Binomial Queues

Andrew W. Appel, 2016
Several pictures & captions from

Robert Sedgewick, Algorithms 3rd Edition

These slides are best viewed in your PDF viewer in
whole-page (page-at-a-time) mode, not scrolling mode.



Priority Queues

Operations: (there is a total order on the element type)
Create an empty queue

Insert an element into the queue

Delete-max: delete and return the largest element
Join: merge two queues

Persistence: save the state of a queue, or restore to saved state



Binary Heap

A binary heap is a tree with these properties:

* The key at each node is greater than all the keys in the subtrees of that node
* Each node has at most 2 children

* The tree is near complete:

Complete binary tree

(OEERED
\—«) pant down to next-to-last level
17) (3) (25) (1)
2 (7)

L '-._‘___‘__.-

<+—> |ast level filled in left-to-right



Binary Heap

The standard binary-heap algorithm for priority queues does insert

AP
[ L
by this method: A0
N
>
o0
& Q
@
(\‘:
o &
_ - .0\’8@ _
109 tog ¥ 109
DI (19), (9 (39
YNONORO @O e e QY
: .?._} . 2) (7) @ 2) (7) @)
- Violates

parent>child
constraint, so swap

This takes worst-case log(N) time, since the height of a nearly full binary tree with N nodes is log(N).
Any educated computer scientist should know how this works.
We will not be using “standard” binary heaps, but binomial heaps; let’s file this away and move on.



Implementation choices

The standard implementation of a priority queue is a binary heap,
implemented in an array. https://en.wikipedia.org/wiki/Binary heap
It has efficient insert and delete-max but other operations are linear time.

Heap in

array
Create O(N)
Insert O(log N)

Delete-max Of(log N)
Join O(N)

Persistence  O(N)


https://en.wikipedia.org/wiki/Binary_heap

Implementation choices

One can also use a balanced binary search tree, such as a red-black tree.
https://en.wikipedia.org/wiki/Red-black tree

A conventional imperative implementation, where insert and delete-max
modify the tree destructively, requires tree-copying for persistence.

To join two trees, insert each node of the smaller tree into the bigger one;
still O(N) if the trees are about equal in size.

Heap in Red-black
array tree (Imp)

Create O(N) O(1)
Insert O(log N) O(log N)
Delete-max Of(log N)  Of(log N)
Join O(N) O(N)

Persistence  O(N) O(N)


https://en.wikipedia.org/wiki/Red-black_tree

Implementation choices

A pure-functional implementation of a balanced search tree,
with nondestructive update, gets persistence “for free,”
since the insert or delete-max does not destroy the old tree value.

Heap in Red-black | Red-black
array tree (Imp) | tree (Fun)

Create O(N) O(1) O(1)
Insert O(log N)  Oflog N) O(log N)
Delete-max Of(log N)  Of(log N) O(log N)
Join O(N) O(N) O(N)

Persistence  O(N) O(N) O(1)



Implementation choices

Binomial queues, invented by Jean Vuillemin in 1978, allow all of these

operations (including join) in O(log N) time. The imperative implementation

has cost O(N) for persistence, versus O(1) for the functional implementation.

The explanation you'll see in the next few pages can apply to either implementation.

Heap in Red-black | Red-black | Binomial
array tree (Imp) | tree (Fun) | Queue

Create O(N) O(1) O(1) O(1)

Insert O(log N) O(log N) O(log N) O(log N)
Delete-max Of(log N)  Of(log N) O(log N) O(log N)
Join O(N) O(N) O(N) O(log N)

Persistence  O(N) O(N) O(1) O(1)



The textbook

A good explanation of the Binomial Queue data structure is in Robert Sedgewick’s
book, Algorithms Third Edition, published by Addison-Wesley.

Professor Sedgewick and his publisher have given permission for free access to this
section of the book, at

http://www.cs.princeton.edu/~appel/BQ.pdf

In the rest of these slides, the figures and captions labeled “Fig. 9.xx” are from
Sedgewick’s book.


http://www.cs.princeton.edu/~appel/BQ.pdf

Representing N-ary trees as 2-ary trees

Here’s a heap.
Notice that each node is
greater
(in alphabetical order)
than its children.

But it’s not a binary heap,
i.e. some nodes have >2
children, and it’s
not “complete” at the

next-to-last level. That’s OK.

You can always
represent an N-ary
tree as a binary tree,

/ using the

0 “first-child”, »
G NG P “next-child” =
R ®®©

) representation.
8 g@
(R>(8)
©

Same tree again,
f) just tilted




Left-heap-order invariant

In this 2-ary-tree representation
of an N-ary heap, the invariant is,
“the key at each node is greater
than all the keys in its left subtree.”

Notice that N<P,

In this N-ary heap, S g 5) but that’s OK, N<P not required
the heap invariant is, B o T < because P is the right child of N,

“the key at each node is
greater than the key at
each of the node’s children”

® not the left child.

Convince yourself that the
N-ary-heap invariant
? - does correspond
to the left-heap-order
invariant on the 2-ary-tree!




Left-leaning heap

The left child of the root is a
complete binary tree;
the right child is empty.
Therefore the tree has 2k nodes,
where k is the height of the
left subtree.

We call this a
“left-heap-ordered”
tree, with its invariant,
“the key at each node >
all the keys in its left subtree”

Therefore we call this a
“left-heap-ordered
power-of-2 heap”




Binomial Queues

Figure 9.15
A binomial queue of size 13

A binomial queue of size N is a
list of left-heap-ordered power-of-
2 heaps, one for each bit in the

binary representation of N. Thus,

T w o ® a binomial queue of size 13 =
sy M E E 1101, consists of an 8-heap, a 4-
RAOG O heap, and a I-heap. Shown here
O are the left-heap-ordered power-

of-2 heap representation (top) and
the heap-ordered binomial-tree
representation (bottom) of the same
binomial queue.

Well, actually, not a list of heaps;

a list of (option(heap)). The heap

may be present or absent at each
position.




{Lﬁ@g S% @5&@ 10

Figure 9.16
Joining of two equal-sized
power-of-2 heaps.

We join two power-of-two heaps
(top) by putting the larger of the
roots at the root, with that root’s
(left) subtree as the right subtree
of the other original root. If the
operands have 2" nodes, the result
has 2™ nodes. If the operands
are left-heap ordered, then so is
the result, with the largest key

at the root. The heap-ordered
binomial-tree representation of the
same operation is shown below the
line.

Time: O(1), constant time
(only the white-colored nodes
® @ are examined or touched).



® Figure 9.17
f.yfj Insertion of a new element
\E) into a binomial queue

(M —,
=
Chec

Adding an element to a binomial
queue of seven nodes is analogous
- (N to performing the binary addition
ﬁ 1115, + 1 = 1000,, with carries at
each bit. The result is the binomial
queuve at the bottom, with an 8-

AR R
® {D @ heap and null 4-, 2-, and 1-heaps.
E)

11 g—— carry bits

f__rfi'% B He 1 operand x
Y 111 operandy
”E?L LIE) 1 0 0 0= X+y

Time: log N, because that is (about) the length of the list of option(heap)
if there are N nodes (total) in all the heaps in the list.



Figure 9.18
Removal of the maximum in a
(X) power-of-2 heap

Taking away the root gives a forest
of power-of-2 heaps, all left-heap
ordered, with roots from the right
spine of the tree.

(T

d{@ @%@i &b £

Time: log N, which is the length of the “right spine”



Figure 9.18
Removal of the maximum in a
power-of-2 heap

Taking away the root gives a forest
of power-of-2 heaps, all left-heap
ordered, with roots from the right
spine of the tree. This operation
leadls to a way to remove the max-
imum element from a binomial

@5 é@ queue: Take away the root of the
R/ power-of-2 heap that contains the
LY largest element, then use the join
operation to merge the resulting
binomial queue with remaining
power-of-2 heaps in the original
binomial queue.

Time: log N, which is the length of the “right spine;”
assuming that “join” can also be done inlog N . ..



Time: log N, because that is (about) the length of the list of option(heap)

Figure 9.19
Joining of two binomial
queues (no carry)

When two binomial queues to be
joined do not have any power-
of-2 heaps of the same size, the
join operation is a simple merge.
Doing this operation is analo-
gous to adding two binary num-
bers without ever encountering

1 + 1 (no carry). Here, a bino-
mial queue of 10 nodes is merged
with one of 5 nodes to make one
of 15 nodes, corresponding to
1010, 4+ 0101, = 1111,.

if there are N nodes (total) in all the heaps in the list.



N - Figure 9.20
f’ﬁ’-ﬁ?: E i |

? i ) Joining of two binomial

queues

Adding a binomial queue of 3
™ W nodes to one of 7 nodes gives one
’TR] ﬁ of 10 nodes through a process
= that mimics the binary addition
011> + 1115 = 1010;. Adding N

wm (€ : :
JE to E gives an empty 1-heap in the
S—ép @b result with a carry 2-heap contain-
ing N and E. Then adding the three

2-heaps leaves a 2-heap in the re-

W - oo @ o sult with a carry 4—."19:3;3 containing
/__rfg &5& T N E I. This 4-heap is added to
4/'5\ = the gfher 4-heap, producing the bi-
BDCE nomial queue at the bottom. Few
Yy

nodes are touched in the process.

Time: log N, because that is (about) the length of the list of option(heap)
if there are N nodes (total) in all the heaps in the list.



Conclusion

Binomial queues are simple and easy to implement
in a functional programming language such as ML
or Gallina.

Operations (insert, delete-max, join) are all quite
efficient: log(N) time. A pure-functional
implementation is naturally persistent, without any
extra programming effort.

Proofs of correctness are pretty straightforward too
(though not exactly trivial).



