  use the fifth color for this vertex. 

 Five:  use the method of “Kempe chains”, which is 
beyond the scope of this discussion. 8 

We will set this algorithm aside, 

as it does not really concern us, 

and go back to Kempe’s 

 simpler algorithm 



Heuristic hack of Kempe’s algorithm 

To mostly K-color a graph (whether planar or not!) 

 
Is there a vertex of degree < K  ? 

If so:  

Remove this vertex. 

Color the rest of the graph with a recursive call to the algorithm. 

Put the vertex back.  It is adjacent to at most K-1 vertices.  They   use (among 
them) at most K-1 colors.  That leaves one of your colors for this vertex. 

If not: 

Remove this vertex. 

Color the rest of the graph with a recursive call. 

Put the vertex back.  It is adjacent to ≥ K vertices.  How many colors do these 
vertices use among them? 

If  < K :   there is an unused color to use for this vertex 

If  ≥ K:  leave this vertex uncolored. 
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Heuristic hack of Kempe’s algorithm 

To mostly K-color a graph (whether planar or not!) 

 
Is there a vertex of degree < K  ? 

If so:  

Remove this vertex. 

Color the rest of the graph with a recursive call to the algorithm. 

Put the vertex back.  It is adjacent to at most K-1 vertices.  They   use (among 
them) at most K-1 colors.  That leaves one of your colors for this vertex. 

If not: 

Remove this vertex. 

Color the rest of the graph with a recursive call. 

Put the vertex back.  It is adjacent to ≥ K vertices.  How many colors do these 
vertices use among them? 

If  < K :   there is an unused color to use for this vertex 

If  ≥ K:  leave this vertex uncolored. 
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What?   
Are we allowed to do that? 

 
Yes!   

This is an algorithm to 
“mostly K-color” a graph. 



Heuristic hack of Kempe’s algorithm 

To mostly K-color a graph (whether planar or not!) 

 
Is there a vertex of degree < K  ? 

If so:  

Remove this vertex. 

Color the rest of the graph with a recursive call to the algorithm. 

Put the vertex back.  It is adjacent to at most K-1 vertices.  They   use (among 
them) at most K-1 colors.  That leaves one of your colors for this vertex. 

If not: 

Remove this vertex. 

Color the rest of the graph with a recursive call. 

Put the vertex back.  It is adjacent to ≥ K vertices.  How many colors do these 
vertices use among them? 

If  < K :   there is an unused color to use for this vertex 

If  ≥ K:  leave this vertex uncolored. 
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In the application of register allocation for compilers, 

the uncolored nodes correspond to variables that are 

“spilled” to memory instead of held in registers. 

 

This variation of Kempe’s algorithm was invented 

 by Gregory Chaitin in 1981. 

Gregory Chaitin 



Example:  3-color this graph 

12 

f 

e 

b m 

c d 

k 
j 

h 

g 

Stack: 



Example:  3-color this graph 
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Stack: 

This node 

has degree < 3 ; 

remove it! 



Example:  3-color this graph 
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Stack:  c 
Push node c on 

the stack 



Example:  3-color this graph 
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Stack:  c 

Removing c 

lowers the degree 

of nodes b and m; 

that will be helpful later! 



Example:  3-color this graph 
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Stack:  c 

This node 

has degree < 3 ; 

remove it! 



Example:  3-color this graph 
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Stack:  h c 

This node 

has degree < 3 ; 

remove it! 



Example:  3-color this graph 
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Stack:  h c 

This node 

has degree < 3 ; 

remove it! 



Example:  3-color this graph 
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No node has degree < 3 

 

Pick a node arbitrarily, 

remove it, and 

push it on the stack 



Example:  3-color this graph 
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No node has degree < 3 

 

Pick a node arbitrarily, 

remove it, and 

push it on the stack 



Example:  3-color this graph 
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has degree < 3 ; 

remove it! 



Example:  3-color this graph 
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This node 

has degree < 3 ; 

remove it! 



Example:  3-color this graph 
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has degree < 3 ; 

remove it! 



Example:  3-color this graph 
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remove it! 



Example:  3-color this graph 
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This node 

has degree < 3 ; 

remove it! 



Example:  3-color this graph 
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m 

Stack:  b e f j d k g h c 

This node 

has degree < 3 ; 

remove it! 



Example:  3-color this graph 
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Stack:  m b e f j d k g h c 



Now, color the nodes in stack order 
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Find a color for this 

 node that’s not already 

used in an adjacent node 

Find a color for this 

 node that’s not already 

used in an adjacent node 



Now, color the nodes in stack order 
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Find a color for this 

 node that’s not already 

used in an adjacent node 



Now, color the nodes in stack order 
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Stack:  m b e f j d k g h c 
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Find a color for this 

 node that’s not already 

used in an adjacent node 



Now, color the nodes in stack order 
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Find a color for this 

 node that’s not already 

used in an adjacent node 



Now, color the nodes in stack order 
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Stack:  m b e f j d k g h c 
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 node that’s not already 

used in an adjacent node 



Now, color the nodes in stack order 
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used in an adjacent node 



Now, color the nodes in stack order 
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We’re about to color node k. 

This was the only one that was  

degree ≥ 3 when we removed it.   

Hence, it is not guaranteed that  

we can find a color for it now. 

 

But we got lucky, because  

b and d have the same color! 



Now, color the nodes in stack order 
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Find a color for this 

 node that’s not already 

used in an adjacent node 



Now, color the nodes in stack order 
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Find a color for this 

 node that’s not already 

used in an adjacent node 



Now, color the nodes in stack order 
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Now, color the nodes in stack order 
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Stack:  m b e f j d k g h c 
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Why did this work? 
Because (usually) when we removed 
each node, at that time it had degree < 3. 
So when we put it back, it’s adjacent 
to at most 2 already-colored nodes. 



Two-phase algorithm: 
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Stack:  m b e d k j f h g c 

Phase 1:  list the nodes in some order (“the stack”) 
 
Phase 2: color the nodes in stack order f 
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Two phase algorithm 
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Coloring order:  

Phase 1:  list the nodes in some order (“the stack”) 
Phase 2: color the nodes in stack order 
 
What if we use some other 
coloring order, instead of the 
“remove nodes of low-degree” 
order? 



Two phase algorithm 
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Coloring order: b c d e f g h j k m  

Phase 1:  list the nodes in some order (“the stack”) 
Phase 2: color the nodes in stack order 
 
What if we use some other 
coloring order, instead of the 
“remove nodes of low-degree” 
order? 

Just for fun, let’s use  

alphabetical order. 



Two phase algorithm 
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Coloring order: b c d e f g h j k m  

Phase 1:  list the nodes in some order (“the stack”) 
Phase 2: color the nodes in stack order 
 
What if we use some other 
coloring order? 



Two phase algorithm 
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Coloring order: b c d e f g h j k m  

Phase 1:  list the nodes in some order (“the stack”) 
Phase 2: color the nodes in stack order 
 
What if we use some other 
coloring order? 



Two phase algorithm 
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Coloring order: b c d e f g h j k m  

Phase 1:  list the nodes in some order (“the stack”) 
Phase 2: color the nodes in stack order 
 
What if we use some other 
coloring order? 



Two phase algorithm 
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Coloring order: b c d e f g h j k m  

Phase 1:  list the nodes in some order (“the stack”) 
Phase 2: color the nodes in stack order 
 
What if we use some other 
coloring order? 



Phase 1:  list the nodes in some order (“the stack”) 
Phase 2: color the nodes in stack order 
 
What if we use some other 
coloring order? 

Two phase algorithm 
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Coloring order: b c d e f g h j k m  



Phase 1:  list the nodes in some order (“the stack”) 
Phase 2: color the nodes in stack order 
 
What if we use some other 
coloring order? 

Two phase algorithm 

47 

f 

e 

b m 

c d 

k 
j 

h 

g 

Coloring order: b c d e f g h j k m  



Phase 1:  list the nodes in some order (“the stack”) 
Phase 2: color the nodes in stack order 
 
What if we use some other 
coloring order? 

Two phase algorithm 
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Coloring order: b c d e f g h j k m  



Phase 1:  list the nodes in some order (“the stack”) 
Phase 2: color the nodes in stack order 
 
What if we use some other 
coloring order? 

Two phase algorithm 
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Coloring order: b c d e f g h j k m  



Phase 1:  list the nodes in some order (“the stack”) 
Phase 2: color the nodes in stack order 
 
What if we use some other 
coloring order? 

Two phase algorithm 
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Coloring order: b c d e f g h j k m  

No color available 

for node k,  just 

leave it uncolored 



This is a correct  partial  
coloring of the graph! 
 
It’s not as good as the other one, 
but it is correct. 
 
(In a register-allocation 
application, variable k 
would not be assigned a 
register, but would be  
spilled to the stack frame.) 

Two phase algorithm 
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Coloring order: b c d e f g h j k m  



Moral:  The two-phase algorithm is correct 
no matter what ordering you choose. 
 
In phase 1, not necessary to use 
Kempe’s algorithm, 
although that may give 
better results. 

Two phase algorithm 
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Coloring order: b c d e f g h j k m  



Moral:  The two-phase algorithm is correct 
no matter what ordering you choose. 
 
In phase 1, not necessary to use Kempe’s algorithm, 
although that may give better results. 

Implications for program verification 

53 

Therefore:   When proving the correctness of this graph-coloring algorithm, 

we do not have to prove that the ordering phase correctly follows Kempe’s 

algorithm; any ordering will do!  We just have to prove things about phase 2.* 

* This was once pointed out to me by an anonymous referee named G.G. 



Representing graphs in a functional program 

54 

Node labels: b,c,d,e,… 

Edges of node f:   {j,e,m} 

This is a 

set of nodes  

Graph is a finite function  
from node to set-of-nodes: 
[ b↦{c,e,k,m}, c↦{b,m}, d↦{j,k,m}, 

  e↦{b,f,j,m}, f↦{e,j,m}, g↦{h,j,k}, 

  h↦{g,j}, j↦{d,e,f,g,h,k}, k↦{b,d,g,j}, 

  m↦{b,c,d,e,f} ] 
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Undirected graphs 
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Graph is a finite function  
from node to set-of-nodes: 
[ b↦{c,e,k,m}, c↦{b,m}, d↦{j,k,m}, 

  e↦{b,f,j,m}, f↦{e,j,m}, g↦{h,j,k}, 

  h↦{g,j}, j↦{d,e,f,g,h,k}, k↦{b,d,g,j}, 

  m↦{b,c,d,e,f} ] 

Graph coloring is done on undirected  graphs. 
 
In an undirected graph, whenever 𝑥→𝑦 then 𝑦→𝑥. 

Or we can write, 
 
undirected(G)  :=   
 ∀𝑥,𝑦.  𝑦 ϵ G(𝑥)  ⇒  𝑥 ϵ G(𝑦) 
   



Sets and maps 

56 

Graph is a finite function from node to set-of-nodes: 
[ b↦{c,e,k,m}, c↦{b,m}, d↦{j,k,m}, … ] 

We can use Coq’s  FSets and FMaps libraries 
to implement (efficient) functional sets and functional maps 
over small-integer keys: 
 
Module E := PositiveOrderedTypeBits.   (* E for “Element type,” positive numbers *) 

 

Module S := PositiveSet.     (* finite sets of positive numbers *) 

 
Module M := PositiveMap.    (*  finite functions from positive numbers to arbitrary type *) 



Removing a node from a graph 
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[ b↦{c,e,k,m}, c↦{b,m}, d↦{j,k,m}, 

  e↦{b,f,j,m}, f↦{e,j,m}, g↦{h,j,k}, 

  h↦{g,j}, j↦{d,e,f,g,h,k}, k↦{b,d,g,j}, 

  m↦{b,c,d,e,f} ] 

Definition remove_node (c: node) (G: graph) : graph := 
  M.map (S.remove c) (M.remove c G). 

First, remove c  

from finite-map G 



Removing a node from a graph 
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[ b↦{c,e,k,m}, c↦{b,m}, d↦{j,k,m}, 

  e↦{b,f,j,m}, f↦{e,j,m}, g↦{h,j,k}, 

  h↦{g,j}, j↦{d,e,f,g,h,k}, k↦{b,d,g,j}, 

  m↦{b,c,d,e,f} ] 

Definition remove_node (c: node) (G: graph) : graph := 
  M.map (S.remove c) (M.remove c G). 

First, remove c  

from finite-map G 

This leaves some 

dangling edges 



remove the  

dangling edges 

Removing a node from a graph 
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[ b↦{c,e,k,m}, c↦{b,m}, d↦{j,k,m}, 

  e↦{b,f,j,m}, f↦{e,j,m}, g↦{h,j,k}, 

  h↦{g,j}, j↦{d,e,f,g,h,k}, k↦{b,d,g,j}, 

  m↦{b,c,d,e,f} ] 

Definition remove_node (c: node) (G: graph) : graph := 
  M.map (S.remove c) (M.remove c G). 

First, remove c  

from finite-map G 

This leaves some 

dangling edges 



Testing whether a node is low-degree 
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[ b↦{c,e,k,m}, c↦{b,m}, d↦{j,k,m}, 

  e↦{b,f,j,m}, f↦{e,j,m}, g↦{h,j,k}, 

  h↦{g,j}, j↦{d,e,f,g,h,k}, k↦{b,d,g,j}, 

  m↦{b,c,d,e,f} ] 

Definition low_deg (K: nat) (n: node) (adj: nodeset) : bool :=  
     S.cardinal adj <? K. 

f 

e 

b m 

c d 

k 

j 

h 

g 

Example:   K=3, n=d, adj={j,k,m} 
 
(S.cardinal {j,k,m} <? 3) is false. 



The fold function on a finite map 

61 

[ b↦{c,e,k,m}, c↦{b,m}, d↦{j,k,m}, 

  e↦{b,f,j,m}, f↦{e,j,m}, g↦{h,j,k}, 

  h↦{g,j}, j↦{d,e,f,g,h,k}, k↦{b,d,g,j}, 

  m↦{b,c,d,e,f} ] 

M.fold: ∀ A B : Type, (M.elt → A → B → B) → M.t A → B → B 
 
M.fold:  (node → nodeset → nodeset → nodeset) → graph → nodeset → nodeset 

(*  calculate the set of those nodes of G that satisfy predicate P *) 
Definition subset_nodes (P: node → nodeset → bool) (g: graph) := 
   M.fold (fun n adj s => if P n adj then S.add n s else s) g S.empty. 



The set of low-degree nodes 

62 

[ b↦{c,e,k,m}, c↦{b,m}, d↦{j,k,m}, 

  e↦{b,f,j,m}, f↦{e,j,m}, g↦{h,j,k}, 

  h↦{g,j}, j↦{d,e,f,g,h,k}, k↦{b,d,g,j}, 

  m↦{b,c,d,e,f} ] 

M.fold: ∀ A B : Type, (M.elt → A → B → B) → M.t A → B → B 
 
M.fold:  (node → nodeset → nodeset → nodeset) → graph → nodeset → nodeset 

(*  calculate the set of those nodes of G that satisfy predicate P *) 
Definition subset_nodes (P: node → nodeset → bool) (g: graph) := 
   M.fold (fun n adj s => if P n adj then S.add n s else s) g S.empty. 

(subset_nodes (low_deg K) G) 

The set of low-degree 

nodes of G 



Phase 1 of Kempe’s algorithm 
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Function select (K: nat) (G: graph) : list node := 
  match      S.choose (subset_nodes (low_deg K) G)      with 
  | Some n   ⇒   n :: select K (remove_node n G) 
  | None   ⇒    nil 
  end. 

Calculates the “stack” 

by removing one low-degree node 

at a time. 



To define a “Function” in Coq, 

you must prove that it terminates, 

that it decreases some measurable 

thing at each recursive call. 

Recursive functions in Coq 

64 

Function select (K: nat) (G: graph) {measure . . .       } : list node := 
  match      S.choose (subset_nodes (low_deg K) G)      with 
  | Some n   ⇒   n :: select K (remove_node n G) 
  | None   ⇒    nil 
  end. 
Proof.  . . .  
Defined.  



Recursive functions in Coq 

65 

Function select (K: nat) (G: graph) {measure M.cardinal G} : list node := 
  match      S.choose (subset_nodes (low_deg K) G)      with 
  | Some n   ⇒   n :: select K (remove_node n G) 
  | None   ⇒    nil 
  end. 
Proof. apply select_terminates.  
Defined.  

Lemma select_terminates:  
  ∀ (K: nat) (G : graph) (n : node), 
   S.choose (subset_nodes (low_deg K) G) = Some n →  
   M.cardinal (remove_node n G) < M.cardinal G. 



Color palette 

66 

For 6-coloring a graph 
(or painting a portrait) 

For 3-coloring a graph 
(not so good for a portrait) 

palette: S.t 
A “palette” is a set of colors 



Phase 2 of the algorithm 
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 node that’s not already 

used in an adjacent node 



Phase 2 of the algorithm 
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Find a color for this 

 node that’s not already 

used in an adjacent node 

Definition coloring := M.t node. 
 
Definition colors_of (f: coloring) (s: S.t) : S.t :=  
   S.fold  
       (fun n s => match M.find n f with Some c ⇒ S.add c s | None ⇒ s end) 
       s     S.empty. 
 
Definition color1 (palette: S.t) (g: graph) (n: node) (f: coloring) : coloring := 
   match S.choose (S.diff palette (colors_of f (adj g n))) with 
   | Some c => M.add n c f 
   | None => f 
   end. 
 



The entire program 
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Definition color (palette: S.t) (G: graph) : coloring := 
  fold_right (color1 palette G)  (M.empty _) (select (S.cardinal palette) G). 

Phase 1 Phase 2 



PROVING THE PROGRAM 
CORRECT 
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Specification of correctness 
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coloring : Type :=  “finite function from node to color” 

 

Definition color (palette: S.t) (G: graph) : coloring := 

 
Correctness: 
 If 𝑓  is a coloring for G, that is,   color palette G = 𝑓, 
   then (1)    if  𝑓(𝑖) = Some 𝑐  then 𝑐 ϵ palette 
    and  (2)   if  𝑗ϵG(𝑖)  and  𝑓(𝑖) = Some 𝑐  and 𝑓(𝑗) = Some 𝑑  then  𝑐≠𝑑  

Definition coloring_ok (palette: S.t) (g: graph) (f: coloring) := 
 forall i j, S.In j (adj g i) →  
     (forall ci, M.find i f = Some ci → S.In ci palette) /\ 
     (forall ci cj, M.find i f = Some ci → M.find j f = Some cj → ci<>cj). 



Theorem 
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Definition coloring_ok (palette: S.t) (g: graph) (f: coloring) := 
 ∀ i j, 
     S.In j (adj g i) →  
     (forall ci, M.find i f = Some ci → S.In ci palette) /\ 
     (forall ci cj, M.find i f = Some ci → M.find j f = Some cj → ci<>cj). 
 
 
Theorem color_correct: 
  ∀ palette g,  
       no_selfloop g →  
       undirected g →  
       coloring_ok palette g (color palette g). 

Proof:   See the Coq development, Color.v 


