
Binomial Queues

Andrew W. Appel, 2016

Several pictures & captions from

Robert Sedgewick, Algorithms 3rd Edition

These slides are best viewed in your PDF viewer in
whole-page (page-at-a-time) mode, not scrolling mode.

Priority Queues

Operations: (there is a total order on the element type)

Create an empty queue

Insert an element into the queue

Delete-max: delete and return the largest element

Join: merge two queues

Persistence: save the state of a queue, or restore to saved state

Binary Heap
A binary heap is a tree with these properties:
• The key at each node is greater than all the keys in the subtrees of that node
• Each node has at most 2 children
• The tree is near complete:

Complete binary tree
down to next-to-last level

Last level filled in left-to-right

Binary Heap
The standard binary-heap algorithm for priority queues does insert
by this method:

70
Violates
parent>child
constraint, so swap

3

70

3

19

70

This takes worst-case log(N) time, since the height of a nearly full binary tree with N nodes is log(N).
Any educated computer scientist should know how this works.
We will not be using “standard” binary heaps, but binomial heaps; let’s file this away and move on.

Implementation choices

Heap in
array

Create O(N)

Insert O(log N)

Delete-max O(log N)

Join O(N)

Persistence O(N)

The standard implementation of a priority queue is a binary heap,
implemented in an array. https://en.wikipedia.org/wiki/Binary_heap
It has efficient insert and delete-max but other operations are linear time.

https://en.wikipedia.org/wiki/Binary_heap

Implementation choices

Heap in
array

Red-black
tree (Imp)

Create O(N) O(1)

Insert O(log N) O(log N)

Delete-max O(log N) O(log N)

Join O(N) O(N)

Persistence O(N) O(N)

One can also use a balanced binary search tree, such as a red-black tree.
https://en.wikipedia.org/wiki/Red-black_tree

A conventional imperative implementation, where insert and delete-max
modify the tree destructively, requires tree-copying for persistence.
To join two trees, insert each node of the smaller tree into the bigger one;
still O(N) if the trees are about equal in size.

https://en.wikipedia.org/wiki/Red-black_tree

Implementation choices

Heap in
array

Red-black
tree (Imp)

Red-black
tree (Fun)

Create O(N) O(1) O(1)

Insert O(log N) O(log N) O(log N)

Delete-max O(log N) O(log N) O(log N)

Join O(N) O(N) O(N)

Persistence O(N) O(N) O(1)

A pure-functional implementation of a balanced search tree,
with nondestructive update, gets persistence “for free,”
since the insert or delete-max does not destroy the old tree value.

Implementation choices

Heap in
array

Red-black
tree (Imp)

Red-black
tree (Fun)

Binomial
Queue

Create O(N) O(1) O(1) O(1)

Insert O(log N) O(log N) O(log N) O(log N)

Delete-max O(log N) O(log N) O(log N) O(log N)

Join O(N) O(N) O(N) O(log N)

Persistence O(N) O(N) O(1) O(1)

Binomial queues, invented by Jean Vuillemin in 1978, allow all of these
operations (including join) in O(log N) time. The imperative implementation
has cost O(N) for persistence, versus O(1) for the functional implementation.
The explanation you’ll see in the next few pages can apply to either implementation.

The textbook

A good explanation of the Binomial Queue data structure is in Robert Sedgewick’s
book, Algorithms Third Edition, published by Addison-Wesley.

Professor Sedgewick and his publisher have given permission for free access to this
section of the book, at

http://www.cs.princeton.edu/~appel/BQ.pdf

In the rest of these slides, the figures and captions labeled “Fig. 9.xx” are from
Sedgewick’s book.

http://www.cs.princeton.edu/~appel/BQ.pdf

Representing N-ary trees as 2-ary trees

Here’s a heap.
Notice that each node is

greater
(in alphabetical order)

than its children.
But it’s not a binary heap,
i.e. some nodes have >2

children, and it’s
not “complete” at the

next-to-last level. That’s OK.

T

S N P

R

O

GA

You can always
represent an N-ary

tree as a binary tree,
using the

“first-child”,
“next-child”

representation.

T

S

N

P

R

O GA

Same tree again,
just tilted

P

P

Left-heap-order invariant

In this N-ary heap,
the heap invariant is,

“the key at each node is
greater than the key at

each of the node’s children”

In this 2-ary-tree representation
of an N-ary heap, the invariant is,
“the key at each node is greater

than all the keys in its left subtree.”

P

P

Notice that N≮P,
but that’s OK, N<P not required
because P is the right child of N,

not the left child.

Convince yourself that the
N-ary-heap invariant

does correspond
to the left-heap-order

invariant on the 2-ary-tree!

?

Left-leaning heap

We call this a
“left-heap-ordered”

tree, with its invariant,
“the key at each node >

all the keys in its left subtree”

P

P

The left child of the root is a
complete binary tree;

the right child is empty.
Therefore the tree has 2k nodes,

where k is the height of the
left subtree.

Therefore we call this a
“left-heap-ordered
power-of-2 heap”

Binomial Queues

Well, actually, not a list of heaps;
a list of (option(heap)). The heap
may be present or absent at each

position.

Time: O(1), constant time
(only the white-colored nodes

are examined or touched).X T

1 1 0

1

1 1 1

1 0 0 0

operand x
operand y

carry bits

x+y

Time: log N, because that is (about) the length of the list of option(heap)
if there are N nodes (total) in all the heaps in the list.

Time: log N, which is the length of the “right spine”

Time: log N, which is the length of the “right spine;”
assuming that “join” can also be done in log N . . .

Time: log N, because that is (about) the length of the list of option(heap)
if there are N nodes (total) in all the heaps in the list.

Time: log N, because that is (about) the length of the list of option(heap)
if there are N nodes (total) in all the heaps in the list.

Conclusion

Binomial queues are simple and easy to implement
in a functional programming language such as ML
or Gallina.

Operations (insert, delete-max, join) are all quite
efficient: log(N) time. A pure-functional
implementation is naturally persistent, without any
extra programming effort.

Proofs of correctness are pretty straightforward too
(though not exactly trivial).

